
THE EXISTENCE OF A DISTRIBUTION FUNCTION FOR 
AN ERROR TERM RELATED TO THE EULER FUNCTION 

PAUL ERDOS AND H. N. SHAPIRO 

1. Introduction. The average order of the Euler function 4>(n), the number 
of integers less than n which are relatively prime to n, raises many difficult 
and still unanswered questions. Thus, for 

(1.1) R(x) = £*(») -—2x\ 
n<x K 

and 

(i.2) #(*)= E ^ 1 - - ^ , 
n<z n IT 

it is known that R(x) = O(xlogx) and H(x) = O(logx). However, though 
these results are quite old, they were not improved until recently. Walfisz 
(1) has given the outline of a proof of 

R(x) = O(x(logx)3/4(loglogx)2). 

On the other hand it is known (3) that 

(1.3) R(x) 9* 0(x log log log x). 
and 
(1.4) H{x) ?* 0(log log log x). 

In this direction it was proved in (4) that each of the following inequalities 
holds for infinitely many integral x (c a, certain positive constant) : 

(1.5) R(x) > ex log log log log x, 
(1.6) R(x) < — ex log log log log x, 
(1.7) H(x) > c log log log log x, 
(1.8) H(x) < — c log log log log x. 

In this paper we propose to continue the study of the error function H(x), 
and will prove that H(x) possesses a continuous distribution function. By 
this we mean that for N(n, u) = the number of m < n such that H(m) > u, 
we have for each u, — °o < u < <», that the limit 

(1.9) hm — = F(u) 
W->oo n 

exists; and the non-increasing function F(u) is continuous for all u. 
In the case of additive arithmetic functions, necessary and sufficient 

conditions for the existence of a distribution function are known (5; 6). 
The methods used in (5) to establish the sufficient conditions seem to apply 
in a fairly general way for establishing the existence of a continuous distribu-
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tion function even for a function which is not addit ive (7) . This method serves 
also as the basic framework of the proof given here for the existence of a 
continuous distr ibution function for H(x). 

There are essentially three steps. First, we introduce for each integer 
k > 1, the function 

(i.io) Ht(x) = E éitif- - *n (i - Ù. 
n<x [n, Ak) P<Pk \ p / 

where 

A,= Y\p; 
V<Vk 

where pk is the &th prime. I t is then shown t h a t for each u, with fixed k, if 
Nk(n, u) is the number of m < n such t h a t Hk(x) > u, the limit 

(1.11) l i m — = Fk[u) 

exists. We then see t h a t (1.9) follows if we can show tha t , for a given u and 
any e > 0, the inequali ty 

(1.12) \N(n, u) - Nk(n, u)\ < en 

holds for each k > ko = ko(e) and all n > no = n0(k). For from (1.12) we have 

< 6 , 
N(n,u) r Nk(n,u) 

sup — — lim — - < e, mf — — lim — -

for ^ > ^o- This in tu rn gives 

i i / \ AT i M ij\ I 

< 2e, 
N(n, u) . r N(n, u) 

sup — inf —̂^ 

and the existence of the limit (1.9) follows. 
T h e next two steps of the proof are devoted to establishing (1.12). Th is 

asserts t h a t the number of m < n such t h a t either 

(a) H(m) < u and Hk(m) > u 
or 

(j3) H{m) > u and Hk(m) < u 

is less t han en for each k > ko, and sufficiently large n. I t suffices (since the 
a rgument is the same for the other case) to consider only the case (a). A t this 
point the second s tep of the proof comes in. I t is proved tha t , given any ô > 0, 
e > 0, for k fixed sufficiently large, and n sufficiently large, 

(1.13) \H{m) -Hk(m)\ <d 

except for a t most \m integers m < n. T h u s in case (a), 

Him) < u — 3, Hkim) > u 

can hold for a t most \en integers m < n. Hence we need consider only those 
m for which 
(1.14) u - Ô < Him) < u. 
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This then brings us to the third step of the proof. It is shown that given 
e > 0 there exists a 5 > 0 (5 = ô(e), independent of u), such that for suffi­
ciently large w, the number of m < n such that (1.14) holds is less than \en. 
This clearly completes the proof of the existence of F(u). Furthermore, the 
result of this third step implies that for a fixed u, given any e > 0, there is a 
5 = 5(e) such that 0 < F(u — 8) — F(u) < e, which yields the continuity 
of F(u). 

The main component of the argument used to carry out this last step is 
the result that, for any fixed integer Z, the function 

* , W " x + x + 1 "*"••• + x + l 

has a continuous distribution function. Though we shall not bother to delineate 
the proof of this, it is contained in the arguments given. The idea in the proof 
of the result desired in the third step is that its negation would for some / 
imply the existence of a discontinuity in the distribution function of $i(x). 

2. First step: The existence of Fk(u). We have 

n<z \nf Ajc) n<x d\{n,Ak) d 

v n(d) Y" M W / 4 
d\Ak a d\Ak a \ a ' 

where {z} = z — [z] denotes the fractional part of z. This in turn yields, 
from (1.10), 

ip(d)jx\ 
(2.1) Hk(x) = - £ * 

Since {x/d} is, for fixed d, a periodic function of x with period d, we see from 
(2.1) that Hk(x) is a periodic function of x with i ^ as a period. Thus we 
have 

NMu) = S 1 = T" E 1+0(1), 

so that 
Hk(m)>u Hh{m)>u 

H m i v ^ ) = i = 
-*» n Ak 

exists. 

3. Second step. We will prove in this section that, given any rj > 0, for 
each k > ko = fco(??), and all x > x0 = #0(fe), we have 

(3.1) £ (H(n) - Hk(n))2 < rpc. 
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From this it follows that if M(x) is the number of n < x such that 

\H(n) -Hk(n)\ > 5, 

M(x) < 7)x/ô2, which yields the statement concerning (1.13). 
(3.1) is established in a rather straightforward fashion in the following 

sequence of lemmas. 

LEMMA 3.1. 

(3.2) T,II2(n)~(-K + --)x. 

Proof. This is essentially Lemma 12 of (8), which asserts that 

(3.3) j*H2(u) du ~ - ~ 2 . 
Z7T 

The passage from (3.3) to (3.2) is simple and we omit it. In passing it is 
perhaps of some interest to note that (3.3) is proved by means of a method of 
Walfisz (2), and seems to be slightly "deeper" than the rest of our estimates 
which require only elementary methods together with a strong form of the 
prime number theorem. 

LEMMA 3.2. 

(3.4) ^ Hl(n) ~ a&, 
tiKx 

where 

(p.o) ak - 2s 3232 t»ii d2) 
• l* di U* # l # 2 

-îaMO-?)-
Furthermore, 

(3.6) l ima, = - ^ + --4. 

Proof. From (2.1) we have 

(3.7) Z fl!W = Z £ ^ ^ { f-}{f } 
da JAfc 

= Y M(^M^2^ y i -- \i -- \ 
dx \Ak did2 n<x \ d\) \ di ) n*Cx 
d» \Ak 

Also, 
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(3.8) E{f}{f}= E ^ £ i 
n<x U l 7 \ CL2 J l < i < d i - l #1#2 w<x 

l<i<da—1 n=i(dx) 
(di,d»)Ui-J) n=j(da) 

i < j a a - i 

( d i , d a ) l i - ^ 

= 1^2X £ */ + 0(l), 

Xl( i - i ) 
where X = (rfi, d2) is greatest common divisor of di, d2, and {dh d2) is the 
least common multiple of dh d2. 

A simple calculation gives t h a t 

K K d x - l Z=0 \ i= l A .7=1 

d*\Ak 

(o en _ did2(\
2 1 1 , did2 __ (^1 + d2)\ 

^ ' y j " X \ 1 2 + 6 + 4 4 / " 

Combining (3.7), (3.8) and (3.9) yields 

Z^W=*Z ^ ^ { ^ + I + ̂ - | } + 0(l) 
n<x diU* «i a2 v l^ o 4 z ; 

1 >p M(^l) At(d2) , , , s2 

\ da\Ak 

+ i n ( i - ' ) ' + i n ( i - i ) ' 

-iaO-PO-?)) 
which is precisely (3.4) and (3.5). Since 

I I ( l - i ) - * 0 as £ - > « > ; and I I ( l ~ h) = ^ 2 , 

it follows from (3.5) t h a t 

r 1 V* M ( ^ I ) v(d2)(dh d2)
2 6 

lim a* = — 2 ^ ^2^2 ' H 1. 
A^oo ^ tfi,d2 # 1 # 2 T 

(3.6) then follows from 

Z jjjjdi) n(d2)(dhd2) _ J5_ 
72 72 — 2 • 

L E M M A 3.3. 

(3.10) Y,H(n)Hk{n)~$kx 
M < £ 
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where 

lo.ll) ft = 7^ Z , -32 ^2~ (ai, tf2) 
da\Ak 

-^nO-O+^nO- i ) . 
^ P<Pfc \ p/ T p<Pfc \ p / Furthermore, 

(3.12) lim ft = -^2 + A 

Proof. Setting 

since, by the prime number theorem, M(u) = O(log~~cw) for any fixed c > 0, 
we have for m> = x 

y^ ^(w) = y^ M(̂ ) 

Taking w = x log~cx, we get 

(3.13) #(*) = - L ^ { 4 + 0(log-x). 

(This is essentially Lemma 2 of (8).) 
From (2.1) and (3.13) we obtain 

n<x diUfc # 1 #2 n<x V » 1 / V #2 / 
da<XlOg_ cX 

Using a slight modification of (3.8) and (3.9) we get 

/ l W f f W " X À . <fi 4 112 + 6+ 4 - 4 J 
da<xlog"Cx +0(xlog"cx) 

(JL v ^ i ) M (̂ 2) 
12 A , di di 

d,\Ak 

^(dudtf 

27T p<p, n ( i - i ) + J , n ( i - ^ 
P<Pfc \ P*/ * V<Vk \ P / I 

which gives (3.10) and (3.11). From this it follows easily that 

lim ft = T-2- + - 4 . 
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Applying (3.2), (3.4), and (3.10) we have 

S (H(n) -Hk(n))* = T,H\n) - 2^Hk(n)H{n) + £ f l j ( » ) 

From (3.6) and (3.12) we see that 

lim (^2 + -%- 2pk + ak) = 0, 

and the assertion concerning (3.1) made at the beginning of this section 
follows immediately. 

4. The third step. In this section we propose to prove that, given any 
e > 0, there exists a 8 > 0 such that the number of m < x such that 

(4.1) u < H{m) < u + ô for some u, 

is (for sufficiently large x) less than ex. 
We shall suppose that the above statement is false and derive a contra­

diction. Negating the above assertion yields that for some constant A > 0 
and each ô > 0, there exist infinitely many positive integers x (depending 
possibly on 5) such that for some u (depending possibly on x as well as on u) 
the number of m < x such that (4.1) is satisfied is at least Ax. 

Since from (3.2) we have 

(4.2) T,H\ni) <clXl 

it follows that for these u = u(x, ô) (we restrict ourselves to 0 < ô < 1), 
we have that either — 2 < u < 0, or from (4.2) 

2 

— Ax < Cix, 

so that in any event the possible values of u = u(x, 8) are bounded. Thus for 
each ô (0 < ô < 1) we can find an infinite sequence of positive integers 
{Xi(5)} such that 

(4.3) limu(Xi(Ô),ô) = u*(ô), 

where the set of u*(8) is also clearly bounded. Thus again we can choose a 
sequence ôj —•» 0 such that the limit 

(4.4) lim u (8j) = û 

exists. 
Given any 8 > 0 we can find a 8j < |ô such that 

\û - u (^) | < 18. 
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Since from (4.3) we know that, for all sufficiently large i, 

\u (ôj) - u(Xi{b3)y ôj)\ < | 5 , 

it follows that for this sequence {Xi(ôj)\ we have 

(4.5) \û-u(xt(ô,)t Ôj)\ <lô. 

For m < Xi(8j) there are more than Axt integers m < xt such that 

(4.6) u(Xi(Ôj), ôj) < H (m) < u(Xi(ôj), ôj) + ôj. 

But since (4.5) implies that 

Û — Ô < tt(ffi(Ôy), Ôj) < U(Xi(Ôj), 8j) + Ôj < Û + Ô, 

it follows that for at least \Axx of the m < xt we have one of the 
inequalities 

(a) û < H (m) <û + ô, 

(13) û - ô < H (m) < û. 

Since at least one of (a) or (0) must occur for a sequence of ô's approaching 0, 
at least one of these is the case for all ô > 0. Since the treatment of the other 
case is exactly the same, we assume (a). Thus we have that, for any ô > 0, 
there exist infinitely many positive integers n such that the number of 
integers m < n for which 

(4.7) û<jt^---2nz<û + ô 
7=1 r 7T 

is greater than \An. 
Let m\ < ni2 < . . . < mt <^ n (t > \An) be the integers <w which satisfy 

(4.7). Clearly w*+i — w* < 4 / 4 has at least J 4 n solutions. Thus there exists 
an integer / < 4/A such that rni+\ — mt = I has at least 42w/16 solutions. 
Furthermore, by extracting a suitable subsequence from our infinite sequence 
of n, we may assume that / is independent of n. 

The above in turn implies that for any ô > 0 there exists an infinite sequence 
of n such that 

(4.8) < « 

has at least 42w/16 solutions m < n. In deriving a contradiction from this, 
the underlying idea is that this implies that the distribution function (it 
exists, though we forego a proof of this) of 

4>(x) 4>(x + I - 1) 
X ' ' ' X + I — 1 

would have to have a discontinuity at 6//7T2, and this in turn would lead to 
the existence of a discontinuity in the distribution function of <f>(x)/x (which 
is known to exist and be continuous) (5). 
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We set 

x ~ £,1 V pr 

fxD(n) = 
\n(n) if n is divisible only by primes p < D, 

0 otherwise ; 
so that 

and 
x ^ x ' 

^ ife I » ^ ^ d<x\ d d JLdJ 

~«(n('-^)-
From this it follows that, given 771, 772 > 0, we can choose D > D(rji, 772) suffi­
ciently large so that for all but 77 \n integers x < w w e have 

n ^ 0p (*0 0(*O . 
U ^ < 772. 

Thus, taking 772 = 8/1 and 771 = A2/32, we obtain from (4.8) that for each 
sufficiently large D, there exist infinitely many positive integers n such that 
the inequalities 

lm^Mr) __ 6 J (4.9) 

and 

(4.10) 

< 2 5 

0(m) y 1 fo(f) _ 6 j 
25 

are satisfied simultaneously by at least A 2n/32 integers m < n. 

LEMMA 4.1. There exist absolute constants p > 0, and 80 > 0 (independent 
of D) such that for at least A2n/64: of the solutions m < n of (4.9) and (4.10) 
ze>£ have for ô < ôo 

m+l-l 6 j " ^ T 1 fc(r) . 
7T r=m+l ' 

(4.11) 

Proof. For if (4.11) is false, (4.10) implies 

(4.12) 0 < ^ < p + 25. 
m 

Since the distribution function of 4>(m)/m exists and is continuous, for p and 
5 sufficiently small, (4.12) can have at most ^42?z/64 solutions m < n. 
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Thus we may restrict ourselves to solutions m of (4.9) for which (4.11) 
holds. Also there is no loss of generality in assuming 8 < ^p, as we shall do 
henceforth. 

Next, we discard a certain "small" set of integers. Since 

(4.i3) ÊZ^=E^f]<«Z| 
m=l p\mP p<nPLpJ p P 

72 = Ctfl 

it follows that the number of m < n such that 

(4.14) £ \ < E, 0 < i < I - 1, 
p\m+iP 

fails to hold is less than Ictfi/E, which for E > 128lc2/A
2 is in turn less than 

A2n/128. Thus for such an E we have an infinite sequence of n such that 
(4.9), (4.11) and (4.14) hold simultaneously for more than A2n/128 integers 
m < n. 

We now attempt to show that the set of integers m which satisfy (4.9), 
(4.11) and (4.14) has small density, thereby obtaining a contradiction. For a 
given integer m define 

X(m) = ]Jp. 
p\m 
P<D 

We then associate with each integer m an (I — l)-dimensional vector \(m) 
as follows: _» 

X(w) = (X(w + 1), X(w + 2), . . . , X(w + Z - 1)). 
Next, for a given vector X = (Xi, . . . , Xz_i), wherein each X* is an integer 
which is a product of distinct primes <£>, and 

(4.15) E j < ^ i = 1, . . . , / - 1, 

and 

(4.16) 6 i / _ g i Û l i > p > 

we estimate the number of m < n satisfying (4.9) such that \{m) — X 
(possibly none). For such m we have 

(4.17) m + i s 0 (mod X*), i = 1, . . . , / - 1, 

so that if there are any solutions they belong to a single arithmetic progression 
modulo [X] = {Xi, . . . , Xz_i}, the least common multiple of the \iyi = 1,...,/—1. 
Furthermore, in order that such solutions exist we must have 

(4.18) frt,h)\i-j i*j,Ki,j<l- 1. 

Suppose then that the aforementioned progression is m = a (mod[X]). For 

those m such that \{m) = X which satisfy (4.9) it follows that 

(4.19) - % / - 2 5 - i : ^ ^ < ^ M < ^ ; + 2 s _ £*2M 
TT i==i Ai m IT j = i Ai 
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so that for these m, <j>D(m)/m lies in a fixed interval of length 45 which we shall 
denote by h = /«(X). Thus the number of m < n such that \(m) = X and 
which satisfy (4.9) equals the number of m < n which satisfy 

(a) m s= a (mod[X]) 

( b ) ( 2 L ± « ( à ) _ l f . ' - I , . . . , J - l ; A - n * . 
\ A* A i / P<D 

(c) M^l6 7 a . 

LEMMA 4.2. Gwe» aw^ ^ > 0, for D fixed sufficiently large, and ô sufficiently 
small (these requirements are however independent of X), the number of m < n 
such that (a), (b) and (c) hold is less than 

(4.20) (**/tf])n(i-^w 

Proof. Suppose that the above statement concerning the estimate (4.20) is 
false, so that for infinitely many n, the number of m < n satisfying (a), (b) 
and (c) is more than 

(4.2i) (W[XD n (i - J j ' . 
p<D \ p/ 

Let zi, 32, . . . be those integers, composed of primes < D , which can occur as 
divisors of an integer m s= a (mod[X]) and such that (we denote the zk generi-
cally by z) 

(4.22) && = -*-& € 7 | . 

From (4.16), (4.19) and our assumption Ô < p/3, (4.22) yields 

(4.23) *£*>§. 

Consider the number of m < n such that (a), (b) above hold, and in addition 
for a fixed z, 

(d) m s= 0 (mod 2) •M-1-
Clearly (d) implies (c). 

Delete from A/[X] all prime factors < / and any other prime factors of z; 
denoting the resulting integer by ^. Then the number of m < n which satisfy 
(a), (b), (d) is less than or equal to the number which satisfy (a) and 

(b;) (tn + i,f) = 1, i = 1, . . . , / — 1 

and 

(d') m - 0 « . ( = . • ) - I . 
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Setting m = vz we have that the number of such m equals 

(AOA\ 23 ! = JL M (do) fi(di) . . . n(dt-i) . X 1 
V*-^V v<n/z diW v<n/z 

(tufO=l i = 0 Z- l t^O(do) 
(»z+O=0(X,-) »2+i=0(d,Xi) 
(vz+i,rP)=l 1<«I-1 
KKZ-l 

Since (d*, z) = 1, (X*, X^)|i — j , and the primes which divide ^ are > / , we see 
that the system of congruences 

v = O(rfo), z>2 + i = Q(di\i), 1 < i < / — 1, 
has solutions if and only if 

(4.25) (dit d3) = 1, and (z, \t)\i\ i 9* j , 0 < i, j <l - 1. 

Furthermore, if (4.25) holds we have, since (dit X;) = 1, 

23 1 = - JT L ^ > + 0(1) 
t^O(do) û0i L \ \ ' ' " ' f~ \ U 

KKI-1 

= + 0(1). 
zdodi. . . di-i 1 Xi X?_i ) 

1(2fXi) (2,xw)Ç 
Inserting this in (4.24) we get 
(4.26) M = *' \ 2 M W . . . M ( ^ ; - X ) + 0 ( 1 ) -

Since 

y^ n{dQ) . . . p(di-i) = y^ Jifc) ^(c) = Tl (1 _ L) 

nO-i)' 
(di,d,)=l 

0<i,;'<i-l 

and from (4.15), (4.23) 
9| [X] 

< e B " 

.0(2) 
(4.26) yields (since (2, \,)\i) 

• • ) ' < © ' • 

«<£ .(2)>/K»Mx])n(i-i)' 
or 

(4.27) AT <<;,(»/*[*]) I I G ~ i j -

where c-j > 0 is independent of i}. 
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(4.27) together with (4.21) implies 

(4.28) E f n ( i - £ ) > ? . 
On the other hand, the number of m < n such that (d) holds for some zk 

is, for large n, greater than or equal to 

using (4.28). Since for these ra, 4>D{m)/m lies in a fixed interval Is of length 
46, we see that for at least Cznl^cn of these m, <j>(rri)/m lies in a fixed interval of 
length 85 (if D is large enough). Since c3/4c7 is independent of ô (and of D), 
this would contradict the continuity of the distribution function of $(rn)/m. 
Thus the lemma is proved. 

Finally then, letting T denote the number of m < n which satisfy (4.9), 
(4.11) and (4.14), we have 

T<VnU ( l-^T'Ztxr1 . 
p<D \ p/ _> 

X 

Since 

-» \ X|A A / 
x 

p<Z) \ p/ 
we have 

r < c9rjn. 

But for 77 sufficiently small, c$rj < ^42/128, so that we obtain a contradiction, 
and the proof is completed. 
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