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C O N T E N T A L G E B R A S 

BY 

DAVID E. RUSH 

Let jR be a commutative ring with identity and let X be an indeterminate. In 
[5] and [16] it was shown that if /, geJR[X], then for some integer rc>l, 
c(f)n+1c(g) = c(/)nc(/g), where c(h) denotes the additive subgroup of JR gener
ated by the coefficients of h e R[X]. Actually the statements in [5J and [16] are 
not so general as this; however, the proofs are. Specifically, in [16] Mertens 
considers only the case that R is a polynomial ring over the integers, but this 
gives the result for any ring by specializing the coefficients of / and g. In [5] 
Dedekind considers only the case that JR is a ring of algebraic integers, but his 
proof is completely general. Further, the above formula then holds if one lets 
c(h) denote the S-submodule of R generated by the coefficients of h e R[X], S 
a subring of R, and it is in this form that it usually appears, especially the case 
S = JR. Dedekind's very elegant proof is reproduced in [15, p. 9, Lemma 6.1]. 
Other proofs can be found in [21, p. 24], and in [2], [4, p. 562, Exercise 21], 
[19], [9, pp. 343-347], where it is extended to any number of variables. This 
formula is extended to certain semigroup rings in [19], and to certain power 
series in [13, Theorem 3.6]. Many results in commutative ring theory have this 
formula, or an immediate consequence of it, as a basic ingredient, e.g. [15, p. 
9], [14, p. 128], [10], [9, Section 28], [11], [12], [17, Proposition 4.5], [20], [21, 
Theorem 6.5], [26]. In this note we indicate further the prominence of this 
formula by noting a few of the results on polynomial rings which hold for 
JR-algebras which have a content formula as above. This is useful, for instance, 
because it precludes the need to reprove for some group algebras, many of the 
polynomial ring results, as well as giving the results for wider classes of 
JR-algebras [19, 21]. (See Section 1.) Also, due to the greater generality of the 
content algebra property, it is much more stable than being a polynomial or 
group algebra. 

In the first section of this note we collect some facts about R -algebras which 
are content R-modules, define weak content R-algebras, and briefly discuss 
their relationship to content 1?-algebras. In Section 2 we give some applica
tions of these notions to divisibility properties of domains. The last section 
contains a result on when a weak content R -algebra is i?-flat. 

1. General properties of R -algebras which are content modules. Let M be 
an R-module and let xeM. The content c(x) of x is defined as the intersection 
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of those ideals A of R such that x e AM. If x e c(x)M for every xeM, then M 
is called a content R-module. These modules have been studied in [7] and 
[21]. It is immediate that M being a content R -module is equivalent to 
(f]ieIAi)M= f]ieIAtM for any family of ideals {AJ i e I of R. Further if x = 
Xr=i atXi with cti e c(x) and xt e M, then c(x) = X"=1 Rat. Thus if M is a content 
.R-module and xeM, then c(x) is finitely generated. In the following proposi
tion we summarize some facts needed about JR-algebras which are content 
jR-modules. Parts (ii) and (hi) are given in [24] but are included here for the 
reader's convenience. 

1.1. PROPOSITION. Let q>:R^>B be an R-algebra which is a content R-
module. The following properties hold. 

(i) c(fg) c c(f)c(g) for every /, g e B. 
(ii) c(B) = c(lB) is generated by an idempotent. 

(hi) {p G Spec(i^) \pB = B}= V(c(B)) and thus is open and closed. 
(iv) c(B) = RiffpB^B for all p eSpec(K). 
(v) AnnR(c(fc))ç AnnR(b) for beB (see Lemma 3.1.) 

(vi) If cp is injective then c(B) = R. The converse holds if B is flat. 

Proof, (i) f£ c(f)B => / = £ atxt, xt eB, ate R, and c(f) = (al9..., an). Simi
larly g = lbtyh yteB and (bl9..., bm) = c(g). Then fg = Yaibjxiyj<= 
c(f)c(g)B =̂> c(fg)^c(f)c(g). The proofs of the other statements are also 
straightforward. 

DEFINITION. An R-algebra cp : R —> B is called a weak content R-algebra if B 
is a content .R-module and c(jc)c(y)<= Vc(jcy) for every x,yeB. (Here VA 
denotes the radical of A.) 

1.2. THEOREM. Let cp:R-^B be an R-algebra such that B is a content 
R-module. The following are equivalent. 

(i) B is a weak content R-algebra. 
(ii) For each p e Spec(JR), either pB is a prime ideal of B or pB = B. 

Proof, (i) => (ii). Let p e Spcc(R) with pB^B and let je, y e B. If xy e pB then 
c(xy)çp =^ c(x)c(y)^ p => c(x)çpor c (y )^ p => xepB or y e p £ . 

(ii)=>(i). Let x , y e B and suppose c(xy)^p. Then xyepB and (ii) implies 
xepB or yepB. Thus c(x)c(y)çp. q.e.d. 

In [21] an R-algebra B was called a content R-algebra if £ is a faithfully flat 
content R-module such that for every /, geB there exists an integer n > 1 such 
that c(/)n+1c(g) = c(f)nc(fg). Some examples of content JR -algebras are: 

(1) Semigroup algebras R[G] where G is a cancellative, torsion-free, 
abelian semigroup [19]. 

(2) Pure subalgebras of content R -algebras [21, Theorem 1.3]. (This in
cludes the symmetric algebras S(M) where M is a pure submodule of a free 
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R-module [17, Proposition 4.4], as well as the invertible ( = stably polynomial) 
R -algebras that arise in connection with the cancellation problem for com
mutative rings [3,6, 27].) 

(3) If B is a content R -algebra, T is a multiplicative subset of B, and 
S = THR, then T~XB is a content S^R-algebra provided c(t)nS*4) for 
every te T [21, Theorem 6.2]. This includes for example the case that R is the 
complement of a prime, as well as any set T consisting of elements of content 
R. In particular, the JR-algebra R(X) used by Nagata [18, p. 18], as well as the 
R-algebra, also denoted by R(X), used in Quillen's recent solution to the Serre 
conjecture [8,23], are content JR-algebras. Some further examples of content 
R-algebras are given in [21]. 

It is immediate that content JR-algebras are weak content R -algebras. To see 
that the converse does not hold, observe that R[[XU..., Xn]] is a flat weak 
content i?-algebra if R is Noetherian. (It is a content module by [7, Theorem 
2.6] and primes extend to primes by [1].) That these algebras are not necessar
ily content R-algebras is seen as follows. Let JR = k[u, v], k a field and u, v 
indeterminates. Let F= u + t;X+t;X2 + - • •, and g = v + XeR[[X]]. Then 
c(g) = l but c(fg) = (uv, u + v2, v + v2)^(u, v) = c(f). Thus for each n > l , 
c(g)n+1c(f)*c(g)nc(fg). (It does hold that c(/)n+1c(g) = c(f)nc(fg) for some n, 
however, [12, Theorem 3.6].) 

For R a Prufer domain it does hold that every flat weak content R -algebra B 
is a content R-algebra. This follows since in this case c(f) is locally principal for 
every feB. 

Since content R -algebras are weak content algebras, then prime ideals of .R 
extend to prime ideals in a content .R-algebra. However, it is easily seen that 
content R -algebras B have the additional property that if q is a primary ideal 
of R, then qB is also primary. In fact, primary decompositions in 1? extend to 
primary decompositions in B. Further, if R and B are Noetherian, then the 
primary ideals q and qB have the same length. 

2. Divisibility. In this section R is an integral domain with quotient field K. 
If I is an ideal of R, let I1 = {x e K \ JCJÇ £ } . If B is a content JR-algebra and 
b e B, we say b is primitive if c(b) is not contained in a proper principal ideal of 
R, and say b is super-primitive if c{b)~x = R. It is immediate that super-
primitive => primitive and that these are equivalent for GCD-domains. 

The following useful lemma is perhaps of interest even for polynomial rings. 

2.1. LEMMA. Let B be a content R-algebra, S = R-{0}, and beB. Then 
bS-xB HB = bB if and only if c(fc)"1 = R. 

Proof. (=» Let t e c(b)~\ Then tb e bS^B nB = bB^>tb = bh some h e B. 
Thus t^heBCiK and BPiK = R since B is faithfully flat over R. 

(4=) Let gebS^BHB. Then g = bh(l/s), seR, s^O, and heB. For 
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some n > 0, c(b)n+1c(h) = c(b)nc{bh) = c(b)nc(sg) = sc(b)nc(g) => c(h)c(b)n/s g 
db)-1 = R^c(h)c(b)n-1ls ç= cib)-1 = R-^> c(h)/s ç= db)-1 = JR. q.e.d. 

The above lemma clearly implies [25, Theorem A], and many of the other 
results of [25] carry over to content R-algebras by arguments similar to the one 
above. Also, it is immediate from Lemma 2.1, that if b e B is super-primitive, 
then bBC\sB = sbB for every seS. In the terminology of [13], this says that 
super-primitive elements of B are LCM prime to S. It is now easy to extend 
Gilmer and Parker's result on group rings [13, Theorem 4.4] to the following 
result. See also [17, Section 4]. 

2.2 THEOREM. Let R be a GCD-domain, B a content R-algebra, and S = 
R-{0}. Then B is a GCD-domain if and only if S~XB is a GCD-domain. 

Note 1. Similar considerations also show that if T is the set of primitive 
elements of B, then B is a GCD-domain if and only if T~lB is a GCD-domain 
and each element of T has a least common multiple in B. 

Note 2. The analogous result to 2.2 for UFD's also holds. 
We conclude this section with some results similar to 2.2 for weak content 

algebras. We first extend slightly our notion of content. Let R be an integral 
domain, S = R -{0}, and M a flat content R-module. If JC G S'1 M, then x = y/s, 
y G M, seS and we define c(x) as the fractional iseal (1/s) • c(y). It is 
immediate that this is well defined and xeM if and only if c(x)^R. 

2.3 THEOREM. Let R-+B be a weak content R-algebra with R a Krull 
domain. If Bp is a Krull domain for every prime p of R, of height < 1, then B is 
Krull. (Bp = S~XB where S = R\P.) 

Proof. First we note that B = htÇ]p=1Bp. To see this observe that if xeBp 

for every height one prime p of R, then c(x) ç Rp for every height one prime of 
R. Thus c(x)<^htÇ]p=1Rp = R since JR is Krull. 

Next we show that if p is a height one prime of R, then Bp = BpB Pi S - 1 B 
where S = R\{0}. Let fig = h/s, f, g,heB, seS, g<£pB, p a height prime of JR. 
Then sf=gh and localizing at p we get (sll)c(f)Rp = c(gh)Rp = c(h)Rp since 
c(g)Rp = Rp. Thus h = {sll)h' some h' e £ p = > flg = h/s = sh'ls = h' eBp. Now 
we have B = ht f l p = i Bp = ht f V i (BpB H S^B) = (* f lp- i BpB) H S'B. Further 
BpB is Krull since it is a localization of the Krull domain Bp. Thus it suffices to 
show that the above intersection has finite character. Let b e B. Then if b is a 
non-unit of BpB, then b^pB =̂> c(b)^p. But since R is Krull, this can hold for 
only finitely many height one primes p. q.e.d. 

Note. This generalizes [7, Theorem 2.29] since content module + locally 
polynomial => weak content and locally Krull. 
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2.4. COROLLARY. If R^B are domains with R a Dedekind domain such that 
primes of R extend to primes of B, and Bp is Krull for every prime p of R, then B 
is Krull if and only ifB is a weak content R-algebra (if and only ifB is a content 
R-algebra). 

Proof. 0̂ >) Since R is Dedekind, B is JR-flat. Thus for each ideal A of R, 
AB is divisorial. Thus for any infinite set {At}ieI of ideals of R, f] ieI (AtB) = 0. 
But for any finite set Al9 . . . , A n of ideals n A i B = (nAi)B by flatness. 
Thus B is a content R-module and thus a weak content R-algebra. 

2.5. COROLLARY. If R is a Krull domain and B is a finitely presented locally 
polynomial R-algebra, then B is a Krull domain. 

Proof. The hypotheses imply that B is a symmetric algebra S(P) where P is 
a projective R-module [3, Theorem 3]. Thus B is a content R-algebra and 
hence Krull by Theorem 2.3. 

Note. If R^B is a weak content R-algebra, then R has the property that 
finitely generated flat modules are projective if and only if B does. The same 
holds for the property that pure ideals are generated by idempotents [24]. 

3. Flatness. In this section we give criteria for weak content R -algebras to 
be JR-flat. 

3.1. LEMMA. Let M be a content R-module. Then M is R-flat if and only if 
AnnR(m) = AnnR(c(m)) for every meM. 

Proof. (=» If M is JR-flat then rc(m) = c{rm) for every reR, meM by [21, 
Theorem 1.5]. The result follows. 
«=) By [21, Theorem 1.5 and Corollary 1.6] it suffices to show ( o : r ) M ç 
(o : r)RM for every r e R. Let me(o: r)M. Then rm = 0 => rc{m) - 0. Thus 
c(m)^(o:r)R and mec(m)M^(o:r)RM. 

3.2. THEOREM. Let <p:R-+ B be a weak content R-algebra with R reduced. 
The following are equivalent. 

(i) <p is injective. 
(ii)}J5 is R-flat. 

(iii) B is faithfully flat over R. 

Proof, (i) => (ii). By the above lemma it suffices to show AnnR(fr)ç 
AnnR(c(b)) for every b e B. If rb = 0, r 6 £ , then c(r)c(b) <= y/c(rb) = Vo = 0 and 
since rec(r)B, then r • c(b) = 0. Thus re AnnR(c(b)). 

(ii) => (iii). This follows from Parts (iv) and (vi) of Proposition 1.1. 
(iii)=^(i). Obvious, q.e.d. 

It follows from the above theorem that if <p : i? —» B is a flat weak content 
R-algebra, then Spec(i^) decomposes into the disjoint clopen sets {pe 
SpecCi?) \pB = B}= V(c(B)) and {p e Spec(£) | pB H R = p}. 
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