
The Physics of Sun and Star Spots
Proceedings IAU Symposium No. 273, 2010
D.P. Choudhary & K.G. Strassmeier, eds.

c© International Astronomical Union 2011
doi:10.1017/S1743921311014979

Diagnostics for spectropolarimetry and
magnetography

Jose Carlos del Toro Iniesta1 and Valent́ın Mart́ınez Pillet2

1 Instituto de Astrof́ısica de Andalućıa (CSIC),
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Abstract. An assessment on the capabilities of modern spectropolarimeters and magnetographs
is in order since most of our astrophysical results rely upon the accuracy of the instrumentation
and on the sensitivity of the observables to variations of the sought physical parameters. A
contribution to such an assessment will be presented in this talk where emphasis will be made
on the use of the so-called response functions to gauge the probing capabilities of spectral
lines and on an analytical approach to estimate the uncertainties in the results in terms of
instrumental effects. The Imaging Magnetograph eXperiment (IMaX) and the Polarimetric and
Helioseismic Imager (PHI) will be used as study cases.
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1. Introduction
Modern solar spectropolarimeters and magnetographs are vectorial because all four

Stokes parameters of the light spectrum are measured. Longitudinal magnetography
(i.e., Stokes I ± V ) can be interesting for some specific applications, but the partial
analysis is usually included (if possible) as a particular case of the more general, full-
Stokes polarimetry. Some of these modern instruments have been recently or are currently
in operation (e.g., the Tenerife Infrared Polarimeter, TIP, Mart́ınez Pillet et al. 1999,
Collados et al. (2007); the Diffraction-Limited Spectro-Polarimeter, DLSP,
Sankarasubramanian et al. 2004; the spectropolarimeter, SP, Lites et al. 2001, for the
Hinode mission, Kosugi et al. 2007; CRISP, Narayan et al. 2008; the Visible Imaging Po-
larimeter, VIP, Beck et al. 2010; the Imaging Magnetograph eXperiment, IMaX, Mart́ınez
Pillet et al. 2010, for the Sunrise mission, Bartol et al. 2010; and the Helioseismic and
Magnetic Imager, HMI, Graham et al. 2003, for the Solar Dynamics Observatory mis-
sion, Title 2000), some other are being designed and built for near future operation and
missions (e.g., the Polarimetric and Helioseismic Imager, SO/PHI, [formerly called VIM,
Mart́ınez Pillet, 2006] for the Solar Orbiter mission, Marsch et al. 2005). Assessing their
capabilities in terms of their accuracy for retrieving the solar line-of-sight (LOS) velocity
(vLOS) and vector magnetic field (of components B, γ, and φ) is in order since such an
analysis can diagnose how far reaching is our current and near-future understanding of
the solar atmosphere. The diagnostics is relevant both for the design of new instruments
in order to maximize their performances and for the analysis of uncertainties in data
coming from currently operating devices. Certainly, no fully general assessment can be
devised that includes all possible polarimeters and a family of them should be considered
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in each specific study. Here we restrict our analysis to those spectropolarimeters and
magnetographs whose polarization modulator consists of two nematic liquid crystal vari-
able retarders (LCVRs). Hopefully, the discussion presented in this invited contribution
helps further diagnostics of other instruments.

2. Rules for improving the measurements
Since we only measure photons, every inference we can make out of the observations

naturally depends on photometric accuracy. Assuming that systematic errors are under
control (ideally absent) two are, therefore, the pillars which the quality of measurements
rests upon: the signal-to-noise ratio (S/N) and the minimum variations, δSi , that the
Stokes parameters exhibit after a perturbation in the solar physical quantities.† If the
latter are larger than the uncertainties in the Stokes signals due to noise, the measure-
ments are useful. Otherwise, they are not. One should, then, design new instruments so
that S/N and δSi are maximized and results from current instruments are more accurate
wherever these quantities are larger.

2.1. Increasing the signal-to-noise ratio

As a first tool for improving S/N , modern polarimeters introduce image accumulation
of Na individual exposures. Besides, every Stokes parameter is obtained from Np po-
larization modulation states, so that a total of NpNa individual frames contribute to a
given Stokes parameter image. If σi stands for the individual frame contribution to σi ,
the uncertainty in Si then is

σi = σi

√
NpNa, (2.1)

where we have assumed photon noise.
According to Mart́ınez Pillet et al. (1999) and to Del Toro Iniesta & Collados (2000),

σi =
σ

εi
, (2.2)

where σ is the noise-induced uncertainty for each individual exposure and εi is the so-
called polarimetric efficiency for Stokes Si . Then, it is easy to see that, if s/n denotes
the signal-to-noise ratio of each individual exposure,

(S/N)i = (s/n) εi

√
NpNa. (2.3)

Equation (2.3) tells us that the larger the polarimetric efficiencies and/or the larger
the number of individual exposures, the larger the signal-to-noise ratio for each Stokes
parameter. Np is often (advisably) kept to its minimum value of 4 in order to preserve
integrity in the Stokes analysis in a minimum time. This can only be done, however,
when the polarization modulator permits it as, indeed, in our LCVR-based polarimeters,
but it seldom exceeds 6 or 8. The number of accumulations is usually traded-off with the
solar dynamic time scales, in order not to blur information on time-evolving solar features
with a too long effective exposure time. Then, optimization of polarimetric measurements
basically lies in maximization of polarimetric efficiencies. According to Del Toro Iniesta
& Collados (2000), an ideal polarimeter wishing to have equal signal-to-noise ratios for

† We shall hereafter denote by S = (S1 , S2 , S3 , S4 ) the vector of Stokes parameters, usually
called (I, Q, U, V ).
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Stokes S2 , S3 , and S4 can reach maximum efficiencies given by

ε1 = 1, ε2,3,4 = 1/
√

3. (2.4)

Since we usually speak of only one (“the”) signal-to-noise ratio of the observations,
we are implicitly meaning (S/N)1 , that is, the signal-to-noise ratio for the intensity.
Therefore, after Eq. (2.3), we can write

(S/N)i =
εi

ε1
(S/N) , (2.5)

so that, if we have for instance S/N = 103, then (S/N)2,3,4 � 577, according to Eqs.
(2.4). It is important to point out that we are speaking about single wavelength samples.
Every observational quantity involving several samples can certainly improve (S/N)2,3,4
above this limit. Although simple, the result in Eq. (2.5) has not ever been brought to
the attention of the community as far as we know, and is paramount to assessing obser-
vational accuracies: polarimetry imposes an extra penalty in terms of S/N as compared
to normal spectroscopy or photometry. Such a penalty roots in the differential character
of polarimetric measurements. A discussion on how optimum polarimetric efficiencies can
be reached (at least theoretically) with LCVR-based polarimeters is deferred to Sec. 3.

2.2. Maximizing the spectral line sensitivities
As explained in the beginning of Sect. 2, the other ingredient for improving measurements
quality is the spectral line sensitivity. Increasing δSi can only be achieved by carefully
selecting the line. Fortunately, the tools for such a selection are at our disposal as well.
As explained by Ruiz Cobo & Del Toro Iniesta (1994; see references to pioneering work
over there), the sensitivity of Stokes profiles to perturbations in the solar physical quan-
tities are directly given by the response functions (RFs). We insist on the importance
of perturbations: we can only discern different LOS velocities or field strengths in two
structures provided the modification in the Stokes profiles are large enough (that is,
larger than the threshold imposed by noise) in one of the structures as compared to the
other. It is perturbation theory the technique that enables us to evaluate how large δSi

are for given variations in vLOS, B, γ, and/or φ. RFs are defined such that, for every
single wavelength,

δSix
=

∫ +∞

−∞
Rix

δx dτ, (2.6)

where x is an index representing either one of the physical quantities of interest, τ stands
for the optical depth, and Rix

is the response function of Si to perturbations in x.
Naturally, and within a linear approximation, δSi =

∑
δSix

, the sum being extended to
all the quantities. Equation (2.6) paves the way for estimating detection thresholds for
the different physical quantities. For example, the detectable two-sigma field strength,
δBmin , would be such that δSiB m in

= 2σi .
Analytic expressions for RFs are available under the Milne-Eddington (ME) approxi-

mation (Orozco Suárez & Del Toro Iniesta, 2007) that are useful even for more accurate
estimates of uncertainty levels (Del Toro Iniesta, Orozco Suárez, & Bellot Rubio, 2010)
accounting for details of the specific technique used to retrieve given quantities. But
purely phenomenological approaches are also valid to establish real rankings of spectral
lines according to their ability for inferring velocities, magnetic fields, and so on (Cabre-
ra Solana et al., 2005). Finally, a further approach to determine which particular line is
more useful for being used with a given instrument has recently been provided by sim-
ulations. MHD simulations are a modern and useful tool to elaborate educated guesses
of instrument behavior since real observations can be computationally reproduced. This
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has been the way, for instance, how Orozco Suárez et al. (2010) have been able to gather
evidence in favor of the Fe i line at 525.02 nm against that at 525.06 nm, which was
originally foreseen for the IMaX instrument (see details in Mart́ınez Pillet et al. 2010).

2.3. Detection thresholds
Scientific requirements on given physical quantities can be translated into instrument
requirements, provided an inference technique to retrieve that quantity is known. This is
an advisable exercise that helps for trading-off the many instrumental parameters that
must be taken into account during the design phase. As a first example, imagine we
are going to infer LOS velocities through a Fabry-Pérot spectrometer and the Fourier
tachometer technique. Such a technique involves four Stokes S1 samples that combined,
according to Fernandes (1992), give

vLOS =
2c δλ

πλ0
arctan

I−9 + I−3 − I+3 − I+9

I−9 − I−3 − I+3 + I+9
, (2.7)

where c stands for the speed of light, δλ is the étalon spectral resolution, λ0 is the central
wavelength of the line, and I±i represent the Stokes S1 (Stokes I) samples at the given
wavelengths in picometers.

Error propagation in Eq. (2.7) can be shown to give the LOS-velocity expected uncer-
tainties in terms of the étalon roughness, σδλ , of the thermal and voltage instabilities of
the spectrometer, σT and σV , and on the noise of the observations, σ1 . Without entering
into details of the (easy but) lengthy calculations, the variance of the retrieved velocities
can be written as

σ2
vL O S

= f(vLOS , δλ)σ2
δλ + g(vLOS , λ0 , δλ, Ii , si)(k2

T σ2
T + k2

V σ2
V ) + h(λ0 , δλ, Ii)σ2

1 , (2.8)

where f , g, and h are given functions of the specified variables, si represent the Stokes S1
profile derivatives with respect to wavelength at the sample wavelengths, and kT and kV

are the temperature and voltage calibration constants for tuning the étalon, respectively.
Assume now, for example, that λ0 = 617.3 nm and δλ = 100 mÅ as for the SO/PHI
instrument. Then, an étalon roughness leading to σδλ = 1 mÅ produces σvL O S = 1 m s−1

for velocities of 100 ms−1 (and is linear in vLOS); pure photon noise with S/N = 103

induces σvL O S = 7 m s−1 or, in other words, a scientific requirement on vLOS stability of
1 m s−1 (that can be of interest for low-l, global helioseismology) demands a stability of
0.55 mK in temperature or 42 mV in voltage! Only state-of-the-art technology can aim
at such thermal stabilities in a space environment, but the voltage requirement is very
stringent as well since LiNbO3 étalons are tuned with voltages of the order of 103 V.

Take now as a second example the inference of longitudinal and transverse field
strengths through the magnetograph equations

Blon ≡ klon
Vs

Ic
and Btran ≡ ktran

√
Ls

Ic
, (2.9)

where klon and ktran are calibration constants, Vs and Ls are the circular and linear
polarization magnetographic signals,

Vs ≡
1
nλ

nλ∑
j=1

ajS4,j , Ls ≡
1
nλ

nλ∑
j=1

√
S2

2,j + S2
3,j , (2.10)

where aj = 1 or −1 depending on whether the sample is to the blue (including the zero
shift) or the red side of the central wavelength of the line, with nλ being the number of
wavelength samples within the spectral line. Since nλ = 4 for the IMaX instrument, the

https://doi.org/10.1017/S1743921311014979 Published online by Cambridge University Press

https://doi.org/10.1017/S1743921311014979


IAUS273: Diagnostics for spectropolarimetry and magnetography 41

uncertainties in Vs and Ls are necessarily a factor 2 smaller than σ2,3,4 because informa-
tion from four independent wavelengths is averaged for building the magnetograms. In
such a case, one can estimate photon-noise-induced uncertainties of σB l o n = 4.8 G and
σB l o n = 80 G.

3. Maximizing the polarimetric efficiencies
Once we know the effect of noise in the final inferences made with the instrument and

how to improve S/N , that in the end turns out to maximizing efficiencies, let us check
whether or not real polarimeters can (theoretically) achieve or (practically) approach the
optimum polarimetric efficiencies of ideal instruments.

A rule of thumb in polarimetry is to put the polarization modulator as early in the
optical path as possible so as to minimize the influence of the remaining optics: after the
modulator, light is encoded and, no matter the path, can finally be analyzed properly
before reaching the detector. This property has not been demonstrated, however, for po-
larimetric efficiencies so far. In other words, can polarimeters preserve the polarimetric
efficiencies regardless of the retardations and changes of phase induced by the optics
between the modulator and the analyzer? This is not a trivial question because interme-
diate optics might change the polarimeter’s Mueller matrix in a way that would modify
the efficiencies; indeed, not all polarimeters can reach the optimum efficiencies. Mart́ınez
Pillet et al. (2004) pointed out that nematic-LCVR-based polarimeters can theoretically
achieve optimum efficiencies for both vector and longitudinal magnetography. This fact
is easy to understand as we are going to demonstrate.

Assume we have two nematic LCVRs of retardances ρ and τ , respectively for the first
and the second one to be reached by light. Such retardances can be changed at will
by simply modifying the tuning voltage of the devices. If the optical axis of the first
LCVR is put at 0◦ with respect to the positive S2 direction (X axis, for instance), the
second LCVR has its axis at π/4, and the linear analyzer is at 0◦, then the rows of the
modulation matrix (Del Toro Iniesta & Collados, 2000) are

Oij = (1, cos τi, sin ρi sin τi,− cos ρi sin τi), (3.1)

where index i = 1, 2, 3, 4 corresponds to each of the four measurements. A polarimeter
having these four elements equal to the efficiencies in Eqs. (2.4) is an optimum one.
Since all four Oi1 = 1, Stokes S1 can reach its maximum efficiency. At least four different
solutions can also be found to equations resulting from making the other three compo-
nents equal to 1/

√
3. Therefore, the remaining Stokes parameters can also reach their

maximum efficiencies. It is also easy to understand that the best longitudinal analysis
(S1 ∓ S4) can be obtained by tuning the retardance of the first LCVR to 0◦ and that of
the second to ±π/2.

Let us see now what is the effect of an étalon in between the modulator and the
analyzer as in the IMaX or SO/PHI instruments. The most general way of modeling the
polarization properties of such a device is by assuming it behaves like a retarder oriented
at an angle θ and with a retardance δ. Now the Mueller matrix of the polarimeter gets
modified because the Mueller matrix of the étalon, M3 , has to be inserted between
those of the LCVRs, M1 and M2 , and that of the analyzer, M4 . The Mueller matrix
of the system is then M = M4M3M2M1 and the modulation matrix turns modified to
Oij = M1j (τi, ρi). Since M11 = 1, Oi1 = 1, ∀i. If we proceed now as before by equating
Oi2,3,4 = 1/

√
3, we obtain trascendental equations. Fortunately, they can be shown to

have a solution and, therefore, optimum efficiencies can also be reached theoretically with
these real instruments.
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Besides the étalon, several mirrors may be needed in the design in between the mod-
ulator and the analyzer. Then, a Mueller matrix representing all the mirrors has to be
inserted between M3 and M4 . The effect of such an insertion can be demonstrated to
be a global multiplication of all the modulation matrix elements by a constant factor.
Therefore, the solutions for the transcendental equations are the same and, again, op-
timum efficiencies can theoretically be reached. Of course, real instruments may have
modulation matrices that slightly differ from the optimum ones and calibration is always
necessary.

4. Summary and conclusions
The accuracy in line-of-sight velocity and vector magnetic fields inferred from observa-

tions roots in photometric accuracy and, hence, in S/N . The instruments have, therefore,
to be designed so that they collect, with the best polarimetric efficiencies, as many pho-
tons as possible in wavelengths of spectral lines that are as much sensitive as possible to
these physical quantities.

In this contribution we have gathered rules for increasing the S/N , for finding out
the more sensitive spectral lines to given quantities by means of the response functions,
and for deducing detectability thresholds imposed by noise. The optimization of the
signal-to-noise ratio of the observations goes necessarily through the maximization of
polarimetric efficiencies and we have also shown that the optimum theoretical efficiencies
can be reached with nematic-LCVR-based spectropolarimeters and magnetographs like
IMaX and SO/PHI.
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