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Arithmetically equivalent fields in a Galois
extension with Frobenius Galois group of
2-power degree

Masanari Kida

Abstract. Let F2n be the Frobenius group of degree 2n and of order 2n(2n − 1) with n ≥ 4. We
show that if K/Q is a Galois extension whose Galois group is isomorphic to F2n , then there are
2n−1 + (−1)n

3
intermediate fields of K/Q of degree 4(2n − 1) such that they are not conjugate over Q

but arithmetically equivalent overQ. We also give an explicit method to construct these arithmetically
equivalent fields.

1 Introduction

The following theorem concerning coincidence of Hecke L-functions is proved
in [6].

Theorem 1.1 Let p be a prime number. If K/Q is a Galois extension whose Galois group
G is isoclinic to the Heisenberg group of order p3, then there are p + 1 abelian normal
subgroups H i (i = 1, . . . , p + 1) of index p in G and characters χ i of H i such that p + 1
Hecke L-functions L(χ i , s) coincide up to a finite number of Euler factors.

A natural question arises from this theorem.

Question Are there arbitrarily large number of number fields whose Dedekind zeta
functions coincide?

Two number fields K and K′ are called arithmetically equivalent (over Q) if the
Dedekind zeta functions of K and K′ coincide. Conjugate number fields obviously
have the same Dedekind zeta functions; thus, we are interested in nonconjugate arith-
metically equivalent fields. Many examples of such fields are known until now (see [8,
Examples in III.1.b]), but examples of three or more arithmetically equivalent fields
seem not to be known. The aim of this paper is to give such examples systematically.
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To state our result more precisely, we introduce some notation. Let F2n be a finite
field of 2n elements. We consider the Frobenius group F2n defined by

F2n = F×2n ⋉ F2n ,

whereF×2n acts faithfully onF2n . The group F2n can be described also as an affine linear
group over F2n :

F2n ≅ AGL1(F2n) = {[a b
0 1] ∈ GL2(F2n) ∣ a ∈ F×2n , b ∈ F2n} .(1.1)

The Frobenius kernel N is isomorphic to

{[1 b
0 1] ∈ AGL1(F2n)∣ b ∈ F2n} ≅ Fn

2 ,

and a Frobenius complement H is isomorphic to

{ [a 0
0 1] ∈ AGL1(F2n) ∣ a ∈ F×2n} ≅ F×2n .

Let K/Q be a Galois extension with Galois group isomorphic to the Frobenius group
F2n . Such an extension K/Q is called an F2n -extension. The fixed field L of K by the
Frobenius kernel N is a cyclic extension of degree 2n − 1 over Q and Gal(K/L) is
isomorphic to an elementary abelian 2-group of rank n.

Our main theorem is the following.

Theorem 1.2 Let n be an integer greater than 3. Among intermediate fields M of

an F2n -extension K/Q with [M ∶ L] = 4, there are 2n−1 + (−1)n

3
fields which are not

conjugate but arithmetically equivalent.

As a matter of fact, there are several nonconjugate arithmetically equivalent fields
of degree 2s(s = 2, . . . , n − 2) over L inside K. We concentrate the smallest degree
fields for simplicity both in the proof and in the construction. Our proof and
construction are explicit and specific throughout, and this enables us to find families
of a large number of nonconjugate arithmetically equivalent fields explicitly.

The outline of the paper is as follows. In the next section, we prove Theorem 1.2 in a
refined form (Theorem 2.4) by using mainly the representation theory of finite groups.
In Section 3, we discuss how to construct F2n -extensions. We show that if a cyclic
extension L is constructed, then we can construct infinitely many F2n -extensions
containing L by using Kummer theory (Theorem 3.3). Our discussion here is explicit
and constructive for the argument in the following section. In Section 4, we explain
how to find nonconjugate arithmetically equivalent fields in an F2n -extension and give
an explicit description of these fields (Proposition 4.1).

Throughout this paper, we use the following notation. We fix an integer n greater
than 3. The Frobenius group of degree 2n and of order 2n(2n − 1) is denoted by
F2n = H ⋉ N with H and N defined in the above.
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2 The proof of the main theorem

In this section, we shall prove Theorem 1.2. Let K/Q be an F2n -extension. We fix
an isomorphism between Gal(K/Q) and F2n = H ⋉ N and identify them by the
isomorphism. Let L be the fixed field KN . The extension L/Q is a cyclic exten-
sion of degree 2n − 1. The Galois group of K/L is isomorphic to an elementary
abelian 2-group N of rank n, since the additive group of the field F2n is isomorphic
to Fn

2 .
In this section, we use the following notation from the representation theory of

finite groups. For a finite group G, we denote by Irr(G) the set of the irreducible
character of G and by 1G the principal character of G. For a character ψ of a subgroup
E of G, we denote the induced character from ψ to G by ψG and for a character χ of
G, the restriction of χ to E by χE .

We begin by showing that all intermediate fields M of K/Q with [M ∶ L] = 4 are
arithmetically equivalent. By [8, Theorem III.1.3], it suffices to show the following
proposition.

Proposition 2.1 Let n be an integer greater than 3. Let G = F2n = H ⋉ N. If E is a
subgroup of N of order 2n−2, then the induced character 1G

E is independent of the choice
of E and hence the characters 1G

E are equal for all E.

Note that the group E in Proposition 2.1 is core-free, that is, CoreG
(E) = ⋂g∈G(gEg−1) = 1, and thus the character 1G

E is a faithful permutation character.
This also implies that the Galois closure of KE coincides with K.

To prove the proposition, we use the following fact on the representation of
Frobenius groups, which is a special case of [4, Satz V.16.13].

Lemma 2.2 The irreducible characters of F2n = H ⋉ N consist of linear characters
μ i (i ∈ {0, . . . , 2n − 2}) which are extensions of η i ∈ Irr(H) with ker μ i ⊃ N and a
character ψ of degree 2n − 1 induced from a nontrivial character φ of N such that
ψN = ∑h∈H φh .

Proof of Proposition 2.1 We compute the inner product of 1G
E and χ ∈ Irr(G) by

Frobenius reciprocity:

(1G
E , χ)G = (1E , χE)E = 1

∣E∣ ∑x∈E
χ(x−1).

Let μ i and ψ be the characters as in Lemma 2.2. Since E ⊂ N , we have

(1G
E , μ i)G = 2n−2

∣E∣ = 1.

If χ = ψ, then we can write ψ = φG with φ(≠ 1N) ∈ Irr(N). It is clear that
ψ(1) = [G ∶ N] = 2n − 1. For a nontrivial element x ∈ E ⊂ N , we have

ψ(x) = ∑
h∈H

φ(hxh−1) = ∑
g∈N−{1}

φ(g) = −1.
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Here, the second equality holds since the action of H on N is transitive and faithful,
and therefore the set {hxh−1 ∣ h ∈ H} coincides with N − {1}. Moreover, the third
equality follows from the fact that φ is nontrivial. We conclude

(1G
E , ψ)G = 1

2n−2
⎛
⎝

ψ(1) + ∑
x(≠1)∈E

ψ(x)
⎞
⎠

= 1
2n−2 (2n − 1 + (−1)(2n−2 − 1)) = 3.

Consequently, we obtain the decomposition of 1G
E :

1G
E = 3ψ +

2n−2
∑
i=0

μ i ,

which is independent of the choice of E. This completes the proof of
Proposition 2.1. ∎

We have an immediate corollary by [8, Theorem III.1.3].

Corollary 2.3 All quartic extensions over L contained in K are arithmetically
equivalent.

We now enumerate such quartic fields up to conjugacy. We shall prove a more
precise version of Theorem 1.2.

Theorem 2.4 For each quadratic extension F over L in K, there are 2n−1 − 1 quartic
extensions M over L with F ⊂ M ⊂ K.

(i) If n is odd, then they are divided into 2n−1 − 1
3

conjugacy classes over Q containing

three fields in each class. By choosing one field from each conjugacy class, 2n−1 − 1
3

fields are nonconjugate and arithmetically equivalent.

(ii) If n is even, then they are divided into 2n−1 − 2
3

conjugacy classes overQ containing
three fields in each class, and the other conjugacy class consists of the remaining

one field. By choosing one field from each conjugacy class, 2n−1 + 1
3

fields are
nonconjugate and arithmetically equivalent.

We have already showed their arithmetic equivalence in Corollary 2.3. By
Galois theory, we only have to prove the following group-theoretic version of
Theorem 2.4.

Theorem 2.5 Let E be the set of the subgroups of order 2n−2 of N. The group G acts
on E through F×2n . Let D be a subgroup of N of order 2n−1. We have ∣E ∩ D∣ = 2n−1 − 1
with obvious abuse of notation.
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(i) If n is odd, then the set E is divided into 2n−1 − 1
3

conjugacy classes under G and
the classes C satisfy ∣C ∩ D∣ = 3.

(ii) If n is even, then the set E is divided into 2n−1 + 1
3

conjugacy classes under G,

the 2n−1 − 2
3

conjugacy classes C satisfy ∣C ∩ D∣ = 3, and the rest of the classes C′

satisfies ∣C′ ∩ D∣ = 1.

Proof It is well known that the number of t-dimensional subspaces in an
s-dimensional vector space over F2 is given by the q-binomial coefficient with q = 2,
which we denote by

[s
t] =

(2s − 1)(2s−1 − 1)⋯(2s−t+1 − 1)
(2t − 1)(2t−1 − 1)⋯(2 − 1) .

Using this formula, we can compute

∣E ∣ = [ n
n − 2] = [n

2] =
1
3
(2n − 1)(2n−1 − 1)

and

∣E ∩ D∣ = [n − 1
n − 2] = [n − 1

1 ] = 2n−1 − 1.

Now, we identify N with the additive group of F2n . If g is a generator of F×2n and
E ∈ E , then we can write E = {0, g i1 , . . . , g i2n−2

−1} with {i1 , . . . , i2n−2−1} ⊂ {1, 2, . . . ,
2n − 1}. For notational convenience, we write it as E = (i1 , . . . , i2n−2−1). If we represent
τ ∈ G by a product g�ν (g� ∈ H, ν ∈ N), then it is easy to see that the conjugate Eτ is
given by Eτ = E g� = (i1 + �, . . . , i2n−2−1 + �). We compute the normalizer NG(E). We
have τ = g�ν ∈ NG(E) if and only if there exists a permutation γ ∈ S2n−2−1 such that

i j + � ≡ iγ( j) (mod 2n − 1) ( j = 1, . . . , 2n−2 − 1).

Summing up both the sides for j, we obtain

(i1 +⋯+ i2n−2−1) + (2n−2 − 1)� ≡ (i1 +⋯+ i2n−2−1) (mod 2n − 1),

and this yields (2n−2 − 1)� ≡ 0(mod 2n − 1). In this connection, we see

gcd(2n−2 − 1, 2n − 1) = gcd(2n − 1, 3) =
⎧⎪⎪⎨⎪⎪⎩

1, if n is odd,
3, if n is even.

Therefore, if n is odd, then we conclude that � = 0 and NG(E) = N . Hence, the orbit
length of every E ∈ E is 2n − 1, and the set E is divided into 1

3
(2n−1 − 1) conjugacy

classes.
If n is even, then we obtain � = 0 or 2n − 1

3
. In the latter case, the element g� in

NG(E) is of order 3. Accordingly, the orbit length of E is either 2n − 1 or 2n − 1
3

. Let u
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(resp. v) be the number of orbits of length 2n − 1(resp. 2n − 1
3

). It obviously yields

u(2n − 1) + v 2n − 1
3

= ∣E ∣.(2.1)

We compute the total number of orbits u + v by using the lemma of Burnside–
Frobenius [1, Lemma 6.2]. For x ∈ G, if we define

Fix(x) = {E ∈ E ∣ Ex = E},

then we have

u + v = 1
∣G∣ ∑x∈G

∣Fix(x)∣.

As is seen in the above, we have Fix(g i ν) = Fix(g i) if we write x = g i ν with ν ∈ N .
Moreover, if the order of g i is neither 1 nor 3, then Fix(x) = ∅. Obviously, if the order
of g i is equal to 1, then we have i = 0 and Fix(1) = E .

We now suppose that the order of g i is 3, and thus i = (2n − 1)/3. Since the minimal
polynomial of g i over F2 is X2 + X + 1 of degree 2, the irreducible ⟨g i⟩-module B
is of dimension 2 over F2. It is easy to see that B is of the form {0, g t , g t+i , g t+2i}
with some 0 ≤ t ≤ 2n − 1. Since one of t, t + i , t + 2i modulo 2n − 1 lies in the first one-
third interval, we may assume that 0 ≤ t < (2n − 1)/3. Hence, there are 2n − 1

3
distinct

irreducible ⟨g i⟩-modules inside N. To compute ∣Fix(g i)∣, we have to enumerate
(n − 2)-dimensional ⟨g i⟩- modules inside N, but instead we only have to enumerate
the complementary two-dimensional modules by Maschke’s theorem [5, Theorem

1.9]. Therefore, we conclude ∣Fix(g i)∣ = 2n − 1
3

.
Therefore, it follows that

u + v = 2n

2n(2n − 1)
2n−2
∑
i=0

∣Fix(g i)∣ = 1
2n − 1

(∣E ∣ + 2 × 2n − 1
3

) = 2n−1 + 1
3

.(2.2)

Solving equations (2.1) and (2.2), we obtain

u = 2
3
(2n−2 − 1) and v = 1.

We conclude that there are 2
3
(2n−2 − 1) conjugacy classes of length 2n − 1 and one

conjugacy class of length 2n − 1
3

.
Let O be an orbit in E . Since G acts on the set of D’s transitively by Singer’s theorem

[3, Theorem 11.3.1], the number ∣O ∩ D∣ is independent of the choice of D.
We first consider the case where n is odd. Let Oi (i = 1, . . . , (2n−1 − 1)/3) be the

conjugacy classes. Since

(2n−1−1)/3

∑
i=1

∣Oi ∩ D∣ = ∣E ∩ D∣(2.3)
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holds, it follows

1
3
(2n−1 − 1)∣Oi ∩ D∣ = 2n−1 − 1.

Hence, we conclude that ∣Oi ∩ D∣ = 3, namely each D contains three conjugate
fields.

Next, we consider the case where n is even. Let Oi (i = 1, . . . , 2(2n−2 − 1)/3) be
the conjugacy classes of length 2n − 1, and let P be the conjugacy class of length
(2n − 1)/3. If E ∈ P , then it is invariant by an element of order 3 in F×2n . Therefore,
such E is contained in three different D’s. Since there are 2n − 1 nonconjugate D’s, we
conclude that ∣P ∩ D∣ = 1. This also yields an equation like (2.3):

2(2n−2−1)/3

∑
i=1

∣Oi ∩ D∣ = ∣E ∩ D∣ − 1.

From this, it follows ∣Oi ∩ D∣ = 3 for all i.
This completes the proof of Theorem 2.5, and thus Theorems 1.2 and 2.4

follow. ∎

Remark 2.6 Theorem 1.2 holds even if the base field is not Q. However, in that case,
we cannot define the arithmetic equivalence by the coincidence of the Dedekind zeta
functions. See [8, Theorem III.1.3].

3 Construction of F2n -extensions

In this section, we construct F2n -extensions for every n. The method is an extension
of those used in [7, 9], where only metacyclic extensions are constructed.

The method fully works for a general base field k whose characteristic is not 2. Thus,
we assume that G = Gal(K/k) = F2n = H ⋉ N and L = KN , and that a cyclic extension
L/k has been constructed.

In the case k = Q, if we take a prime number � satisfying � ≡ 1(mod 2n − 1), there
is a unique cyclic field L of degree 2n − 1 inside the �th cyclotomic field. Furthermore,
there exist infinitely many such prime numbers � for each n by Dirichlet’s theorem on
arithmetic progression.

Let us return to the general case. We now have to construct an elementary abelian
2-extension of degree 2n over L which is an F2n -extension over k. We fix a generator
g of F×2n and consider the F2n -valued characters

χ i ∶ C2n−1 %→ F×2n such that χ i(σ) = g i for i = 0, . . . , 2n − 2.

Here, we consider the cyclic group C2n−1 as a Galois group of L/k, and σ is a fixed
generator of C2n−1. In this situation, it is necessary to distinguish Gal(L/k) and F×2n .
We define

e i =
2n−2
∑
j=0

χ i(σ− j)σ j ∈ F2n [C2n−1].
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They are the primitive orthogonal idempotents, and we have a direct sum decompo-
sition of the group ring

F2n [C2n−1] =
2n−2
⊕
i=0

e iF2n [C2n−1]

into one-dimensional irreducible modules by Maschke’s theorem.
We now further define

ε i = TrF2(χ i)/F2(e i) ∈ F2[C2n−1],(3.1)

where F2(χ i) is the field generated by the character values of χ i . There are as many
different ε i as the Galois conjugacy class of the characters {χ i} (see [5, Lemma 9.17]),
and they are nonzero by [5, Corollary 9.22]. If we factor the polynomial X2n−1 − 1 =
∏t ϕt(X) into irreducibles in the polynomial ring F2[X], then we have a direct sum
decomposition over F2:

F2[C2n−1] = F2[σ] ≅ F2[X]/(X2n−1 − 1) ≅⊕
t
F2[X]/(ϕt(X)).

If we choose the index t so that ϕt is a minimal polynomial of χt(σ), then

ε iF2[σ] ≅
[F2(χ i)∶F2]−1

⊕
j=0

F2n [X]/(X − χ2 j i(σ)) = F2[X]/(ϕ i(X)).(3.2)

Hence, we obtain

F2[C2n−1] =⊕
t

εtF2[C2n−1].

Lemma 3.1 Let the notation be as above. If (i , 2n − 1) = 1, then the module
Vi = ε iF2[C2n−1] is an irreducible F2[C2n−1]-module of dimension n over F2.

Proof If we assume that (i , 2n − 1) = 1, then the order of χ i is exactly 2n − 1 and
the value of χ i is not contained in any proper subfields of F2n . Thus, we observe that
ε iF2[C2n−1] is an n-dimensional subspace over F2.

Since ε i ’s are orthogonal idempotents, Vi is apparently an F2[C2n−1]-module.
To show its irreducibility, suppose to the contrary that Vi is not irreducible. There

is a proper submodule W of Vi . Since Vi splits over F2n , the module W also splits
over F2n . Therefore, the character of W is a proper subsum of ε i . However, such a
subsum does not have its values in F2; therefore, W cannot be defined over F2. This
is a contradiction. ∎

It is readily seen that there are φ(2n − 1)/n ε i ’s with (i , 2n − 1) = 1, where φ is the
Euler’s totient function.

Lemma 3.2 Let the notation be as in Lemma 3.1. If (i , 2n − 1) = 1, we have

C2n−1 ⋉ Vi ≅ F2n

as abstract groups.
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Proof By (1.1), it suffices to show that C2n−1 ⋉ Vi is isomorphic to AGL1(F2n).
By the isomorphism (3.2), we identify Vi with F2[X]/(ϕ i(X)), where ϕ i(X) is the

minimal polynomial of g i = χ i(σ) and hence is of degree n. We define a map κ from
C2n−1 ⋉ Vi to AGL1(F2n) by

κ ∶ (σ j , U(x)) ↦ [g i j U(g i)
0 1 ]

with U(X) ∈ F2[X]. By noting that σ acts on Vi by the multiplication of g, the map κ
sends

(σ j , U(x)) (σ� , V(x)) = (σ j+� , U(x) + x jV(x))

to

[g i( j+�) U(g i) + g i jV(g i)
0 1 ] .

On the other hand, we compute

[g i j U(g i)
0 1 ] [g i� V(g i)

0 1 ] = [g i( j+�) U(g i) + g i jV(g i)
0 1 ] .

Therefore, κ is a homomorphism.
We see that (σ j , U(x)) ∈ kerκ if and only if g i j = 1 and U(g i) = 0. The con-

dition g i j = 1 is equivalent to j ≡ 0(mod 2n − 1) since (i , 2n − 1) = 1. The condition
U(g i) = 1 is equivalent to the minimal polynomial ϕ i(X) of g i divides U(X).
Therefore, the kernel consists of the trivial element only. Since the orders of both the
groups are the same, the map κ is an isomorphism. ∎

We can now state our method of construction of F2n -extensions.

Theorem 3.3 Recall that L is a cyclic extension of k of degree 2n − 1 and that ε i
is an idempotent defined by (3.1). Assume that (i , 2n − 1) = 1. If θ ∈ ε i (L×/(L×)2) is
nontrivial, then the Galois closure of L (

√
θ) over k is an F2n -extension over k.

Proof We first note that L×/(L×)2 is an F2-vector space on which Gal(L/k)
acts and hence is an F2[Gal(L/k)]-module. Let M be an irreducible F2[Gal(L/k)]-
submodule of L×/(L×)2 generated by θ. By Lemma 3.1, the module M is of dimension
n over F2. Let (θ = θ1 , . . . , θn) be a basis of M. Let K be the field generated by√

θ i (i = 1, . . . , n), that is, K = L (
√

θ1 , . . . ,
√

θn).
We shall first show that K is a Galois extension over k. Let σ̃ be an extension of

σ ∈ Gal(L/k) to K. We compute

(σ̃(
√

θ i))
2
= σ̃(θ i) = σ(θ i).

Recalling that M is a multiplicative Gal(L/k)-module, we have
√

θ′ ∈ K for every
element θ′ of M. Moreover, in additive notation, there exists A = [a i j] ∈ GLn(F2)
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satisfying

σ(θ1 , . . . , θn) = (θ1 , . . . , θn)A.(3.3)

In particular, we obtain σ̃(
√

θ i) = ±
√

σ(θ i) ∈ K. This shows that K/k is a Galois
extension.

We have an exact sequence

1 �� Gal(K/L) �� Gal(K/k) �� Gal(L/k) �� 1 (exact)

induced from the restriction map. The Galois group Gal(L/k) acts on Gal(K/L): for
γ ∈ Gal(K/L) and σ ∈ Gal(L/k), we choose an extension σ̃ in Gal(K/k) and we define
σ ⋅ γ = σ̃γσ̃−1. This action is well defined because Gal(K/L) is abelian.

For σ ∈ Gal(L/k), we define s(σ) ∈ Gal(K/k) by

s(σ)(
√

θ1 , . . . ,
√

θn) = (
√

θ1 , . . . ,
√

θn)A

with A defined in (3.3). It is easy to verify that this map s gives a splitting homomor-
phism and the above exact sequence splits.

By Kummer theory, there exists a bilinear nondegenerate pairing defined as

⟨⋅, ⋅⟩ ∶ Gal(K/L) × M %→ μ2 %→ F2 , (γ, θ) ↦ γ(
√

θ)√
θ

,(3.4)

where the map μ2 %→ F2 is an isomorphism whose inverse map is F2 ∋ x ↦ (−1)x .
This yields an isomorphism

Gal(K/L) ≅ Hom(M ,F2), γ ↦ ⟨γ, θ⟩.(3.5)

Both the sides of (3.5) are Gal(L/k)-modules. The action on the right-hand side is
given by σ(θ ↦ ⟨γ, θ⟩) = (θ ↦ ⟨γ, σ θ⟩).

We shall show that Gal(K/L) is an irreducible F2[Gal(L/k)]-module isomorphic
to ε jF2[Gal(L/k)] for some integer j prime to 2n − 1. Then, from Lemma 3.2,
Gal(K/k) ≅ F2n follows. To do this end, we compute the action of σ ∈ Gal(L/k) on
Gal(K/L) in terms of (3.3). In the above, we have shown that σ̃(

√
θ i) = ±

√
σ θ i , and

thus we can define e i ∈ F2 by

σ̃(
√

θ i) = (−1)e i
√

σ θ i .

Using (3.3), we can compute further

σ̃(
√

θ i) = (−1)e i
n
∏
j=1

√
θ j

a ji
.

By writing A−1 = [b i j], we have

σ̃−1
√

θ i = (−1) f i
√

σ−1θ i = (−1) f i
n
∏
j=1

√
θ j

b ji
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with some f i ∈ F2. The relation of e i ’s and f i ’s is derived by computing σ̃ σ̃−1

(
√

θ i) =
√

θ i . In fact, the left-hand side is equal to

(−1) f i σ̃
⎛
⎝

n
∏
j=1

√
θ j

b ji⎞
⎠
= (−1) f i

n
∏
j=1
(−1)e j b ji (

n
∏
k=1

√
θ j

ak j
)

b ji

= (−1) f i+∑
n
j=1 e j b ji

√
θ i .

Hence, we obtain

f i +
n
∑
j=1

e jb ji = 0 for all i = 1, . . . , n.(3.6)

Now, let (g1 , . . . , gn) be the dual basis of Gal(K/L) with respect to the paring ⟨⋅, ⋅⟩.
We compute the action σ ⋅ g i on

√
θ j ∶

(σ ⋅ g i) (
√

θ j) = σ̃ g i σ̃−1 (
√

θ j) = σ̃ g i ((−1) f j
n
∏
k=1

√
θk

bk j)

= (−1) f j σ̃ ((−1)b i j
n
∏
k=1

√
θk

bk j) = (−1) f j+b i j
n
∏
k=1

(σ̃
√

θk)
bk j

= (−1) f j+b i j+∑
n
k=1 ek bk j

√
θ j .

Combining with (3.6), we have

(σ ⋅ g i) (
√

θ j) = (−1)b i j
√

θ j .

This means that σ acts on Gal(K/L) by A−1. Therefore, Gal(K/L) is isomorphic
to an irreducible module ε−iF2[Gal(L/k)]. Since (−i , 2n − 1) = 1, we conclude
Gal(K/k) ≅ F2n .

This completes the proof of Theorem 3.3. ∎

Remark 3.4 Our proof shows that if σ acts on M by A as (3.3), then it acts
on Gal(K/L) by A−1. This argument does not depend on the assumption that
(i , 2n − 1) = 1. If we drop this assumption, then we obtain Galois extensions whose
Galois groups are various semidirect products of Gal(L/k) and Gal(K/L) including
the direct product. See [7, Section 6] for example.

The following corollary follows from the proof of Theorem 3.3.

Corollary 3.5 With the same assumptions as in Theorem 3.3, the Galois closure of
L (

√
θ) over k is L (

√
σ θ ∣ σ ∈ Gal(L/k)).

The following corollary guarantees that there are infinitely many F2n -extensions
containing L.

Corollary 3.6 Let θ and θ′ be nontrivial elements in ε i(L×/(L×)2) for some i. The
Galois closures of L(

√
θ) and L(

√
θ′) coincide if and only if the Gal(L/k)-modules

generated, respectively, by θ and θ′ coincide.
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Proof This follows from the Kummer duality (3.4). ∎

4 Identifying arithmetically equivalent fields

In the previous section, we have constructed F2n -extensions. In this section, we
explain how to identify arithmetically equivalent fields inside the F2n -extensions.

We continue to use the notation used in the proof of Theorem 3.3. For convenience,
we recall some of them. Let L/k be a cyclic extension of degree 2n − 1. We assume
that i is an integer prime to 2n − 1 and consider an irreducible F2[Gal(L/k)]-module
M in ε i (L×/(L×)2), where ε i is the idempotent defined by (3.1). The module M is
generated by θ and has a basis (θ = θ1 , . . . , θn) over F2. We now fix a generator σ
of Gal(L/k) and assume that σ acts on the above basis by (3.3). The Galois group
Gal(K/L) is isomorphic to the dual group Hom(M ,F2) of M (see (3.5)). We want
to find quadratic extensions of L(

√
θ) which are arithmetically equivalent but not

conjugate. In Proposition 2.1, we have shown that all such quadratic extensions are
arithmetically equivalent, and hence we only have to identify the conjugacy classes of
these fields.

Definition 4.1 We denote by F̃n
2 the quotient space of Fn

2 by the subspace generated
by e1 = t(1, 0, . . . , 0). Namely, column vectors e and f ∈ Fn

2 are equal in F̃n
2 if they

coincide except for the first coordinate.

If ṽ = t(e1 , . . . , en) ∈ F̃n
2 , then a quadratic extension

Q(ṽ) = L (
√

θ ,
√

θ e2
2 ⋯θ en

n )(4.1)

of L (
√

θ) is well defined and there is a one-to-one correspondence between such
quadratic extensions and the set F̃n

2 − {0̃}. The conjugate field of Q(ṽ) by σ is then
given by

σQ(ṽ) = L(
n
∏
k=1

√
θ ak1

k ,
n
∏
k=1

√
θ e2 ak2+⋯+en akn

k )

with A = [a i j] in (3.3). The condition for σQ(ṽ) ⊃ L(
√

θ) is equivalent to that θ1
coincides with either ∏n

k=1 θ e2 ak2+⋯+en akn
k or the product ∏n

k=1 θ ak1+e2 ak2+⋯+en akn
k

since∏n
k=1 θak1

k does not coincide with θ1. It is easy to observe that this condition holds
if and only if Aṽ = e1. If ṽ satisfies this condition, then Q(ṽ) = Q(A−1e1) is conjugate
to Q(Ae1). Note that since Gal(L/k) acts transitively on F̃n

2 , for every element
ṽ ∈ F̃n

2 , there exists an integer j such that ṽ = A j e1.
In accordance with this observation, we define the following equivalence relation

on F̃n
2 .

Definition 4.2 Let us fix σ as a generator of Gal(L/k), and let A be the
matrix defined by (3.3). The elements ṽ = Ai e1 and f̃ = A j e1 in F̃n

2 are said to be
equivalent if i + j ≡ 0(mod 2n − 1).

Using these definitions, we obtain the following proposition.
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Proposition 4.1 Let F̃n
2 be the set defined by Definition 4.1. The map sending ṽ ∈ F̃n

2
to Q(ṽ) as in (4.1) induces a one-to-one correspondence between the conjugacy classes
over k of quadratic extensions over L(

√
θ) and the equivalence classes of F̃n

2 − {0̃} by
the equivalence relation in Definition 4.2.

For explicit computation, it remains to give a basis of the irreducible module
M = ⟨θ⟩. We use the isomorphism

M ≅ F2[X]/(ϕ i(X))

in (3.2) for that purpose. Recall that ϕ i(X) is the minimal polynomial of g i over
F2, where g is a fixed generator of F×2n , and that σ ∈ Gal(L/k) acts on the right-
hand side by the multiplication by X. Thus, if we take (1, X , . . . , Xn−1) as a basis of
F2[X]/(ϕ i(X)), then σ acts by the companion matrix of ϕ i(X) = a0 + a1 X +⋯+
an−1 Xn−1 + Xn ∶

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 0 a0
1 0 a1
0 1 ⋱ a2
⋮ ⋱ ⋱ ⋮

⋱ 0 an−2
0 ⋯ 1 an−1

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

.

This matrix action is compatible if we take a basis (θ , σ θ , . . . , σ n−1θ) for M.
To illustrate how the above method works, we give an explicit description for the

case n = 4.

Proposition 4.2 Let L be a cyclic extension of Q of degree 15 with Galois group
generated by σ. If θ is a nontrivial element of ε1(L×/(L×)2), then three fields

L (
√

θ ,
√

σ θ) , L (
√

θ ,
√

σ 2θ) , L (
√

θ ,
√

σ θ ⋅ σ 2θ)

are not conjugate but arithmetically equivalent.

Proof We consider an irreducible module M = (θ , σ θ , σ 2θ , σ 3θ), which is isomor-
phic to F2[X]/ϕ1(X) = F2[X]/(X4 + X + 1). Hence, the action of σ is given by the
companion matrix A of ϕ1(X):

σ(θ , σ(θ), σ 2(θ), σ 3(θ)) = (θ , σ(θ), σ 2(θ), σ 3(θ))

⎡⎢⎢⎢⎢⎢⎢⎢⎣

0 0 0 1
1 0 0 1
0 1 0 0
0 0 1 0

⎤⎥⎥⎥⎥⎥⎥⎥⎦

.

Let v i = Ai e1 for i = 0, . . . , 14. If we denote the element in F̃4
2 corresponding to v i by

ṽ i , then the equivalence classes by Definition 4.1 are easily computed, and we have

ṽ1 = ṽ4 , ṽ2 = ṽ8 , ṽ3 = ṽ14 , ṽ5 = ṽ10 , ṽ6 = ṽ13 , ṽ9 = ṽ7 , ṽ11 = ṽ12 .

We further connect them by the equivalence relation in Definition 4.2:

ṽ i ∼ ṽ15−i (i = 1, . . . , 7).
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By combining these, it follows that the conjugacy classes of the quadratic extensions
of L(

√
θ) in K are

{Q(ṽ1), Q(ṽ3), Q(ṽ11)},

{Q(ṽ2), Q(ṽ6), Q(ṽ9)},

{Q(ṽ5)}.

Therefore, we can choose Q(ṽ1), Q(ṽ2), Q(ṽ5) as representatives of the conjugacy
classes. These fields are nothing but ones in the statement of the proposition. ∎

We give a numerical example of Proposition 4.2 using Magma [2].

Example 4.3 Let L be a unique cyclic extension of degree 15 inside the 31st cyclo-
tomic field. A defining polynomial of L is

f (X) = X15 − 31X14 + 434X13 − 3, 627X12 + 20, 150X11 − 78, 430X10

+ 219, 604X9 − 447, 051X8 + 660, 858X7 − 700, 910X6 + 520, 676X5

− 260, 338X4 + 82, 212X3 − 14, 756X2 + 1, 240X − 31 ∈ Q[X].

Let α be a root of f and σ a generator of Gal(L/Q) sending α to α3 − 6α2 + 9α. We
have

ε1 = σ + σ 2 + σ 3 + σ 4 + σ 6 + σ 8 + σ 9 + σ 12 .

Unfortunately, we have ε1(α) ∈ (L×)2, and we instead take θ = ε1(α + 1), which is
nontrivial:

θ = 1, 918α14 − 55, 941α13 + 730, 762α12 − 5, 642, 195α11 + 28, 615, 030α10

− 100, 198, 470α9 + 247, 832, 148α8 − 435, 429, 135α7 + 538, 848, 977α6

− 459, 012, 245α5 + 258, 286, 255α4 − 89, 753, 523α3 + 17, 269, 217α2

− 1, 514, 740α + 41, 200.

The Galois closure K of L(
√

θ) is isomorphic to F24 as expected.
The arithmetically equivalent fields in Proposition 4.2 are generated, respectively,

by

σ θ = − 1, 868α14 + 51, 883α13 − 644, 123α12 + 4, 716, 495α11 − 22, 632, 746α10

+ 74, 787, 369α9 − 174, 015, 255α8 + 286, 515, 188α7 − 330, 720, 046α6

+ 261, 327, 388α5 − 135, 654, 656α4 + 43, 411, 399α3 − 7, 829, 444α2

+ 707, 661α − 16, 708,
σ 2θ =568α14 − 14, 474α13 + 159, 857α12 − 991, 986α11 + 3, 704, 900α10

− 7, 937, 152α9 + 6, 068, 083α8 + 15, 337, 953α7 − 53, 985, 594α6

+ 78, 016, 586α5 − 62, 566, 399α4 + 27, 793, 973α3 − 6, 084, 932α2

+ 495, 906α + 900,
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σ θ ⋅ σ 2θ = − 2, 171, 688α14 + 67, 084, 221α13 − 934, 645, 093α12 + 7, 750, 575, 584α11

− 42, 508, 235, 392α10 + 162, 029, 379, 062α9 − 438, 947, 076, 273α8

+ 849, 307, 812, 685α7 − 1, 162, 572, 370, 875α6 + 1, 098, 352, 512, 421α5

− 685, 146, 475, 599α4 + 262, 216, 335, 852α3 − 54, 652, 878, 964α2

+ 5, 143, 605, 707α − 112, 645, 567.

The three fields in Proposition 4.2 share the same Dedekind zeta function

ζ(s) = 1
1s +

4
31s +

3
32s +

12
61s +

20
125s +

60
311s +

12
373s +

12
433s

+ 12
557s +

12
619s +

12
683s +

12
743s +

12
929s +

10
961s +

12
991s +

12
992s +⋯.

The referee pointed out that if we take the minimal polynomial of 2 cos ( 2π
31 ) as f, then

we can obtain elements with smaller coefficients.
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