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Abstract

Drone technology and digital image analysis have enabled significant advances in precision
agriculture, especially in site-specific treatment of weed escapes in crop fields. This study
evaluated a pipeline for weed detection in multispectral drone imagery, along with site-specific
herbicide application, using a remotely piloted aerial application system (RPAAS) targeting
late-season weed escapes in rice with a selective postemergence rice herbicide, florpyrauxifen-
benzyl. The efficacy of the RPAAS-based herbicide application with geocoordinates of weed
escapes obtained manually or based on image analysis was compared with conventional
backpack broadcast spray. The weed species targeted were barnyardgrass, Amazon sprangletop,
yellow nutsedge, and hemp sesbania. A Python-based rice–weed detection model was
developed using the canopy height model and spectral reflectance of weeds and rice plants.
Results indicate that the accuracy of image-based detection for late-season weed escapes in rice
was highest for hemp sesbania (95%), followed by Amazon sprangletop (87%) and yellow
nutsedge (74%), with barnyardgrass showing the lowest accuracy at 62%. The study found that
the backpack broadcast method had the highest efficacy in weed control, followed by the
RPAAS method using manually obtained geocoordinates and those based on image analysis.
Site-specific herbicide application using RPAAS resulted in a 45% reduction in herbicide
compared to the broadcast backpack application. Moreover, the RPAAS site-specific
application method for late-season treatment minimized the field area affected by herbicide
injury and protected rice grain yields compared to the broadcast method. Overall, the utility of
unmanned aerial sprayer–based detection and site-specific treatment of late-season weed
escapes in rice has been demonstrated in this research, but further improvements in weed
detection efficacy and the accuracy of targeting plants with RPAAS are necessary.

Introduction

Rice is one of the most important and widely consumed cereal staples worldwide and is a
significant commodity in the United States (Singh et al. 2017). In 2022, rice was planted in an
area of 789.137 thousand hectares, with a total rough rice production of 9 million metric tons
(USDA-NASS 2023). However, the global population continues to grow, and so does the
demand for rice. To meet the growing demand for rice, it is essential to minimize crop losses
(Oerke and Dehne 2004). Although various factors affect crop yields, weeds are among the most
significant contributors. Weeds compete with crops for nutrients, water, sunlight, and space,
leading to reduced crop growth and yield (Oerke 2006). Weeds can also harbor insect pests and
diseases that damage or reduce crop yields and interfere with crop management practices such
as planting, irrigation, and harvesting (Antralina et al. 2015; Gibson et al. 2017; Webster et al.
2018). Among the available weed control methods, herbicide application is the most popular
and economically viable option in conventional rice production in the United States (Gianessi
2013; Smith and Shaw 1966). However, there are growing concerns about the traditional
approach whereby herbicides are broadcast applied throughout the field, especially when weed
densities are low. This approach leads to high production costs and potential risks to human and
environmental health.

Precision agriculture is transforming production systems through the use of unmanned
aerial vehicles, sensors, remote sensing, and digital image processing technologies. These
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advanced technologies enable growers to obtain site-specific, real-
time data on spatial and temporal variability in agricultural fields.
Additionally, the combination of drone technology and image
analysis techniques has led to significant advancements in site-
specific weed management (Hassler and Baysal-Gurel 2019;
Tsouros et al. 2019). Farmers can now accurately identify and
target individual weeds in their fields, enabling the precise
application of herbicides only where needed (Lati et al. 2021;
Yang et al. 2003). The site-specific approach is expected to be cost-
effective while minimizing potential human health risks and the
environmental footprint of herbicide-based weed control (Sapkota
et al. 2023).

Researchers have investigated the effectiveness of site-specific
herbicide applications in agriculture. For instance, Hunter et al.
(2020) used an unmanned aerial sprayer (UAS) system for weed
mapping and spot spraying in sod production fields and found that
the UAS-based precision application was up to three times more
efficient than ground-based broadcast applications. However,
drone-based site-specific applications missed 25% to 30% of
targeted weed patches compared to only 2% to 3% in the broadcast
method. Using site-specific drone spray in a vineyard, Campos
et al. (2019) reported a 45% reduction in herbicide use compared to
a broadcast application, while not compromising weed control
efficacy. Other studies have also shown significant reductions in
herbicide use with site-specific weed control by up to 90%
compared to broadcast applications (Berge et al. 2008; Genna et al.
2021; Gerhards and Christensen 2003; Timmermann et al. 2003).
Moreover, a recent economic analysis conducted by Rajmis et al.
(2022) showed a 26% to 66% reduction in herbicide application
costs without affecting crop yield.

Weeds that survive early-seasonmanagement or emerge later in
the crop (i.e., late-season weed escapes) receive little management
attention because these weeds do not necessarily lead to significant
crop yield loss in the current season, but they do contribute
to weed seedbank replenishment and future weed problems
(Bagavathiannan and Norsworthy 2012; Werner et al. 2020). For
example, an uncontrolled escape of hemp sesbania can produce up
to 21,500 seeds plant−1 (Lovelace and Oliver 2000). Similarly,
yellow nutsedge can produce 20,000 tubers m−2 (Ransom et al.
2009), while barnyardgrass can generate 215,000 seeds m−2

(Bagavathiannan et al. 2011). A conventional control method
for late-season weed escapes involves applying broadcast herbi-
cides across the entire field, even though these escapes may appear
at low densities. In this regard, site-specific herbicide applications
using remotely piloted aerial application systems (RPAAS) (amore
technical term for unmanned aerial sprayers) may provide an
effective alternative.

Researchers have used different methods for detecting and
mapping weed escapes. Kutugata et al. (2021) utilized UAS-based
imagery and vegetation indexes for estimating seed production
potential in late-season weed escapes in row crops. However,
species identification in more complex species mixes may require
more robust remote sensing techniques and tools. Sapkota et al.
(2020) employed deep neural networks along with a feature
selection method to detect Italian ryegrass [Lolium perenne ssp.
multiflorum (Lam.) Husnot] weed in wheat (Triticum aestivum L.)
using UAS-based RGB imagery and showed that this approach has
the potential for mapping and quantifying ryegrass infestation in
wheat. Shahbazi et al. (2021) used a light detection and ranging
sensor (LIDAR) for the differentiation and localization of wild oat
(Avena fatua L.) and annual sowthistle (Sonchus oleraceus L.)
weeds in wheat based on height differences. Although they show

that 90% of weed patches could be easily differentiated from the
crop, it is unclear whether such approaches will be effective for
weed patches that are of similar height to the crop or shorter.
Andújar et al. (2013) also used a LIDAR sensor to locate the
position of weeds, such as barnyardgrass, red dead-nettle (Lamium
purpureum L.), and catchweed (Galium aparine L.), that grew
shorter than the maize (Zea mays L.) crop canopy and found that
the detection accuracy decreased when the scanning distance
increased. Moreover, the detection accuracy was also influenced by
the size of the object and the target’s orientation toward the
LIDAR, suggesting a significant limitation.

López-Granados et al. (2006) used multispectral and hyper-
spectral imagery for late-season grass weed discrimination and
mapping in wheat; their results suggest that mapping grass weed
patches was feasible 2 to 3 wk before crop senescence. Koger et al.
(2003) developed a multispectral imagery–based crop and weed
discrimination model for late-season weed detection in soybean
[Glycine max (L.) Merr.] that was 78% to 90% accurate. Sivakumar
et al. (2020) developed a convolutional neural network (CNN) and
faster R-CNN (region-based CNN) model for mid- to late-season
weed patch identification in soybean. The results show that the
developed model was 92% accurate and that the faster R-CNN had
higher performance with lower inference time than the CNN
model. However, manually annotating images and training
machine learning models are labor intensive and time consuming.

In rice, managing late-season weed escapes with RPAAS-based
site-specific herbicide applications can be not only efficient but also
convenient because of the challenges with ground herbicide
applications due to flooded conditions. Moreover, limited field
accessibility also limits other weed management options, such as
physical and mechanical methods, making herbicides the most
preferable tool. The majority of existing research in this area deals
with row crops where species detection can be relatively easier
compared to the dense species mixtures expected in rice fields,
which are typically planted with narrow row spacing. Furthermore,
it is unknown whether such dense species mixtures can influence
the efficacy of RPAAS-based herbicide applications for treating
weed escapes. These knowledge gaps need to be addressed for
developing effective drone-based solutions for targeting late-
season weed escapes. The specific objectives of this study were to
(1) identify late-season weed patches in rice using different image
analysis techniques and (2) compare the efficacy of RPAAS-based
precision herbicide application with conventional backpack spray
application.

Materials and Methods

Location and Data Collection

The experiments were conducted at the Texas A&M AgriLife
Research’s David Wintermann Rice Research and Extension
Station, Eagle Lake, TX (30.035°N, 96.604°W), during summer
2021 and 2022 (Figure 1). The location is characterized by a
subtropical climate with mild winters and very hot, humid
summers.

Experimental Setup and Design

The experiment consisted of four treatments: (1) backpack
broadcast application (conventional practice), (2) image analy-
sis–based waypoint extraction and RPAAS-based automatic spot
spraying, (3) manual waypoint collection and RPAAS-based
automatic spot spraying, and (4) untreated control. The
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experimental plots were 20 m long and 10 m wide, and each
treatment was replicated four times in a randomized complete
block design. Evaluations were conducted on naturally occur-
ring weeds in the experimental area. In 2021, the experimental
plots were infested with barnyardgrass, Amazon sprangletop,
hemp sesbania, and yellow nutsedge, whereas the experimental
site in 2022 had infestations of barnyardgrass, Amazon
sprangletop, and hemp sesbania only. Rice crop (‘CL153’ at
80 kg ha−1) was grown in a direct-drill-seeded, delayed flooded
production system, following the recommended agronomic
practices (Way et al. 2014).

Image Data Acquisition

Aerial images were collected using the RedEdge-Mmultispectral
sensor (MicaSense®, Seattle, WA, USA) mounted on a Matrice
600 Pro drone (DJI®, Shenzhen, China). The flights were carried
out at an altitude of 20 m above the ground and a speed of
4 km h−1, 60 d after rice seeding, when the weeds had reached a
height similar to or taller than the rice crop. Radiometric
calibration was performed using calibration panels, and all the
images were collected during solar noon using a grid pattern
with 80% front and side overlap. To ensure accurate mapping,
six ground control points (GCPs) were deployed across the field,
and a handheld real-time kinematic (RTK) GNSS unit (Reach
RS2þ, Emlid®, Budapest, Hungary) was used to collect the
latitude and longitude of each GCP. The Pix4Dmapper software
(Lausanne, Switzerland) was used with the “Ag Multispectral”
template to produce an orthomosaic image. The orthomosaic
image was georeferenced to the World Geodetic System 1984
coordinate system during the mosaicking process, and the
resulting image had a spatial resolution of 1.3 mm pixel−1, which
was suitable for this study.

Manual Waypoints

In the experimental plots, the center of each weed patch was
manually marked using the handheld RTK-GNSS unit. This
involved walking into the rice field, locating the waypoints, and
physically marking them. The waypoints were then converted into
an Esri shapefile and uploaded onto an RPAAS spray drone for
automatic navigation.

Image Analysis–Based Waypoints

After the orthomosaic was generated, a Python-based rice–weed
model was developed to extract global waypoints of weed escapes
from the aerial imagery. The model utilized the canopy height
model (CHM) and the spectral response of rice and weeds. The
CHM was calculated using a digital surface model and a digital
terrain model, which helped detect weed patches that were taller
than the rice canopy. Similarly, to distinguish weeds from rice
based on spectral reflectance, red, green, blue, red-edge, and near-
infrared bands and their combinations were tested (Figure 2). It
was found that yellow nutsedge and sprangletop were visible in the
blue and red bands. In general, the red band was more effective at
distinguishing rice fromweeds than was the blue band. A threshold
value was set for the CHM and red band through a trial-and-error
approach. Any value below the threshold was eliminated, including
nontarget areas such as soil background and rice canopy. The
threshold value for CHM was set at 0.08 m, while for the red band,
it was set at 28 digital number (DN). Additionally, morphological
operations (dilation) were performed to enhance the area of the
detected object in the image. After weed patch delineation, each
patch was converted into a polygon, and a center point was
determined for each polygon using the moment determination
method (https://docs.opencv.org/3.4/d0/d49/tutorial_moments.
html). Any polygon with an area of less than 0.05 m2 was
eliminated to reduce noise and remove unwanted pixel areas from
the data. To recognize potential duplicate points, a Python
function was used that employed the Euclidean distance metric
and set the Euclidean threshold value based on the sprayer ground
coverage area (0.60 m). The CHM- and red band–based weed
coordinates were then combined into a single data frame using the
union function in GeoPython (https://geo-python-site.readthedo
cs.io/en/latest/). Finally, the geospatial packages RASTERIO and
GEOPANDAS were used to transform polygon center points into
global coordinates (WGS84) and subsequently convert global
coordinates into an Esri shapefile to direct automatic navigation of
the RPAAS to the specific weed patches (Figure 3).

Model-Based Weed Localization Accuracy Assessment

The localization of weed patches comprises two key aspects: weed
detection accuracy and positional accuracy. Weed detection
accuracy represents the proportion of weed patches correctly

Figure 1. Study area at Texas A&M AgriLife Research’s David Wintermann Rice Research and Extension Station, Eagle Lake, TX.
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Figure 2. Example of distinctive reflectance for rice and weeds in multispectral (MicaSense® RedEdge-M) imagery captured 60 d after rice planting: blue band (A), green band (B),
red band (C), red-edge band (D), and near-infrared band (E). The sensors were mounted on a DJI® Matrice 600 Pro drone flying at an altitude of 20 m.

Figure 3. Schematic describing the workflow from aerial image collection to analysis, production of shape files, and site-specific spraying.
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identified by the model in comparison to the actual numbers in the
field. On the other hand, positional accuracy reflects the deviation
of the detected center point of the weed patch from the manually
marked center point, measured in centimeters. To measure both
detection and positional accuracy, all the weed patches in the
experimental plots were counted manually, and their center points
were marked using the Emlid® GNSS unit prior to the UAS flight.
Afterward, a Python-based model was used to extract the center
coordinates of the weed patches from the orthomosaicked image.
The model-based coordinates were then verified for false positives
and negatives as well as for positional accuracies based on the
manually marked center points.

Sprayer Specifications

Backpack Sprayer
The backpack sprayer was CO2 pressurized and equipped with
three TT11002 (TeeJet® Technologies, Glendale Heights, IL, USA)
nozzles. The backpack sprayer was calibrated to deliver a spray
volume of 140 L ha−1 at an application speed of 1.4 m s−1 with a
pressure of 206 kPa.

RPAAS Sprayer
A Precision Vision 35X spray drone (Leading Edge® Aerial
Technologies, Fletcher, NC, USA) was used for site-specific
spraying (Figure 4). The RPAAS was equipped with a 16-L tank
and a single TJ QGA-3007 full-cone nozzlemounted directly under
the drone. The drone sprayer was calibrated to deliver 30 ml s−1 at
206 kPa pressure. Flights were made at 2.5 m above ground level at
a ground speed of 5.4 m s−1 between points. Upon reaching the
specified location, the RPAAS stabilized both its horizontal and
vertical positions within 5 s before delivering a 2-s spray. An RTK
base station was set up near the experimental field to ensure precise
navigation of the RPAAS. For monitoring real-timemeteorological
data (temperature, humidity, wind speed, and wind direction), a
wireless weather station (Vantage Pro2, Davis Instruments,
Hayward, CA, USA) was deployed in the field.

Herbicide Applications

A selective postemergence rice herbicide, florpyrauxifen-benzyl
(Loyant®, Corteva Agriscience, Indianapolis, IN, USA), was applied
at a rate of 32 g ai ha−1 in both study years. This herbicide provides
a broad-spectrum postemergence activity on the range of weed
species included in the study. To determine the droplet deposition
patterns, Rhodamine red dye (Liquid Red, Cole-Parmer, Vernon
Hills, IL, USA) was added to the spray solution at a rate of 0.5%
(v/v) for both backpack and RPAAS applications. To capture the
spray droplets, Kromekote cards (10 × 5 cm) were placed on the
tops of wooden poles (1.5 × 0.05 × 0.02 m) (Figure 5). These poles
were deployed randomly around the weed patches before spraying.
After the cards were dry, they were placed in an airtight
polyethylene zipper bag, and the droplet deposition patterns were
analyzed in the laboratory using DropletScan™ software (Zhu et al.
2011). Droplet parameters, such as droplet size, density (droplets
cm−2), droplet uniformity (i.e., coefficient of variation), and
percent area coverage, were measured. In addition, canopy height
and diameter of each weed patch were measured using a ruler
before the spray applications (Table 1).

Visual weed control was evaluated at 28 d after herbicide
treatment (DAT) for each weed patch on a scale of 0 (no control) to
100 (complete plant death) to measure herbicide efficacy.
Following that, the aboveground weed biomass was harvested,

placed in separate brown bags, dried at 60 C for 72 h, and weighed
to determine plant biomass reduction (Equation 1):

Biomass reduction ¼
Biomass of untreated plants� Biomass of treated plants

Biomass of untreated plants
� 100

[1]

The samples were then threshed by hand, and the seeds were
cleaned and weighed. At 120 d after rice planting, a 0.8 × 18 m
swath of rice was harvested using a self-propelled small plot
combine (Mitsubishi plot combine), and rice grain yield was
determined at 12% seed moisture content in both years.

Statistical Analysis

Statistical analyses were carried out using R software (version 4.3.2;
R Core Team 2024) to estimate the positional error of image-based
geocoordinates and compare treatment differences for weed
control, plant dry weight, droplet distribution, spray coverage,
and grain yield. The ANOVA package AOV() in R (linear model)
was used to conduct one-way ANOVAs. Treatment was
considered as the fixed effect, whereas replication and year were
considered as random effects. Treatment mean separations were
performed using Tukey’s HSD method at α= 0.05. Prior to
conducting ANOVA, the normality of the residuals was checked
using the Shapiro–Wilk test; no transformations were necessary.
The effectiveness of the sprayers was evaluated by analyzing the
volume median diameter (VMD), the uniformity of droplet
distribution based on the coefficient of variation (CV) value, and
the percentage of spray coverage. Weed biomass data were pooled
across the two years; biomass data were not available for yellow
nutsedge because the herbicide-treated plants completely degraded
in standing water by 28 DAT. A log10 transformation was applied
to the weed biomass data prior to conducting ANOVA.

Results and Discussion

Late-Season Escaped Weed Patch Delineation in Rice

The weed detection model was developed using an integrated
approach that combined the CHM and red wavelength spectral

Figure 4. Remotely piloted aerial application system (Leading Edge® Precision Vision
35X; RPAAS) used in the study for targeting individual weed escapes/patches.
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signatures to differentiate between rice plants and weed escapes.
Among the targeted species, hemp sesbania exhibited the highest
detection accuracy, with Amazon sprangletop, yellow nutsedge,
and barnyardgrass following in descending order.

Hemp sesbania, known for its tall growth, open canopy, and
high biomass, was distinctly detectable by the CHM, leading to the
highest detection accuracy across both years. In 2021, the detection
accuracy was 91%, with an average height and diameter of 1.90 m
and 0.89 m, respectively. The detection accuracy improved to 93%
in 2022, possibly due to an increase in plant size, with the average
height and diameter reaching 2.14 m and 1.08 m, respectively.
However, if the hemp plant’s height was equal to or less than the
rice canopy’s, it remained undetectable by both CHM and spectral
signature methods. Shahbazi et al. (2021) reported similar findings
that the LIDAR sensor detected wild oat and annual sowthistle in
wheat crops with 100% accuracy when the weeds were taller than
the wheat canopy.

The detection of Amazon sprangletop was facilitated by its long
and distinct seed heads, which stood out from the rice crop and
other weed species. These seed heads exhibited a unique spectral
signature in the red band (668 nm) (Figure 2 C). In 2021, the
detection accuracy was 87%. In 2022, however, the detection
accuracy dropped to 85%, possibly due to a reduction in the size of
the weed patch (0.92 m tall and 0.24 m wide, compared to 1.49 m
and 0.29 m, respectively, in 2021), which may have reduced the
detection accuracy. This result was supported by McCormick
(1999), whereby the distinctive cylindrical crown shape of
paperbark-tree [Melaleuca quinquenervia (Cav.) S.F. Blake]
enabled the identification of this invasive tree in aerial imagery.

A study was conducted by El Imanni et al. (2023), using a
combination of spectral bands and the CHM, to classify citrus and
weeds. The study found that incorporating CHM increased the
classification accuracy by 13.4% when compared to relying solely
on spectral signatures. Yellow nutsedge presented challenges with
detection due to its size, which caused it to blend into the rice
canopy. In 2021, the detection accuracy for yellow nutsedge was
74%, with average height and canopy diameter of 0.73 m and
0.37 m, respectively. Detection relied solely on spectral
signatures because there was no significant height differ-
entiation between the weed and the rice crop. However, the
yellow flower head of the nutsedge displayed a distinct spectral
signature in the red band when the weed patch was large enough
(approximately 125 cm2 in area) (Figure 2). This finding
corroborates with Che’Ya et al. (2021), who detected yellow
nutsedge in the red-edge region (720 nm) in sorghum [Sorghum
bicolor (L.) Moench]. Yellow nutsedge was not found in the
experimental plots in 2022.

Barnyardgrass posed the most significant detection challenge
due to its high degree of mimicry with the rice crop. In 2021, it had
the lowest detection accuracy at 63%, with an average height of 0.74
m and a canopy diameter of 0.46 m, similar to the rice crop.
Detection was much easier when the weed plant was taller than the
rice canopy. However, the high variability in barnyardgrass heights
across the field led to lower overall detection accuracy (Table 2). In
2022, though barnyardgrass was taller and wider (0.79 m and 0.22
m, respectively), the detection accuracy further declined to 59%.
This may have been due to the overall variability in plant height
and canopy diameter observed, coupled with the phenotypic

Figure 5. Placement of Kromekote cards on wooden poles in the experimental field for assessing spray droplet distribution. The inset is a close-up of the Kromekote card setup.

Table 1. Plant height and canopy diameter of the weed species evaluated in this study across the two study years.

2021 (mean ± SD) 2022 (mean ± SD)

Weed species Height Diameter Height Diameter

———————————————————————— m ———————————————————————

Hemp sesbania 1.90 ± 0.24 0.89 ± 0.12 2.14 ± 0.23 1.08 ± 0.35
Amazon sprangletop 1.49 ± 0.32 0.29 ± 0.09 0.92 ± 0.17 0.24 ± 0.12
Yellow nutsedge 0.73 ± 0.13 0.39 ± 0.12 — —

Barnyardgrass 0.74 ± 0.27 0.46 ± 0.17 0.79 ± 0.30 0.52 ± 0.22
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similarity to rice, which may have made discrimination very
difficult (Yang and Chen 2004; Zhang et al. 2019).

Positional Accuracy of Detected Weed Patch

Image-Based Weed Localization Accuracy
The positional accuracy, or error, reflects the difference in the
estimation of the center point of a weed patch between the model-
based predicted center point and the manually marked center
point. The positional error was due to the combined effects of the
individual weed species’ geometry, the accuracy of georeferenced
images, and the accuracy of the ground control points (GCP)
(Elkhrachy 2021; Sánchez et al. 2020; Figure 6).

The degree of positional accuracy varied among the weed species
and, to some extent, between the two flights (i.e., study years). For
hemp sesbania, the average error in estimating the center point
was 8 cm in 2021, the smallest among the weed species. This was
due to its large size, which made its entire geometry visible in the
CHM, making it easier to locate the center point of the weed
patch compared to the other weed species targeted. In 2022, the
error for hemp sesbania increased slightly to 11 cm, with this
species again showing the lowest detection error among the
weeds studied. The average error for Amazon sprangletop
ranged 15 to 16 cm for the two flights; this error was larger than
the error for hemp sesbania, possibly due to the more open
growth habit of this species, leading to inaccuracies in locating
the exact center point of the patch (Ronay et al. 2022).

Yellow nutsedge had average error of 19 cm in 2021, which was
greater than those of hemp sesbania and Amazon sprangletop; in
2022, yellow nutsedge was not found in the experimental field. This
high error was likely due to its canopy geometry, which caused it to
blend into the rice canopy, making it difficult to locate the exact
center point of the weed patch. Barnyardgrass had the highest
average error among the weed species studied here in both years. In
2021, the error was 23 cm, likely due to its diverse geometry and
high mimicry with the rice crop. In 2022, the error increased to 25
cm, despite an increase in height and diameter of the weed canopy
compared to the previous year.

The findings suggest that the identification of the center point
of weed patches is directly influenced by the weed’s detectable
geometry in the imagery. When a weed patch is distinct in the
image, themodel accurately locates its center point. However, if the
patch is less visible, the estimated center point may be offset from
the true center. Additionally, orthomosaic image stitching errors,
influenced by UAS GPS inaccuracies and environmental factors,
are measured using root mean square error (RMSE). This error
directly affects the position of targeted weeds for precision
spraying, particularly on small patches. The RMSE of the
orthomosaic image was 9 cm in 2021 and 12 cm in 2022. This

RMSE in the mosaicked image directly contributes to errors in
the image-based waypoints. These results align with those of
Benassi et al. (2017), who reported an RMSE of approximately 2
to 3 cm using an eBEE RTK; though these error values are low,
they may still lead to inaccurate spray applications on small
weed patches.

Manual Weed Localization Accuracy
The accuracy of manually located waypoints and GCP depends on
the RTK-GNSS unit accuracy and how accurately the center of
each weed patch and GCPs were marked. The handheld Reach
RS2þ RTK-GNSS unit had average longitude and latitude error of
1.9 cm and 1.5 cm, respectively. However, this error may vary with
various environmental factors, such as ionospheric activity,
tropospheric activity, and signal obstructions (Baybura et al. 2019).

Weed Control Efficacy

Weed Injury
The backpack method consistently demonstrated the highest weed
control efficacy across all treatments, regardless of weed species or

Table 2. Weed detection accuracy assessment and center point estimation of the image-based geocoordinate method across the two study years.a,b

2021 2022

Weed species
Detection
accuracy

False
positive

False
negative MPE

Detection
accuracy

False
positive

False
negative MPE

——————— % ———————— cm ———————— % ———————— cm
Hemp sesbania 91.15 3.80 5.04 8 a 93.37 2.17 3.46 11 a
Amazon sprangletop 87.43 5.17 7.40 15 b 85.12 6.15 8.73 16 b
Yellow nutsedge 74.28 10.49 15.23 19 b — — — —

Barnyardgrass 62.89 11.87 25.22 23 c 58.73 13.12 28.15 25 c

aMeans followed by different letters within a column are significantly different according to Tukey’s HSD (α= 0.05).
bAbbreviation: MPE, mean positional error.

Figure 6. An orthomosaicked image of the experimental area showing the locations
of weed escapes, determined either using a handheld RTK-GPS device (yellow circles)
or based on an image analysis–based predictive model (red circles).
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year, followed by RPAAS with manually collected geocoordinates.
In contrast, RPAAS with image-based geocoordinates showed the
lowest efficacy. The overall effectiveness of all three treatments was
slightly lower in 2022 than in 2021, possibly due to factors like
weed patch geometry, RPAAS navigational accuracy, wind speed,
and model-based detection accuracy (P < 0.0001) (Figure 7).

Hemp sesbania control showed a significant difference between
the three treatments in the 2021 experiment (P< 0.0001). The
backpack spray application had the highest weed control efficacy
(95%), followed by the RPAAS with manually collected geo-
coordinates (87%) and the RPAAS with image-based geocoordi-
nates (72%) (Figure 8). The reduced efficacy of the image-based
method was likely due to the weed patch detection and localization
errors. Additionally, the tall stature of hemp sesbania made it
particularly vulnerable to RPAAS downwash (Figure 9 A), which
caused the plants to lodge away from the center of the target
location, making it difficult to treat the entire patch, in turn
resulting in reduced coverage areas (Zhang et al. 2023). Canopy

displacement was not an issue with backpack applications. It was
further observed that RPAAS sometimes deviated from the target
during spraying, likely due to navigational errors (Hodgson and
Bresnahan, 2004) (Figure 9 B). Navigational error could not be
measured during RPAAS flight and was instead based on visible
observations by the RPAAS flight crew members. In 2022, the
overall control efficacy of hemp sesbania was lower than in 2021
(Figure 8). The backpack method again achieved the highest
control efficacy (82%), followed by RPAAS manual (74%) and
RPAAS image-based (63%) methods (P< 0.001). The reduced
efficacy in 2022 was likely due to one or more of the following
factors: variation in the size of hemp sesbania patches, higher
RPAAS navigation errors, and difficulties in accurately locating the
weed patch centers (Table 2), ultimately resulting in poor herbicide
coverage.

For Amazon sprangletop, the control efficacy in 2021 showed a
trend consistent with that of hemp sesbania. The backpack method
achieved the highest efficacy, ranging from 92% to 97%, followed

Figure 7. Comparison of overall weed control efficacy (%) between a backpack sprayer and an RPAAS (with manual GPS coordinate or image-based method) for the entire weed
spectrum present in the experimental field for the two study years. The bars topped with different letters indicate significant differences based on Tukey’s HSD (α= 0.05). The
whiskers on the bars represent standard errors of the mean.

Figure 8. Comparison of weed control efficacy (%) between a backpack sprayer and a drone sprayer (with manual GPS coordinate method or image-based GPS coordinate
method). The bars topped with different letters indicate significant differences based on Tukey’s HSD (α= 0.05). The whiskers on the bars represent standard errors of the mean.
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by the RPAAS manual method (87% to 96%); the RPAAS image-
based method had the lowest efficacy, ranging from 72% to 87%.
Owing to its open growth habit and shorter stature than hemp
sesbania, Amazon sprangletop was less impacted by RPAAS
downwash, resulting in better herbicide coverage and higher
control efficacy. In 2022, a similar trend was observed regarding
Amazon sprangletop control. The backpack method achieved the
highest control efficacy (94%), followed by RPAAS manual (89%)
and RPAAS image (87%). No significant difference was observed
between the treatments in 2022 (P= 0.12). For yellow nutsedge,
the backpack (95%) and RPAAS manual (93%) methods showed
comparable weed control efficacies in 2021, both outperforming
the RPAAS image-based method (87%) (P= 0.0086). However, in
2022, yellow nutsedge was not found in the experimental plots.
Nevertheless, the data from year 1 still offer valuable insights
into yellow nutsedge control using RPAAS-based herbicide
applications.

In the case of barnyardgrass, weed control efficacy in 2021
varied as follows: backpack (96%)=RPAASmanualmethod (92%)
> RPAAS image-based method (82%) (Figure 8). The lower
efficacy of the image-based geocoordinate method was due to
errors in center point estimation (Table 2), which led to poor
coverage of individual patches. In 2022, the RPAAS image-based
method exhibited significantly lower efficacy than the RPAAS
manual method. The backpack (86%) and RPAAS manual (83%)
methods showed comparable weed control efficacies, both
surpassing the RPAAS image-based method (68%) (P= 0.0046).

Effect of Weather on RPAAS Weed Control Efficacy
The spot spraying method is vulnerable to wind speed and
direction; a sudden gust of wind can divert the spray away from the
targeted weed patch. Weather data were continuously recorded in
real time during herbicide application in both years. The mean air
temperature ranged from 28 C to 30 C in 2021, whereas in 2022, it
was higher, ranging from 35 C to 38 C. Humidity varied between
55% and 57% in 2021, whereas in 2022, it ranged from 55% to 62%.
These parameters were optimal for herbicide application and
should not have affected weed control efficacy (Brainard et al.
2013; Varanasi et al. 2016). Wind speeds and directions were
highly variable in both years (Figure 10). The wind speeds ranged
from 2 to 16.2 km h−1 in 2021, which was generally higher than the
wind speeds recorded in 2022 (1.5 to 8.8 km h−1).

To minimize the wind effect, the RTK base station was adjusted
along the wind direction from its initial position using the trial-
and-errormethod. The RTK base station was shifted 30 cm from its
original position to compensate for wind speed and direction. A
similar approach was used by Guo et al. (2022) in pear (Pyrus

ussuriensis Maxim.) orchards using spot spray; they recommended
that the drone sprayer move in the upward wind direction if the wind
speed is higher than 2m s−1, to achieve higher droplet deposition and
better distribution uniformity. In 2022, the base station was kept in
its original position because the wind speed remained fairly within
the recommended range for spraying. However, occasional gusts
caused the spray to move off-target, reducing weed patch coverage
(Figure 9 B) and leading to poor weed control efficacy, as observed
previously by Martin et al. (2019).

It is important to note that shifting the RTK base station may
not achieve 100% coverage, and changing the base station in real
time during herbicide application to compensate for gusty winds
may be challenging. Although the spot spraying method shows
promise, its efficacy is significantly influenced by environmental
factors like wind speed and direction, requiring careful consid-
eration and adjustment of the RTK base station during application.

Reduction in Weed Biomass

All herbicide treatments, regardless of application method,
reduced the biomass of hemp sesbania (Figure 11 A), Amazon
sprangletop (Figure 11 B), and barnyardgrass (Figure 11 C)
compared to the untreated plants. The backpack application method
consistently resulted in the highest biomass reduction across all weed
species, with reductions of 57% for hemp sesbania, 54% for Amazon
sprangletop, and 53% for barnyardgrass compared to untreated
plants. The RPAAS method with manual geocoordinates followed,
achieving biomass reductions of 52% for hemp sesbania, 47% for
Amazon sprangletop, and 50% for barnyardgrass. The RPAAS
method using image-based geocoordinates showed the lowest
efficacy, with reductions of 47% for hemp sesbania, 45% for
Amazon sprangletop, and 48% for barnyardgrass. Overall, the
backpackmethod provided themost effective weed control, likely due
to better herbicide coverage, with the RPAAS methods (manual and
image-based geocoordinates) showing lower levels of biomass
reduction. Our findings support Hiremath et al. (2024), who reported
higherweed biomass reduction under the knapsackmethod thanwith
a drone sprayer in soybean.

Herbicide Volume Saving with RPAAS

The amount of herbicide used in site-specific applications varied
between the two years and was influenced by weed density and
spatial distribution. In 2021, there was a 45% reduction in
herbicide volume for the RPAAS-based site-specific applications
(both the manual geocoordinate method and the image-based
geocoordinate method) compared to the backpack application.
However, in 2022, weed density was higher compared to the

Figure 9. Examples of spray coverage errors observed in this study: poor coverage on hemp sesbania due to lodging (downwash effect of rotors) (A) and position error associated
with image-based coordinates (B).
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previous year, resulting in only a 41% reduction in herbicide
volume compared to the backpack method (Genna et al. 2021).
These results align with Hunter et al. (2020), in which a drone
sprayer treated 20% to 60% less area than did ground-based
broadcast application, with a 50% reduction in chemical volume
(Hunter et al. 2020). However, the extent of herbicide volume
reduction can also be influenced by factors like increased weed
spatial patchiness and growth stage.

Droplet Spectrum and Deposition

A comparative analysis of droplet size and spray uniformity
between the backpack and RPAAS systems revealed that the
RPAAS sprays produced larger droplets with lower spray
uniformity (P< 0.0001). The average VMD was greater for the
RPAAS than for the backpack, measuring 1,800 μm and 1,077 μm,
respectively. These differences were due to the differences in nozzle
configurations associated with the two application methods
(Table 3). This result was supported by Wolf and Daggupati
(2009), who stated that VMD is directly influenced by nozzle
selection and operating pressure. Spray droplet uniformity,

evaluated by the CV value, is another important factor that could
be used to assess sprayer efficacy. A lower CV value indicates better
droplet distribution, and vice versa, as demonstrated by Ferguson
et al. (2015). The results of our experiment show that the backpack
treatments had a lower CV value (23.5%) than the RPAAS
treatment (37%), indicating better spray uniformity across the
experimental plots (P < 0.0001) (Figure 12 A). However, there was
no significant difference in percentage spray coverage between
RPAAS (17%) and backpack (22%) applications (P= 0.07)
(Figure 12 B). The RPAAS droplets were larger than those from
the backpack on the card, possibly due to downwash-caused
droplet simmering (Figure 13), as well as the inherent differences
in nozzle type (Table 3). These findings align with Martin et al.
(2019), who reported that rotor downwash, along with the design
and power ratings of RPAAS, could influence droplet distribution
and uniformity.

Rice Yield

Rice yield data revealed that RPAAS-based spot spraying is a better
solution than traditional broadcast methods for late-season

Figure 10. Wind velocity (km h−1) and direction during herbicide applications in 2021 (A) and 2022 (B).

Figure 11. Impact of spray treatments on the dry biomass weight of hemp sesbania (A), Amazon sprangletop (B), and barnyardgrass (C) at 28 d after application. Biomass for
yellow nutsedge could not be obtained due to rapid disintegration of the plants by the harvest date. The data were pooled across the two study years (Year × Treatment
interaction was absent). The bars toppedwith different letters indicate significant differences based on Tukey’s HSD (α = 0.05). The whiskers on the bars represent standard errors
of the mean.
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management of weed escapes. The broadcast application has
caused unacceptable yield loss at the entire field level due to its
adverse effects on rice during the reproductive development stages.
For the RPAAS applications, on the other hand, the injury to rice
was very localized only around the weed patches, leading to less
crop damage at the field level. Figure 14 shows the rice yields
measured in 2021 and 2022. Overall, the grain yield in 2022 was
lower than in 2021 due to drought stress during panicle
development. Rice yields were negatively influenced by the
backpack (i.e., broadcast) herbicide application method
(P< 0.0001), whereas the yields with the RPAAS-based site-
specific applications were comparable to those of non-herbicide-

treated plots. The majority of herbicides are not recommended for
broadcast application up to 45 d before crop harvest due to the high
risk of crop injury and the likelihood of unacceptable levels of
chemical residues in the grain (FarmProgress 2023). However,
RPAAS-based spot spraying can effectively manage late-season
weed escapes and weed seed production without any significant
adverse effects on rice yield because only a small area of the field is
treated. Additionally, a spot spray application can reduce the
amount of manpower and time needed to complete the task.
Moreover, the RPAAS method is particularly convenient for areas
that are difficult to reach from the ground (Sylvester 2018), such as
flooded rice paddies.

Table 3. Droplet spectrum of remotely piloted aerial application system and backpack application methods.a,b

Application method Nozzle type
Spray

coverage Droplet density
Droplet

uniformityc
Volume median

diameter

% droplets cm−2 % μm
RPAAS TJ QGA-3007 17 5 a 37.0 a 1,800 a
Backpack TT11002 22 17 b 23.5 b 1,077 b

aMeans followed by different letters within a column are significantly different according to Tukey’s HSD (α= 0.05).
bAbbreviation: RPAAS, remotely piloted aerial application system.
cCoefficient of variation.

Figure 12 . Droplet density (droplets cm−2) (A) and spray coverage (%) (B) compared between the RPAAS and backpack application in a rice field. The data were pooled across the
two study years (Year× Treatment interaction was absent). The bars topped with different letters indicate significant differences based on Tukey’s HSD (α = 0.05). The whiskers on
the bars represent standard errors of the mean.

Figure 13. Raw (left) and processed (right) images of Kromekote cards, showing the spray coverage achieved by a backpack sprayer (A) and an RPAAS (B).
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Practical Implications

Overall, this study identified the potential for digital image
processing and RPAAS for the site-specific control of late-season
weeds that have emerged through a rice crop canopy. The
combined approach of CHM and spectral signatures showed
promise for the detection of late-season weed escapes using drone
imagery. However, the weed recognition model exhibited
suboptimal performance when the weed patches were at the same
height as or smaller than the rice canopy or when there was no
spectral signature difference between rice and the weed species.
Although the traditional blanket ground application method,
represented by the backpack technique in this study, remains the
most effective for weed control, the RPAAS spray approach offers
significant potential for herbicide savings and crop yield protection
by precisely targeting weed-infested areas. Thus the RPAAS and
image processing technology show great potential for limiting
weed seed replenishment through the precise targeting of mid- to
late-season weed escapes in rice crops, contributing to more
sustainable weed management practices. Additionally, this
technology enhances the efficiency of herbicides while minimizing
crop injury, which is an important consideration for late-season
applications for which the potential for herbicide residue in grains
is a serious concern. Moreover, the agility of RPAAS enables it to
navigate challenging or flooded fields that may be difficult for
ground-based methods to access. Furthermore, the RPAAS
method can assist rice growers in controlling weeds efficiently
and in a timely manner through site-specific application. Future
research should focus on integrating CHM, spectral signatures,
and texture information of both crop and weeds to improve species
differentiation. Exploring machine learning–based approaches for
weed detection and localization may hold promise for addressing
the challenges identified in this study. Future research should also
focus on identifying optimal spraying parameters that improve
deposition uniformity for the control of late-season weed escapes
in rice. These parameters include nozzle type, application height,
wind effects, and the required chemical quantities for effective
weed control.
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