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Abstract

In this paper we give a nonexistence theorem for real hypersurfaces in complex two-plane Grassmannians
G2(Cm+2) with anti-commuting shape operator.
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0. Introduction

In the geometry of real hypersurfaces in complex space forms Mm(c) or in
quaternionic space forms there have been many characterizations of model
hypersurfaces of type A1, A2, B, C, D and E in complex projective space Pm(C),
of type A0, A1, A2 and B in complex hyperbolic space Hm(C), or of type A1, A2 and
B in quaternionic projective space HPm , which are completely classified by Cecil and
Ryan [5], Kimura [6], Berndt [1], and Martinez and Pérez [7], respectively. Among
them there have been only a few characterizations of homogeneous hypersurfaces
of type B in complex projective space Pm(C). For example, the condition that
Aφ + φA = kφ, for nonzero constant k, is a model characterization of this kind of
type B, which is a tube over a real projective space RPn in Pm(C), m = 2n (see Yano
and Kon [9]).

Let M be a (4m − 1)-dimensional Riemannian manifold with an almost contact
structure (φ, ξ, η) and an associated Riemannian metric g. Write

ω(X, Y )= g(φX, Y ), (0.1)

where ω defines a 2-form on M and rank ω = rank φ = 4m − 2.
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If there is a nonzero-valued function ρ such that

ρg(φX, Y )= ρω(X, Y )= dη(X, Y ), (0.2)

the rank of the matrix (ω) being 4m − 2,

η ∧

2m−1 times︷ ︸︸ ︷
ω ∧ · · · ∧ ω = η ∧ ρ−(2m−1)

2m−1 times︷ ︸︸ ︷
dη ∧ · · · ∧ dη 6= 0.

Let us denote by G2(Cm+2) the set of all complex two-dimensional linear
subspaces of Cm+2. We call such a set G2(Cm+2) complex two-plane Grassmannians.
This Riemannian symmetric space G2(Cm+2) has a remarkable geometry that is
equipped with both a Kähler structure J and a quaternionic Kähler structure J=
Span{J1, J2, J3} not containing J . In other words, G2(Cm+2) is the unique compact,
irreducible, Kähler, quaternionic Kähler manifold which is not a hyperkähler manifold
(see Berndt and Suh [3, 4]).

Now we consider a (4m − 1)-dimensional real hypersurface M in complex two-
plane Grassmannians G2(Cm+2). Then from the Kähler structure of G2(Cm+2) there
exists an almost contact structure φ on M . If the nonzero function ρ satisfies (0.2),
we call M a contact hypersurface of the Kähler manifold. Moreover, it can easily be
proved that a real hypersurface M in G2(Cm+2) is contact if and only if there exists a
nonzero constant function ρ defined on M such that

φA + Aφ = kφ, k = 2ρ. (0.3)

This means that

g((φA + Aφ)X, Y )= 2dη(X, Y ),

where the exterior derivative dη of the 1-form η is defined by

dη(X, Y )= (∇Xη)Y − (∇Yη)X

for any vector fields X, Y on M in G2(Cm+2).
On the other hand, in G2(Cm+2) we are able to consider two kinds of natural

geometric condition for real hypersurfaces M that

[ξ ] = Span{ξ} or D⊥ = Span{ξ1, ξ2, ξ3}, ξi =−Ji N , i = 1, 2, 3,

where N denotes a unit normal to M , is invariant under the shape operator A of M in
G2(Cm+2). The first result in this direction is the classification of real hypersurfaces
in G2(Cm+2) satisfying both conditions. Namely, Berndt and Suh [3] have proved the
following.
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THEOREM A. Let M be a connected real hypersurface in G2(Cm+2), m ≥ 3. Then
both [ξ ] and D⊥ are invariant under the shape operator of M if and only if:

(A) M is an open part of a tube around a totally geodesic G2(Cm+1) in G2(Cm+2);
or

(B) m is even, say m = 2n, and M is an open part of a tube around a totally geodesic
HPn in G2(Cm+2).

In Theorem A the vector ξ contained in the one-dimensional distribution [ξ ] is said
to be a Hopf vector when it becomes a principal vector for the shape operator A of
M in G2(Cm+2). Moreover, in such a situation M is said to be a Hopf hypersurface.
Besides this, a real hypersurface M in G2(Cm+2) also admits the three-dimensional
distribution D⊥, which is spanned by almost contact three-structure vector fields
{ξ1, ξ2, ξ3}, such that Tx M =D⊕D⊥. Also Berndt and Suh [4] have given a
characterization of real hypersurfaces of type A when the shape operator A of M in
G2(Cm+2) commutes with the structure tensor φ, which is equivalent to the condition
that the Reeb flow on M is isometric, as follows.

THEOREM B. Let M be a connected orientable real hypersurface in G2(Cm+2),
m ≥ 3. Then the Reeb flow on M is isometric if and only if M is an open part of a
tube around a totally geodesic G2(Cm+1) in G2(Cm+2).

On the other hand, as a characterization of real hypersurfaces of type B in complex
two-plane Grassmannians G2(Cm+2) in Theorem A, Suh [8], asserted the following
fact in terms of the contact hypersurface.

THEOREM C. Let M be a real hypersurface in G2(Cm+2) with constant mean
curvature satisfying

Aφ + φA = kφ,

where the function k is nonzero and constant. Then M is congruent to an open part of
a tube around a totally geodesic HPn in G2(Cm+2), where m = 2n.

Now in this paper let us consider a real hypersurface M in the complex two-plane
Grassmannian G2(Cm+2) satisfying Aφ + φA = 0. When the function k mentioned
in Theorem C identically vanishes, the shape operator is said to be anti-commuting,
that is, the shape operator A of M in G2(Cm+2) satisfies

Aφ + φA = 0. (*)

In such a case we call a real hypersurface M in G2(Cm+2) satisfying (*) an anti-
commuting hypersurface. We give a nonexistence property of hypersurfaces in
G2(Cm+2) with anti-commuting shape operator as follows.

THEOREM. There exist no anti-commuting real hypersurfaces in G2(Cm+2) with
constant mean curvature.
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1. Riemannian geometry of G2(Cm+2)

In this section we summarize basic material about G2(Cm+2); for details we refer
to [2–4]. By G2(Cm+2) we denote the set of all complex two-dimensional linear
subspaces in Cm+2. The special unitary group G = SU (m + 2) acts transitively on
G2(Cm+2)with stabilizer isomorphic to K = S(U (2)×U (m))⊂ G. Then G2(Cm+2)

can be identified with the homogeneous space G/K , which we equip with the unique
analytic structure for which the natural action of G on G2(Cm+2) becomes analytic.
Denote by g and k the Lie algebra of G and K , respectively, and by m the orthogonal
complement of k in g with respect to the Cartan–Killing form B of g. Then g= k⊕m
is an Ad(K )-invariant reductive decomposition of g. We put o= eK and identify
ToG2(Cm+2) with m in the usual manner. Since B is negative definite on g, its
negative restricted to m×m yields a positive definite inner product on m. By Ad(K )-
invariance of B this inner product can be extended to a G-invariant Riemannian metric
g on G2(Cm+2). In this way G2(Cm+2) becomes a Riemannian homogeneous space,
even a Riemannian symmetric space. For computational reasons we normalize g
such that the maximal sectional curvature of (G2(Cm+2), g) is 8. Since G2(C3)

is isometric to the three-dimensional complex projective space CP3 with constant
holomorphic sectional curvature 8, we shall assume that m ≥ 2 from now on. Note
that the isomorphism Spin(6)' SU (4) yields an isometry between G2(C4) and
the real Grassmann manifold G+2 (R6) of oriented two-dimensional linear subspaces
of R6.

The Lie algebra k has the direct sum decomposition k= su(m)⊕ su(2)⊕R, where
R is the center of k. Viewing k as the holonomy algebra of G2(Cm+2), the center R
induces a Kähler structure J and the su(2)-part a quaternionic Kähler structure J on
G2(Cm+2). If J1 is any almost Hermitian structure in J, then J J1 = J1 J , and J J1 is
a symmetric endomorphism with (J J1)

2
= I and tr(J J1)= 0. This fact will be used

frequently throughout this paper.
A canonical local basis J1, J2, J3 of J consists of three local almost Hermitian

structures Jν in J such that Jν Jν+1 = Jν+2 =−Jν+1 Jν , where the index is taken
modulo 3. Since J is parallel with respect to the Riemannian connection ∇̄ of
(G2(Cm+2), g), there exist for any canonical local basis J1, J2, J3 of J three local
1-forms q1, q2, q3 such that

∇̄X Jν = qν+2(X)Jν+1 − qν+1(X)Jν+2 (1.1)

for all vector fields X on G2(Cm+2).
Let p ∈ G2(Cm+2) and W be a subspace of TpG2(Cm+2). We say that W is a

quaternionic subspace of TpG2(Cm+2) if J W ⊂W for all J ∈ Jp. And we say that
W is a totally complex subspace of TpG2(Cm+2) if there exists a one-dimensional
subspace V of Jp such that J W ⊂W for all J ∈V and J W ⊥W for all J ∈V⊥ ⊂
Jp. Here, the orthogonal complement of V in Jp is taken with respect to the bundle
metric and orientation on J for which any local oriented orthonormal frame field of
J is a canonical local basis of J. A quaternionic (or totally complex) submanifold of
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G2(Cm+2) is a submanifold all of whose tangent spaces are quaternionic (or totally
complex) subspaces of the corresponding tangent spaces of G2(Cm+2).

The Riemannian curvature tensor R̄ of G2(Cm+2) is locally given by

R̄(X, Y )Z = g(Y, Z)X − g(X, Z)Y + g(JY, Z)J X

− g(J X, Z)JY − 2g(J X, Y )J Z

+

3∑
ν=1

{g(JνY, Z)JνX

− g(JνX, Z)JνY − 2g(JνX, Y )Jν Z}

+

3∑
ν=1

{g(Jν JY, Z)Jν J X − g(Jν J X, Z)Jν JY }, (1.2)

where J1, J2, J3 is any canonical local basis of J.

2. Some fundamental formulas

In this section let us give some basic formulas for real hypersurfaces in G2(Cm+2)

which will be used later.
The Kähler structure J of G2(Cm+2) induces on M an almost contact metric

structure (φ, ξ, η, g). Furthemore, let J1, J2, J3 be a canonical local basis of J. Then
expression (1.2) for the curvature tensor R̄, the Gauss and the Codazzi equations are
respectively given by

R(X, Y )Z = g(Y, Z)X − g(X, Z)Y

+ g(φY, Z)φX − g(φX, Z)φY − 2g(φX, Y )φZ

+

3∑
ν=1

{g(φνY, Z)φνX − g(φνX, Z)φνY − 2g(φνX, Y )φν Z}

+

3∑
ν=1

{g(φνφY, Z)φνφX − g(φνφX, Z)φνφY }

−

3∑
ν=1

{η(Y )ην(Z)φνφX − η(X)ην(Z)φνφY }

−

3∑
ν=1

{η(X)g(φνφY, Z)− η(Y )g(φνφX, Z)}ξν

+ g(AY, Z)AX − g(AX, Z)AY

and

(∇X A)Y − (∇Y A)X = η(X)φY − η(Y )φX − 2g(φX, Y )ξ

+

3∑
ν=1

{ην(X)φνY − ην(Y )φνX − 2g(φνX, Y )ξν}

https://doi.org/10.1017/S0004972708000609 Published online by Cambridge University Press

https://doi.org/10.1017/S0004972708000609


204 I. Jeong, H. J. Lee and Y. J. Suh [6]

+

3∑
ν=1

{ην(φX)φνφY − ην(φY )φνφX}

+

3∑
ν=1

{η(X)ην(φY )− η(Y )ην(φX)}ξν,

where R denotes the curvature tensor of a real hypersurface M in G2(Cm+2).
The following identities can be proved straightforwardly and will be used frequently

in subsequent calculations:

φν+1ξν =−ξν+2, φνξν+1 = ξν+2,

φξν = φνξ, ην(φX)= η(φνX),

φνφν+1 X = φν+2 X + ην+1(X)ξν,

φν+1φνX =−φν+2 X + ην(X)ξν+1.

(2.1)

Now let us put

J X = φX + η(X)N , JνX = φνX + ην(X)N

for any tangent vector X of a real hypersurface M in G2(Cm+2), where N denotes a
unit normal vector of M in G2(Cm+2). Then from this and formulas (1.1) and (2.1),

(∇Xφ)Y = η(Y )AX − g(AX, Y )ξ, ∇Xξ = φAX, (2.2)

∇Xξν = qν+2(X)ξν+1 − qν+1(X)ξν+2 + φν AX, (2.3)

(∇Xφν)Y =−qν+1(X)φν+2Y + qν+2(X)φν+1Y + ην(Y )AX − g(AX, Y )ξν . (2.4)

Summing up these formulas, we obtain

∇X (φνξ) = ∇X (φξν)

= (∇Xφ)ξν + φ(∇Xξν)

= qν+2(X)φν+1ξ − qν+1(X)φν+2ξ + φνφAX

− g(AX, ξ)ξν + η(ξν)AX. (2.5)

Moreover, from J Jν = Jν J , ν = 1, 2, 3, it follows that

φφνX = φνφX + ην(X)ξ − η(X)ξν . (2.6)

3. Some key propositions

Now let us take an inner product to Codazzi’s equation with ξ and use (2.1) and
(2.2). Then

g((∇X A)Y, ξ)− g((∇Y A)X, ξ)=−2g(φX, Y )

+ 2
3∑
ν=1

{ην(X)ην(φY )− ην(Y )ην(φX)− g(φνX, Y )ην(ξ)}.
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On the other hand, from formula (*) in the introduction, Aξ = αξ where α = η(Aξ).
From this, by taking the covariant derivative and using (2.2),

(∇X A)ξ = (Xα)ξ + αφAX − AφAX.

It follows that

g((∇X A)ξ, Y )− g((∇Y A)ξ, X)= (Xα)η(Y )− (Yα)η(X)− 2g(AφAX, Y ).

Combining the above two equations,

−2g(φX, Y )+ 2
3∑
ν=1

{ην(X)ην(φY )− ην(Y )ην(φX)− g(φνX, Y )ην(ξ)}

= (Xα)η(Y )− (Yα)η(X)− 2g(AφAX, Y ). (3.1)

Putting X = ξ in (3.1),

Yα = (ξα)η(Y )− 4
3∑
ν=1

ην(ξ)ην(φY ), (3.2)

grad α = (ξα)ξ + 4
3∑
ν=1

ην(ξ)φξν . (3.3)

Now substituting (3.2) into (3.1) gives

g(AφAX, Y )− g(φX, Y )= 2
3∑
ν=1

{η(X)ην(φY )− η(Y )ην(φX)}ην(ξ)

−

3∑
ν=1

{ην(X)ην(φY )− ην(Y )ην(φX)− g(φνX, Y )ην(ξ)} (3.4)

for any tangent vector fields X and Y on M .

LEMMA 3.1. Let M be a real hypersurface in G2(Cm+2) with anti-commuting shape
operator. Then Tr A = α.

PROOF. From (*) and (2.2) it follows that

AX − φAφX − αη(X)ξ = 0,

where we have put α = η(Aξ). If we take an orthonormal basis for M in such a way
that

{ei | i = 1, 2, . . . , 4m − 1},

then
4m−1∑
i=1

{g(Aei , ei )− g(φAφei , ei )− αη(ei )g(ξ, ei )} = 0,

that is, Tr A − Tr φAφ − α = 0.
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On the other hand, we see that Tr φAφ = Tr Aφ2
=−Tr A + α. Therefore,

Tr A = α. 2

LEMMA 3.2. Let M be an anti-commuting real hypersurface in G2(Cm+2) with
constant mean curvature. Then ξ belongs to either the distribution D or the
distribution D⊥.

PROOF. By Lemma 3.1 and the assumption we know that α is constant. And from
(3.2) we get

3∑
ν=1

ην(ξ)ην(φY )= 0.

Now let us put ξ = η(X0)X0 + η(ξ1)ξ1 for some unit X0 ∈D and ξ1 ∈D⊥. Then

η1(ξ)η1(φY )= 0.

First, if η1(ξ)= 0, then obviously ξ ∈D.
Next let us consider the case where η1(φY )= 0. By putting φ1ξ in Y we know

η(X0)= 0, which gives ξ ∈D⊥. This proves our assertion. 2

Now let us denote by h the orthogonal complement of the Reeb vector field ξ in the
tangent space of M in G2(Cm+2).

LEMMA 3.3. If Aφ + φA = 0, X ∈ h with AX = λX, then

λAφX − φX +
3∑
ν=1

{2ην(ξ)ην(φX)ξ − ην(X)φνξ − ην(φX)ξν − ην(ξ)φνX} = 0.

(3.5)

PROOF. From (3.4) it follows that

AφAX − φX + 2
3∑
ν=1

{η(X)φξν + ην(φX)ξ}ην(ξ)

−

3∑
ν=1

{ην(X)φξν + ην(φX)ξν + ην(ξ)φνX} = 0.

And using the assumption, for X ∈ h such that AX = λX , leads to the
above formula. 2

PROPOSITION 3.4. There exist no anti-commuting real hypersurfaces in G2(Cm+2)

with constant mean curvature for ξ ∈D⊥.

PROOF. By (3.5) and (*), for any X ∈ h,

(λ2
+ 1)X −

3∑
ν=1

{ην(X)φφνξ + ην(φX)φξν + ην(ξ)φφνX} = 0.
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Since ξ ∈D⊥, we can put ξ = ξ1. Then

(λ2
+ 1)X + 2η2(X)ξ2 + 2η3(X)ξ3 − φφ1 X = 0.

Since X ∈ h, we suppose that X =DX + η2(X)ξ2 + η3(X)ξ3. This implies that

(λ2
+ 1)DX + (λ2

+ 2)η2(X)ξ2 + (λ
2
+ 2)η3(X)ξ3 − φφ1DX = 0. (3.6)

Putting X = ξ2 and X = ξ3 in (3.6), we obtain (λ2
+ 2)ξ2 = 0 and (λ2

+ 2)ξ3 =

0, respectively. From these facts, we see that λ2
+ 2= 0. Therefore we get a

contradiction, which gives the proof of our proposition. 2

4. Anti-commuting hypersurfaces in G2(Cm+2) for ξ ∈ D⊥

In this section we wish to show that there exist no hypersurfaces M in G2(Cm+2)

with anti-commuting shape operator for ξ ∈D. In order to do this we assert the
following result.

LEMMA 4.1. Let M be an anti-commuting real hypersurface in G2(Cm+2) with
constant mean curvature for ξ ∈D. Then g(AD,D⊥)= 0.

PROOF. From the assumption we know that the function α is constant. Then for ξ ∈D
and from (3.1), for any tangent vector field X on M ,

φX − AφAX +
3∑
ν=1

{ην(X)φνξ + ην(φX)ξν} = 0. (4.1)

To prove this lemma it suffices to show that g(AD, ξν)= 0, ν = 1, 2, 3. In order to do
this, we put

D= [ξ ] ⊕ [φ1ξ, φ2ξ, φ3ξ ] ⊕D0,

where the distribution D0 is an orthogonal complement of [ξ ] ⊕ [φ1ξ, φ2ξ, φ3ξ ] in
the distribution D.

First, from the assumption ξ ∈D we know that g(Aξ, ξν)= 0, ν = 1, 2, 3, because
Aξ = αξ .

Next, we also get the conclusion g(Aφiξ, ξν)= 0, for i, ν = 1, 2, 3. In fact, using
(2.3) and ξ ∈D,

g(Aφiξ, ξν) = g(Aξν, φiξ)

= g(Aξν, φξi )

= −g(φAξν, ξi )

= −g(∇ξν ξ, ξi )

= g(ξ, ∇ξν ξi )

= g(ξ, qi+2(ξν)ξi+1 − qi+1(ξν)ξi+2 + φi Aξν)

= g(ξ, φi Aξν)

= −g(Aφiξ, ξν),

that is, g(Aφiξ, ξν)= 0, ν = 1, 2, 3.
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Finally, we consider the case X ∈D0, where the distribution D0 is denoted by

D0 = {X ∈D | X⊥ξ and φiξ, i = 1, 2, 3}.

In order to show this, let us replace X by ξµ in (4.1). Then it follows that

2φξµ = AφAξµ.

From this, together with the assumption (*),

A2φξµ =−2φξµ.

Then multiplying both sides by φ and also using the formula Aφ + φA = 0,

A2(−ξµ + η(ξµ)ξ)=−2(−ξµ + η(ξµ)ξ).

This implies that

A2ξµ =−2ξµ, µ= 1, 2, 3. (4.2)

On the other hand, if we consider the case where X ∈D0 in (3.4), then

φX = AφAX.

From Aφ + φA = 0, this becomes −A2φX = φX . Then from this, replacing X by
φX leads, for any X ∈D0, to

A2 X =−X. (4.3)

Using (4.2) and (4.3),

g(AX, ξµ) = g(A(−A2 X), ξµ)

= −g(A3 X, ξµ)=−g(AX, A2ξµ)

= −g(AX,−2ξµ)= 2g(AX, ξµ),

for any vector fields X in D0. Then for any X ∈D0, g(AX, ξµ)= 0, µ= 1, 2, 3. This
completes the proof. 2

For a tube of type B in Theorem A let us recall a proposition given in Berndt and
Suh [3] as follows.

PROPOSITION A. Let M be a connected real hypersurface of G2(Cm+2). Suppose
that AD⊂D, Aξ = αξ , and ξ is tangent to D. Then the quaternionic dimension m of
G2(Cm+2) is even, say m = 2n, and M has five distinct constant principal curvatures

α =−2 tan(2r), β = 2 cot(2r), γ = 0, λ= cot(r), µ=− tan(r),
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with some r ∈ (0, π/4). The corresponding multiplicities are

m(α)= 1, m(β)= 3= m(γ ), m(λ)= 4n − 4= m(µ),

and the corresponding eigenspaces are

Tα =Rξ, Tβ = JJξ, Tγ = Jξ, Tλ, Tµ,

where
Tλ ⊕ Tµ = (HCξ)⊥, JTλ = Tλ, JTµ = Tµ, J Tλ = Tµ.

Now by using Proposition A let us check whether a tube of type B in Theorem A,
that is, a tube over a totally geodesic HPn in G2(Cm+2), m = 2n cannot satisfy
the formula (*).

In fact, for any ξν ∈ Tβ , β = 2 cot 2r , the eigenspace Tγ = Jξ gives φξν ∈ Tγ . This
implies that Aφξν = 0 for any ν = 1, 2, 3. From this,

Aφξν + φAξν = 2 cot 2rφξν = 0.

For any X ∈ Tλ, λ= cot r , we know that J Tλ = Tµ gives

AφX + φAX =− tan rφX + cot rφX = 2 cot 2rφX = 0.

From this, we get cot 2r = 0, giving a contradiction. So real hypersurfaces of type B
cannot satisfy formula (*).

PROPOSITION 4.2. There exist no anti-commuting real hypersurfaces in G2(Cm+2)

with constant mean curvature for ξ ∈D.

Taking this Proposition 4.2 together with Proposition 3.4 gives a complete proof of
our main theorem in the introduction.
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