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In spectral theory on Banach spaces, certain more incisive results hold when the under-
lying space is weakly complete (that is, weakly sequentially complete). The standard proofs
rely on the following deep theorem: any bounded linear map from the algebra of all complex
continuous functions on a compact Hausdorff space to a weakly complete Banach space is
weakly compact. The proof of this result depends in turn on a considerable amount of
measure-theoretic machinery (see [4, Section VI.7]). We present here some alternative
methods which avoid these technicalities. The results are then used to give an example of a
set of projections, each having unit norm, which generate an unbounded Boolean algebra.

The results in question are as follows. Standard terminology (see, for example [4])
will be used.

THEOREM 1. A strongly closed bounded Boolean algebra of projections in a weakly complete
Banach space is complete.

Proof. It is true in general ([4, Lemma XVIII.3.4]) that a strongly closed Boolean
algebra 38 is complete if every increasing net of elements of S8 is strongly convergent.

Suppose now that 08 is a Boolean algebra of projections on the weakly complete space X
and that || P || ^ K, for all Pe38. Let {Pa} be an increasing net of elements of SS. If {Px}
is not strongly convergent then for some xeX, {Pax} is not norm convergent and so is not a
Cauchy net in (X, | | ' | ) . Hence, for some k > 0, we can find an increasing sequence {a;} such
that, (writing Pt for PXi),

| | (P i + 1 -P, )x | |>fc . (1)

We shall in due course obtain a contradiction to this statement.
First we show that {/*(*} is a weak Cauchy sequence. Since every element of the dual X*

of X is a linear combination of two real-valued elements of X*, it is sufficient to show that
)} is a Cauchy sequence for every real-valued element ij/ of X*. Let

l + r M ^ } and S~= {

Then for every integer n,

t = £ *[(P,+1-P,)x]- £
i J + i £ i S i

Hence £ i]/[(Pi+1 — P,)x]1S convergent and so {^(PfX)} is a convergent sequence. Since X
is weakly complete, it follows that {Ptx} converges weakly to some element v of X.
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For any 4>eX* and any integers / and j with / >j, since Pt > Pj we have

The limit, as i tends to infinity, of the right-hand term is zero and so it follows that

Pjx = Pjy, (2)
00

for any integer j . Let Nt be the range of /*,-. Then (J A'; is a linear subspace of X and so its
i = 1

norm closure is the same as its weak closure. Since y is in the weak closure it follows that for
any s > 0, there exists an integer / and a vector zeTV; such that || J>—z|| < £• Then, since
P i + 1 > Ph P-z = Pi+1z and so, using (2)

P,+ lx-P,x = Pt+iy-P,y = (Pi+1
Hence

\\(Pi+i-Pdx\\<Ke.
Since e is arbitrary this contradicts (1) and so completes the proof.

The above proof uses ideas from Barry [2]. A shorter proof could be given by referring
to the result of [2]. However, giving the proof in full serves to underline its elementary nature.

THEOREM 2. Let /i-» Ts be a continuous homomorphism from the algebra C(A) of all
continuous complex functions on the complex Hausdorff space A into the algebra of bounded
linear operators on a weakly complete Banach space X. Then there exists a unique spectral
measure E(-) on X defined on the Baire sets and countably additive in the strong operator
topology such that, for all feC(A),

7} = f /(A)£(dA).

Proof. Without the hypothesis that X is weakly complete, an argument based on the
Riesz representation theorem shows that there exists a unique spectral measure F(-) on the
dual of X such that for a l l / e C(A)

T* = f(X)F(dX)
JA

(see [4, Theorem XVII.2.4]). Thus it is only required to show that for every Baire set 6,
there exists an operator E(8) on X such that E(5)* = F(8).

We first assume that 8 is compact. Then there exists a decreasing sequence (/„) of
continuous functions converging pointwise to the characteristic function of 8 (see [5, p. 240,
Theorem A]). For any xeX, 4>eX* we have

<KTfnx) = (x) = f fn
JA

and so, by the monotone convergence theorem, the sequence {4>(Tfnx)} converges to
(F(5)4>)(x). Since X is weakly complete, this shows that {Tfn} converges in the weak operator
topology to some operator E(8). Clearly £(<5)* = F(8).
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For an arbitrary Baire set 5, note that the set {E(p) : (I compact, j? £ 5} forms an
increasing net of projections. The Boolean algebra generated by this set is bounded since for
any element E we have E* = F(y) for some Baire set y. Hence by Theorem 1 this net converges
to some projection which we call E(S). Then for all xeX, <f>eX*, since (F( •)</>)(*) is a
regular measure,

<KE(S)x) = limcKE(P)x) = lim(F(/D«(x) =

and so E(S)* = F(8). This completes the proof.
The above theorem is slightly weaker than the standard result (Theorem XVIII.2.5 of

[4]) in that the measure is defined on the Baire sets rather than the Borel sets. However, in
most applications A is metrisable and so the Baire and Borel sets coincide.

In the following example, the underlying Banach space is the trace class ^^ of operators
on the Hilbert space H. If A e <S'1 then z{A) denotes the trace of A. We refer to [4, Chapter XI]
for properties of ^v In particular recall that every element of the dual of ^^ is of the form
A \-* t(XA) where X is some bounded linear operator on H. Using this fact it is easy to prove
that #! is weakly complete; alternatively the weak completeness of <6X may be deduced
from Corollary III.3 of [1] since #! is the pre-dual of a W*-algebra.

EXAMPLE. Let S be a set of commuting self-adjoint projections on the Hilbert space H
which is totally ordered under the natural ordering of projections. Suppose that the com-
mutant 8' of S contains no non-zero compact operator. (For example, on JL2[0, 1], if E, is
the operator of multiplication by the characteristic function of [0, t], then S = {Et: 0 5£ t ^ 1}
is such a set.) Let 2) be the set of all finite subsets of 8 directed by inclusion. If A = {Eu E2,
. . . ,£„}e9, we define J»A : a(H)

where (for notational convenience) Eo = 0 and En+l = I. Since the trace class is an ideal
of S8(H), if Te^i then PA(T)e<tfv We shall prove that the set {PA: AeSi}, regarded as
operators on ^u form a set of projections of norm 1 but the Boolean algebra they generate
is not uniformly bounded.

It is clear that i>A is a projection. Also, for all xeH,

I UT)x ||2 = t || (Ei+1 -EdT(El+1 -Edx \\2

i = 0

|||| t | | I
i = o

= II T II2 II x II2

II l II II * II '
where |" || is the norm in 38{H). Hence | PA(T) \\ ^ || T ||. N o w if A e <$u for all
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since T is linear and satisfies t(XY) = %(YX),

= £
i = 0

i = 0

= T [ P A ( T ) / 1 ] .

Therefore, denoting the norm in ^ by || ' || i,

\\P&(A)\U= sup T [ T P A ( A ) ] = sup t [PA(T)A]g sup
imisi H m s i H n i s i

and so PA is a projection of norm 1 on ^ .
We now prove that the Boolean algebra generated by {PA:Ae@} is not uniformly

bounded. To do this we suppose the contrary and obtain a contradiction. Uniform bounded-
ness would imply by the proof of Theorem 1, that the net {PA : Ae®} converges strongly
to a projection P. Now for each AeW, P&(A) commutes with every element E belonging to A.
Therefore P(A) is in the commutant $' of S. Since also P(A) e t>1 and $' contains no non-
zero compact operator, it follows that P = 0.

However, if x is any unit vector and A = {Eu E2,..., En}e@, then

i = o

i = 0

This is true for all Ae@. Since T is continuous on ^ this shows that the net {PA(x® JC)}
does not converge to zero and so contradicts the fact that P = 0. Therefore the Boolean
algebra generated by {PA : Ae3>} is not uniformly bounded.

Another example of this phenomenon arises in a different context in [3]. However in
this case the set of projections which generate an unbounded Boolean algebra are only
uniformly bounded in norm but are not of norm 1.
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