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1. Introduction

The theory of representing continuous linear operators on function
spaces in terms of integrals has had a long and fruitful history, beginning
with the Riesz representation theorem in 1909. If T is such an operator,
then the standard representation is T(/) = / /d /x , where the integral is
denned in diverse ways, depending on the nature of the set of functions
and the nature of T.

However, the theory of representing continuous linear operators on
spaces of measures is relatively new. One main interest in such a theory is
to try to represent the bidual of C(X), the space of continuous functions
on the compact Hausdorff space X. It is known that the dual of C(X) is
rca [X, 38], the space of all regular countably additive Borel measures on X
with finite variation. Thus the bidual of C(X) is the dual of rca [X, 38] and
it is desirous to obtain a representation for continuous linear functionals on
rca [X, 38].

Mauldin (9) has given a representation for linear operators on
rca [[0,1], 38] where 38 is the collection of Borel subsets of [0,1]. Thus if T
is a real-valued continuous operator on rca[[0,1], 38], then T can be
written T(pt) = / ijj d/x, where t/» is a real-valued set function defined on 38
and the integral is of a special type, sometimes called a Kolmogorov-
Burkill integral. Mauldin states that his methods can be extended to
represent linear operators on ca [S, 2], the space of countably additive
real-valued set functions defined on a a -algebra of subsets of a set S,
provided the cardinality of S is aleph-one.

Let C**(X, E) be the bidual of the space of all f?-valued continuous
bounded functions on the normal topological space X, where £ is a Banach
space. Then in (4) it is shown how to represent part of C**(X, E),
identifying the simple function \A • y: X -* E with a particular element in
C**(X, E). Here y G E, XA is the characteristic function of A, and (xA • y)
(*) = XA(X) • y.

In other works, operators on spaces of functions of bounded variation
have been represented. These are of interest since such spaces are

233

https://doi.org/10.1017/S001309150002633X Published online by Cambridge University Press

https://doi.org/10.1017/S001309150002633X


234 C. A. CHENEY and ANDRE de KORVIN

sometimes isometrically isomorphic to spaces of finitely additive set func-
tions. See (1), (2), and (6) for details.

In another vein, Gordon (8) has produced an explicit construction of the
bidual of the space of real-valued continuous functions on the compact
Hausdorff space X. The construction uses the fact that C(X) is an
M-space; the dual of an M-space is an L-space and the dual of an L-space
is an M-space. Thus the second dual of C(X) can be identified with C(Y)
for some compact Hausdorff space Y. From X, Gordon constructs the
required Y.

In this paper we consider representing linear operators on spaces of
finitely additive set functions, as well as on spaces of countably additive
set functions. Our approach is similar to Mauldin's in that the integral used
is of Kolmogorov-Burkill type. In the course of the work, we rely on a
recent result of Fefferman (7) and on a Lebesgue decomposition theorem
for finitely additive set functions due to Darst (3).

Our first result is a representation for linear operators on ba [S, 2, A]. It
is similar to a recent result of Bdwards and Wayment (6) which the authors
received while this paper was in progress. However, the Kolmogorov-
Burkill integral used here is perhaps a conceptually simpler integral than
the v -integral of (6).

We use the first theorem to obtain a representation on all of ba [S, 2].
Here an operator is represented as a limit of integrals.

The second section of the paper deals with extensions of the main
theorems to representing operators on spaces of vector-valued set func-
tions. Here the range of the set functions is a Banach space X with a
particular property which we have called the ARN property, or the
approximate Radon-Nikodym property. In a theorem of independent
interest, it is shown that every boundedly complete Banach space is an
ARN space. Also, every Banach space having the Radon-Nikodym
property has the ARN property. Thus the representation theorems hold for
a large class of Banach spaces X.

2. Preliminaries

Throughout, S denotes a non-empty set and 2 an algebra of subsets of
S. Let ba [S, 2] denote all real-valued finitely additive set functions defined
on 2 having finite variation. Then ba [S, 2] becomes a Banach space under the
variation norm. If 2 is a a -algebra, let ca [S, 2] denote all elements of ba [S, 2]
which are countably additive. Then ca [S, 2] is a closed subspace of ba [S, 2].

Let A : 2 -» X and /A : 2 -> Y be set functions on 2 with values in the
Banach spaces X and Y respectively. Then n is absolutely continuous
with respect to A, written /u. <̂  A, if for every e > 0, there is a 5 > 0 such that

| < e whenever ||A(A)|| < S and A G. 2. In case /x and A are countably
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additive, this is equivalent to saying JU,(A) = 0 whenever A(A) = 0.
If A eba[S ,2 ] , let ba[S,2,A] denote the closed subspace of ba[S,2]

of all elements /x such that /x<SA. Similarly, let ca [S, 2, A] denote the
closed sub-space of ca [S, 2] of all elements p such that ft <i A.

The integral used in our representation is defined in its general form as
follows. Let X and Y be Banach spaces, L(X, Y) the collection of
continuous linear operators from X into Y, and fx: 2 -*• X and ^P: 2 -»
L(X, Y). Suppose there is an element y £ Y such that for every e > 0 there
is a partition IT, of S consisting of measurable sets such that

for all partitions IT refining IT, and consisting of measurable sets. Then y is
denoted by / ¥ d/x. If X = the real numbers, then L(X, Y) can be identified
with Y and mE,),ti(E,)) = V(El)n(El).

We now state the results of Fefferman and Darst to be used in this
paper.

Let ir be a partition of S and A be a finitely additive bounded set
function on 2 into the reals. For each E E 2 define WE() = AE()/A(£),
where AE(A) = A (A D E) and quotients of the form 0/0 are taken to be 0.
For (i Gba[S, 2, A], Fefferman showed that lim^ 2£Ej r WE(-)fi(E) = /x
where the limit is in the variation norm as the partitions become finer and
finer.

The following Lebesgue decomposition theorem for finitely additive set
functions has been proved by Darst (3). For this theorem, the following
definition of two such functions being mutually singular is used. Two
finitely additive positive set functions ft and A defined on 2 are said to be
mutually singular if whenever A e 2 and e > 0, then there is a partition
{AUA2} of A such that /x(A,)<e and A(A2)<e.

Theorem (3). If ft and A are in ba [S, 2] and /x and A are both positive,
then /x = /xa + /Xj where \ia < A and /xs and A are mutually singular in the
above sense. Moreover, this decomposition is unique.

It is not difficult to see that we also have /xa > 0 and /xs 5* 0.
Finally, we give the following definitions. A Banach space X is called

boundedly complete if there is a Schauder basis {*„} for X such that
sup ||2"=1 flfXiH <<» implies 2jLi ap-, converges in X. For more on boundedly
complete spaces, see (10).

A Banach space X is said to have the Radon-Nikodym property if
whenever /x:2-»X, A:2-»J?, ft and A are countably additive and have
finite variation, and /x <§ A, then /x(A) = /A/dA for some / eLJ^S, 2, A).
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3. The main results

We now present our first representation theorem. Let A be a finitely
additive, bounded, non-negative set function on 2. Let Y be a Banach
space.

Theorem 3.1. Let T:ba [S, 2, A]-» Y be a continuous linear operator.
Then there exists a unique finitely additive set function ^ : 2 - » Y such that
T(ji) = / ¥ d/i. Moreover, \\T\\ = supEeS |

Proof. Using Fefferman's result, we have that lim,, 2,, W E ( ) /A(E) = ft.
Thus by the continuity of T, we have lim,, T(2, WE()ix(E)) =

). Thus if we let T(WE()) = V(E), we have
i=T(/n). But from the definition of the integral, this

means T(/n) = / ^ d / x .
We now show that ||T|| = supEeS ||^P(£)||. First note that var[WE]«l

since WEG4) = A(A D E)/A(£) for all A&l. So ||T(WE(-))|| =
| |r | |var[WE]^| |r | | . Thus

On the other hand,

||T||= sup ||roo||= sup
var fi ̂  1 var \i ̂  1

= sup lim 2 ^(£)M£) = sup lim
var^sl II v £e ir II varjiSl v IIEETT II

„ r i
=£ sup lim 2J H^CE)!! • |/x(E)| « sup lim 2J M(-E) ' SUP

« sup [var fx] • sup ^(E)!! = sup
Eel

p
Using this fact, uniqueness of the representing function ¥ can be

shown.
If r(<*) = / ^ 1 d / t = / ^ 2 d / t , then / OP, - ¥2) d/x = 0. Thus ||0|| = 0 =

supEe2 ||"*,(E) - %(E)||. Thus ^,(E) = ^2(E) for all E G 2.
Our first theorem represented a linear operator on a set of measures

dominated by a fixed measure. We now give a representation for T defined
on all of ba [S, 2]. To accomplish this, we need the following density
theorem which is very similar to a result of Mauldin (9).

Let H be a maximal set of mutually singular non-negative elements of
ba[S, 2]. Here, mutually singular means in the sense defined above. Let F
be the collection of all finite sums of elements in H.

Proposition 3.2. The collection F of all elements in ba [S, 2] which are
absolutely continuous with respect to some element in F is dense in ba [S, 2].
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Proof. Suppose first that / i 6 b a [S, 2] and that /x >0 . Suppose \a G F.
Thus Aa=2A, where A,GH for i = 1 n. Then by the Lebesgue
decomposition theorem for finitely additive set functions as proved by
Darst, we can write LI = /*.„ + /i° where /x°<^AQ and /x° and Aa are
mutually singular. Also, recall from (3) that /A° > 0 and n° > 0. Now let
vv(-) = sup{/i°(-)|Aa GF}. This collection is directed upward in the sense
that if Aa = 2 A, and Ap = 2 A,, then if Ay = 2 A; + 2 A,, then /A. ya» /x° and
/xjss/xlj. Since ^ ( - ) « /*(•) for all a, w() is finite; furthermore, since
ba[S,2] is a complete lattice and each ju," £ b a [S,2], we must have
wGba[S,2].

Now for every /u.a G H, write /x = /x" + /A" where /x° « tiQ and /x"s and
/xa are mutually singular. Suppose v(E)- w(E)> /x°(E) for some R Then
H.(E) = w(£) + (/j,-w)(£)>/Aa(E) + /Li°(£) = /x(£), a contradiction. Thus
0 «£ /x - w ss LI" for all a.

Since n "s and /xo are mutually singular, it can be easily seen that yt, — w
and /ia are mutually singular for all /AO G H. H being maximal, this implies
that JU, - w = 0. Thus /x = w. Thus for every e > 0, we can find some /x£ in F
such that 0 =£ /x(S) - M S ) = var [/A - /xj < e.

Now if Aa e F, then Aa = 2 A, where i G /, a finite set of subscripts.
Denoting /u° by fj.'a, we have shown then that the net {n'a}i converges to the
element /u. of ba [S, 2] in variation. The preceding was for the case /x 3= 0.
For any /x G ba [S, 2], n can be decomposed into positive and negative
parts which are still in ba[S, 2]. Applying the preceding argument to both
parts, we have that /x is the limit in variation of a net {/x^}, where each fj.'a
is in F and thus fi'a <S2 A; where the sum ranges over I and each A, is in H.

Using the above density theorem, we now prove the following theorem.

Theorem 33. Suppose that T:ba[S, 2]-»Y is a continuous linear
operator. Then T(^) = lim, / V' d/x ,̂ where W' :2-> V, and ix'a are as in the
preceding propositions.

Proof. Suppose /u,Gba[S, 2]. By the density theorem we have
lim,/xi = (x. By continuity of T, lim, T d ^ ) = T(/x). Now i*'a <«£ A,, the sum
being taken over I. By Theorem 3.1, considering T restricted to
ba[S,2,2Aj] we can write T(/x^) = / ¥ ' d(x'a where ^ ' ( £ ) =
T({2 (A,)B(-)}/{2 A,(E)}). Thus T(M) = limf / V d^'a.

Remarks. 1. We might rephrase this result in terms of projection
mappings as follows. For the index I, define P7 :ba[S,2]-*ba [S, 2 , 2 A;]
by P,(/i) = fl

a. Then TO*) = lim, J ^ 1 dP,(ji).
2. If ba[S, 2] is replaced by ca[S, 2] in the above theorem, we can

obtain a better representation as follows. The decomposition /u = fx'a + /A'
is the usual Lebesgue decomposition. Now for any measure /x. let supp /x
be the set on which /x is concentrated. Then we have Csupp/x')n
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(U supp A,) = 0. Then we have / ¥ ' dn = / V1 d(>i + /*i) = / V' dfi'a since
supp V1 C U (supp A,).

Thus Tfa) = lim, / ¥ ' d/u..
3. If v e ba [S, X, X, A,], then T(v) = J' ¥ ' di>.
4. Our representation depends on the original maximal set H and thus

is not unique.

4. Linear operators on sets of vector-valued set functions

In this final section we consider some extensions of the above re-
presentation theorems. We first establish some notation.

If X is a Banach space, let ba[S, X, X] denote all finitely additive
X-valued set functions on X with finite variation. We point out here that
this is not the usual meaning for ba [S, X, X]: as in (5), this usually denotes
the collection of all finitely additive X-valued set functions on X with finite
semivariation. If A is a non-negative finitely additive set function on X, we
write ba[S, X, A, X] to denote that subspace of ba[S, X,X] of elements
absolutely continuous with respect to A. That is, t̂ is in ba [S, X, A, X] iff
for every e >0 , there is a 6 > 0 such that \\n(E)\\<e whenever \(E)<8.

We will obtain representation theorems for linear operators on
ba [S, X, A, X] and on ca [S, X, X] when X is a special type of Banach
space. We now define the class of Banach spaces which we will use.

Definition. The Banach space X is said to have the approximate
Radon -Nikodym property (or X is said to be an .ARN space) if whenever X
is a cr-algebra on a set S, A :X-»i? is non-negative, finitely additive and
with finite variation, and ju.: X -» X is finitely additive with /JL<\, then there
is a sequence of A -integrable simple functions /„ : S -»X such that /„ • A
converges to /x in variation. (Here, /„ • A is the X-valued set function
defined by/„• A (£) = /E/ndA.)

In (7) Fefferman showed that R is an AFN space. The following
theorem, which is of independent interest, shows that we have many more
ARN spaces.

Theorem 4.1. (a) If X is a boundedly complete Banach space, then X is
an ARN space.

(b) If X has the Radon-Nikodym property, then X is an ARN space.

Proof, (a) Suppose X is boundedly complete and that S and X are given.
Also suppose that /x and A are given as in the definition of ARN space.

We begin with an idea used in Uhl [11]. Let T : X - » X be the Boolean
isomorphism where X is the algebra of all compact open subsets of a totally
disconnected compact Hausdorff space S. Let A(T(£) ) = A(E) and
/i(r(£)) = n(E). Then A is regular. By Alexandroff's theorem (5, p. 138) A
is countably additive. Let Xo be the o--algebra generated by X. Then
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consider %&\), the collection of (equivalence classes of) sets in t 0 with the
metric d{Eu E2) = A(E,A£2), EiE.%. Then £ is a dense subspace of the
metric space S0(A) and we have the following identities:

A(E,AE2) = A(E, - E2) + A(E2 - £,)
/i(E,) - p(E2) = /1(E, - E2) - £(E2 - E,)

for all E, in 1.
These facts together with the knowledge that /I <S A on £ imply that /i,

considered as a function on t c t o ( A ) , is uniformly continuous and that /I
has a A-continuous extension to all of to{\). So we have A:£0(A)->R
countably additive and regular and fi. :'%0(\.)->X.

Now if {xn} is the Schauder basis for X, we can write £(E) =
S"=, /in(E)xn for every E in £0U)- Then each fi.n is a real-valued countably
additive regular set function on t,0(k). Also, /in «A for every n. Thus we
have An() = /o/n dA for some A-integrable function /„.

We.shall now show that if Pn() = 2?_i/(•)*!, then limnPn = P exists in
the norm of L\S, A, X) and /i() = limn /() Pn dA = /() P dA where the limit
is in the variation norm.

Since {xn} is a Schauder basis for X, there exists a constant K >0 such
that II n n || « |.

2 a * * K 2 «ix| for all n (1)

whenever the right hand side exists. Now since var yu <i A and var (L < <*>,
we have var /!(•) = /rig dA ==/&? dA <<» where g(f)^O A-almost every-
where on S and g is A-integrable over S. Let Qn(E) = 2"=1 /i,(E)Xj for all E
in £0(A). Then we have var Qn(E)« K • var /i(E) from (1). Thus since Pn(t)
is the Radon-Nikodym derivative of Qn, we have ||Pn(I)|| =̂  Kg(t) for all n
and A-almost everywhere. Since X is boundedly complete, this implies that
limn Pn(t) = P (0 exists for almost all ( in S. From the last inequality and the
Lebesgue dominated convergence theorem we conclude that Pn converges to
P in Ll(S, A, X) norm. Thus we have that

i = lim <?„(•) = lim I P n dA = j P dA
n n J(.\ J(.)

where the limit is in the variation norm.
Thus it is possible to find simple functions sn:S^*X such that /<.> sn dA

converges to / i() in variation. Each 5n is of the form sn(-) = 2*A(i,n>(•)*.>>
the sum ranging over i = 1 , . . . , kn, where A(i, n) is in t,0(\), for every fixed
n the A{i, n) are mutually disjoint, and xin G X.

By the regularity of A, each A(i, n) could be taken to be in £.
So there exist A(i, n) in t, and xln in X such that for every e >0,

X I £ S i, n) n £,)x J < e
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for n large enough, where the inner sum ranges over i = 1 , . . . , kn and the
outer sum is taken over a partition {£,} of S. Letting A = T~\A) for every
A t since T is an isomorphism we can rewrite the above inequality as

- X A(A(i, n) D E.Ox.J < e

for n large enough, where the inner sum ranges over i = 1 , . . . , kn and the
outer sum is now taken over a partition {£,} of S. Thus if we let
«„(•) = 2 XA(i,n)(')x.\n» the sum over i = 1 , . . . , kn, we have shown that / sn dA
converges to /x(-) in variation. We have thus shown that X is an ARN
space and this completes the proof of part (a).

(b) We use the notation of the proof in part (a). Since X has the
Radon-Nikodym property, there exists a A-integrable function / such that
/!(•) = /()/dA. Then we can obtain a sequence of A-integrable simple
functions sn such that lim sn = / in the L1 norm. Then /(0 sn dA converges to
/ i ( ) in variation norm, and the proof then proceeds as in the proof of part
(a).

We now give a proposition needed in our next representation theorem.
Suppose /x <S A, where /x and A are as in the definition of ARN space.

Proposition 4.2. Suppose X is an ARN space. Let sn =
2{/x(E)/A(E)}xE where the sum is taken over a partition IT of S into
measurable sets E. Then lim,, s,, • A = /x in variation.

Proof. We first recall that sv • A is the set function defined by
sn • A() = J"(.) sn dA. Now let e > 0. Choose a simple function s,: S -»X such
that var [/u. — /x,] < e/2, where /x,() = /() s, dA. We can find such a function
since X is an ARN space.

Now if S, = S XEwyi where the sum is taken over j = 1 , . . . , n, the E(i)
are disjoint and y, GX, then we have y, = /x,(E(i)/A(E(i)).

If {E(j)'} is a refinement of {E(i)}, then we have

s, = S WE0-)')/A(E(/)')}xE0T

where the sum ranges over j = 1 , . . . , m. Now let v be any refinement of
{£(/)}. Then

A] = var [s, • A - s, • A]

= 2 f ||{/x1(E)/A(E)}-{M(E)/A(E)}||dA
J E

var [/x, -

where the sums are taken over E in IT. Thus we have var [/x — s, • A] < e.
So limw sT • A = fji in variation.
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We now give the following representation theorem.

Theorem 43 . Suppose T:ba[S, 2, A, X]-» Y is a continuous linear
operator where Y is a Banach space and X is an ARN space. Then there
exists a unique p-integrable function ^ :2-»L(X, Y) such that T(/x) =
/*d /x . Furthermore, \\T\\ = sup ||¥(E)||, the sup being taken over all E e X .

Proof. For any partition v of S into measurable sets, let
/()2{fi(E)/A(E)}xE dA, where the sum is over E in IT. Then by the above
proposition, Pw() converges to p. in variation. For every x £ X and E £ 2
the set function WEjl{) = {AE(-)/A(E)}x is an element of ba [S, 2, A, X]. Thus

= 2 T[{M(E)/A(E)}AE()]

where (¥(E),x) = T[{AE(-)/A(E)}x] for every x G X and where the sums
are taken over all E in IT. Thus ^(E) is a linear operator on X with values
in y. It is not hard to verify that ¥(E) is continuous. Thus ¥ : 2-> JL(X", Y).
Thus we have shown that limw T(Pn(ix)) = lim^ 2 W E ) , /x(E)> = T(/x), the
sum being taken over E in 77. By our definition of the integral this means
that T(/x) = /^d/Li. The fact that ||T|| = sup||¥(E)||, the sup being taken
over E in 2, is proved analogously as in Theorem 3.1.

For our final theorem, we give a representation for operators on
ca[S,2,X] which are continuous in a certain topology on ca[S ,£ ,X] .
We define this topology by net convergence:

limaAia = ft iff limQ var [x*u-a - x V J = 0 for every x* G X*.

Here, of course, x*fia andx*^t are in ca [S, 2]. Suppose now thatcafS, 2 , X ]
is so topologised and that X is an ARN space.

Theorem 4.4. Suppose T:ca[S, 2, X]-» Y is a continuous linear
operator. Then T(JU.) = limj / ¥ ' d/u.', where I is a finite set of indices of
elements in H, f i ' ^ S A . (the sum being taken over I), and ¥ ; : 2 - »
L(X, Y).

Proof. Recall the definition of H given immediately before Pro-
position 3.2. Let A = 2 Aa, the sum taken over I, and /x = /xJ + /u.r be the
Lebesgue decomposition of ix with /i7 « A and fj., mutually disjoint from A.
For x* in X*, JC*/X = **>, +x*/u.'. Now the scalar measure x*/x has a
Lebesgue decomposition with respect to A :x*/u =(x*/u.)/ +{x*fi)' where
(x*fi)' <t A and (X*/A), and A are mutually disjoint. By the uniqueness of
Lebesgue decomposition we have x*n' = (X*/A)'- By Proposition 3.2 we
have that lim,x*pt' =x*>- Thus lim,^i' = pt in the topology for

20/3—E
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242 C. A. CHENEY and ANDRE de KORVIN

ca [S, 2, X]. Thus lim, T(^ ' ) = T(/LI). But from Theorem 4.3, considering T
restricted to ba[S,2,A,X], we have T(fi') = W d/x' where ¥ ' : 2 - >
L(X, Y). So T(M) = lim7 / ¥ ' d/x'.
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