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ON THE COERCIVITY OF ELLIPTIC SYSTEMS IN
TWO DIMENSIONAL SPACES

KEWEI ZHANG

We establish necessary conditions for quadratic forms corresponding to strongly
elliptic systems in divergence form to have various coercivity properties in a smooth
domain in K2. We prove that if the quadratic form has some coercivity property,
then certain types of BMO seminorms of the coefficients of the system cannot be
very large. We use the connection between Jacobians and Hardy spaces and the
special structures of elliptic quadratic forms defined on 2 X 2 matrices.

In this note, we study the coercivity of elliptic systems with measurable coefficients
satisfying a strong ellipticity condition — the Legendre-Hadamard condition. In two
dimensions, we find some interesting necessary conditions for coercivity which provide
new and important tools for the study of homogenisation and spectra of these systems.

In [2], among other results, the following were established:

(A) If u € PT 1 ' n ( r ,R n ) , then det Du € ^ ( R " ) (H1 is the Hardy space)
and

(B) There exists c(n) > 0 such that

S UP{ / bdetDudx;

u = }.

We apply these results to the study of coercivity of strongly elliptic quadratic forms with
measurable coefficients, defined in a bounded domain in R2 with Lipschitz boundary,

(1) a(u,Q)= f Al^D^
Jn
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424 K. Zhang [2]

where the summation convention is understood and u 6 Wg' (fi,R2) . The coefficients

•̂ •a p[x) belong to L°°(Cl) and satisfy the Legendre-Hadamard condition

(2) ^>)W^>c|£|2M2,

for some constant c > 0. It is known [9, 7] that A1^ Jx)P^Pi can be written in the
form

(3) Bil0(x)PiP^+b

for P 6 M 2 x 2 , t h e set of real-valued 2 x 2 matr ices , and B^^x) e L°°(Sl) satisfying

(4) c\P\2^B%{x)PlP^C\P\\

where c, C > 0 are constants. Therefore A£ g{x)PaPp is strongly polyconvex (see [1]).
In the two-dimensional case, the above quadratic form comes naturally from the

linearisation of polyconvex variational integrals studied in nonlinear elasticity by Ball
[1]. In [5], a quantity A is defined which gives a criterion for determining whether an
elliptic system satisfying the Legendre-Hadamard condition can be homogenised. It is
defined as

(5) A = inf \ — 2 , ; u 6

where Al£p(x) is a periodic and measurable function and 1 ̂  i,j ̂  n, 1 ̂  a,j3 ^ n.
It was establised in [5] that if A ̂  0, some homogenisation results can be obtained for
the system

( 6 ) r DivaA*, (*)!>,,«'• = / infi

\ u|i€fln = 0.

If A < 0, the system cannot be homogenised. A natural question arises as to which
conditions on the coefficients of the system imply A ̂  0. We answer this question for
n = 2.

In [10, 11], counterexamples were given showing that Garding's inequality may not
hold in general for systems with L°° coefficients which satisfy the Legendre-Hadamard
condition. In [3], examples were exhibited showing that system (6) cannot be ho-
mogenised even when the coefficients are continuous.

In this note, we establish necessary conditions such that (i) a(u,Q) ^ 0, or equiv-
alently A ^ 0 if Q = Rn; (ii) Garding's inequality holds for a{u,Cl); (iii) the first
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eigenvalue through homogenisation is bounded (Theorem 3). The conditions are that
certain types of BMO norms on b obtained from (3) cannot be too large. Before we
state the main results, let us give some basic definitions and facts.

Let fi C K n (n ^ 2) be a connected open set. A function b : fi -> R is in BMO(fi)
if b is integrable in fi and

(?) sup |^ i J \b - bQ\ dx = | |« | |B M O ( n ) < oo.

The above supremum is taken over all cubes Q with sides parallel to the axes and
bQ=l/(\Q\)JQbdx.

An extension theorem due to Jones [6] states that under certain conditions on
fi (which include the case that fl has Lipschitz boundary) there exists a continuous
extension of BMO(fi) to BMO(R"). If we denote by

/

where the supremum is taken over all cubes with sides parallel to the axes, the semi-
norms given by (7) and (7') are equivalent (see [6] for example).

If we consider 0 as a space of homogeneous type, we have another type of BMO (fi)
which we denote by BMO/f(fi) with its BMO seminorm given by taking cubes with
side length l(Q) < dist (Q,£lc), and

1 I*}

(7") H&llBMOH(n)=sup{(j^|/ \b-bQ\2dx^ ; Q C Sl,l(Q)^ dist

We have

After an extensive search of the literature in harmonic analysis, the author was not able
to find a reference to confirm that under suitable conditions, the two seminorms given
by (7') and (7") are equivalent.

The following are the main results of this note.

THEOREM 1. Suppose ( I d 2 is open with Lipschitz boundary, A^0 : Q -> R2

is measurable for 1 ̂  i,j,a,/3 ^ 2, such that

(8) AWKP} = BUfWPiP* + 6(x) det P,

where b EBMO(Q) and Bx£p axe measurable functions satisfying

(9) co|P|2^i£>)P'P's:C7o|if,

for some constants 0 < CQ ^ Co- Then there exists a constant C\ > 0 depending only
on Co such that o(u,Q) > 0 for all u 6 W0

1>2(n,R2) implies that \\\b\\\BMOH(n) ^ c\-
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REMARK 1. If IHlBMO(n) *S sufficiently small, from (A) and the extension theorem in
[6], we see that a(u,fi) ^ 0 in Theorem 1.

DEFINITION 1 . (See [8] for example.) For b £ BMO(tl), the oscillation norm

of b is defined by

l*,n = limsup(sup{(—r / \b-bQ\2dx) ;

where dist(-,fic) is the distance function. Obviously, ||6||»n ^ IHIBMO (O) •

It is easy to see that ||6||» n = 0 if 6 is uniformly continuous in $7. The following

simple example shows that if b has points of jump discontinuity, ll&ll̂  n ^ 0

EXAMPLE 1. Let us first look at the Heaviside function in K1,

{ 0 if x < 0,

k if x > 0,

undefined if x = 0.
It is easy to check that

We can generalise this example to a square Q\ = (—1,1) in R2. Let

{ 0 if-l<i<0,-Ky<l

k if 0 < a; < 1, - 1 < y < 1

undefined if x = 0.
We have

II*IL,OX = \\*\\BMOHIQI) = IHIBMCXQO = * /2 .THEOREM 2 . Suppose the assumptions in Theorem 1 are satisfied. If Garding's

inequality holds for a(u,J7), that is, there exist Ao > 0, Ai ^ 0 such that

(10) a(u,n) ^ Ao / |£>tt|
Jn

for all u£ Wo'2(Cl,R2) , then

where C\ > 0 is given by Theorem 1.

\u\2 dx
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REMARK 2. Define the oscillation norm of b on $7 by

||4||. „ = limsup (sup { ±- f \b - bQ\ dx; Q D fl f <D, l(Q) ^ d\) ,

where we extend b to be a BMO (R2) function (see [6]). If H&Û. ^ is small enough, we

have, by using a classical partition of unity method used, for example, in [4, Chapter

1] and inequality (A), that Garding's inequality holds for a(u,fi) in Theorem 2.

THEOREM 3 . Suppose b and B1^ given by (3) are periodic and continuous. Let

/• 2

A. dg(u. it) ~f- A / lit dx ^ Oj
Jo

a.(it,n)= I AVj^D.u*

Ae = ir

wiere

II Xc is bounded above when e —> 0, then | |^HBMO(D) ^ ^ J wnere D is the period of
b and Ci > 0 is given by Theorem 1.

REMARK 3. If ||&||BAfO(£,) is sufficiently small, Ae defined in Theorem 3 is nonnegative

if we simply apply (A) and the partition of unity.

The following lemma is a simple consequence of the proof of (B), Theorem III.2 in

[2]-

LEMMA 1 . Let O C R2 be an open set. For b £ BMO(fl), there exists a constant

C > 0 independent of fi and b, such that

IWIBMOHCO) ^ Csupll bdetDudx;

u = (tti,«2) G Wo
ll2(n,R8), ||U«i||Li(o) < 1, \\Du2\\L2{n) ^

PROOF OF THEOREM 1: For any e > 0, we have from Lemma 1 that there exists

U00 = ( t t ^ . u ^ ) g Wo>2(n,R2), with |-D«(ie)|| < 1. l - 0 * ^ ! < !» such that

11*11 BMOH(O) - e^C2J^b det Du^dx.

On replacing u^ by v^ = (u\e , — u2 ) , we see that

6det/
n
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Suppose a(u, fi) ^ 0 for all u 6 W0
1>2(fi,R2) . Then we have

0 ^ a ( « ( e ) , n ) = / [B^Jx)Dav\ 'DBV) ' + b(x) det Dv^'] dxv ' Jn 'p
2 1

£T~UI°llBMOH(n) - e

C2e.
Therefore

\\b\\BMOH(n) ^ 2C70

Let d = 2C0C2 . Since e > 0 is arbitrary, |||&|||BMO(n) ^ C* • T h e proof is finished. D
PROOF OF THEOREM 2: Let Qdk C fl be a sequence of cubes with side length

2dk such that dist (Qdk,fl
c) ^2dk, dk -* 0 and

6-i«3d dx l*,n-

Let Qk be a cube with the same centre as Qj,k and with side length 4dk- Let
v G W0

ll2(n,K2) be such that v is supported in the closure of Qk. Since Garding's
inequality holds for a(-,fi), there exist Ao > 0 and Ai ^ 0 such that (10) holds for
all u £ WQ'2(H). In particular, it holds for v. Let xk be the centre of Qk. Change
variables x — xk = 2dky in (10) and let u(y) = v(xk + 2dky), and b(xk + 2dky) = bk(y).
We have

/
Qx

2dky)Dau
iD/}u

i + bk(y) det Du{y) dy

>\0 [ \Du\2dy-(2dk)
2X1 f \u\2 dy,

JQI JQi

where Qi is the cube with side length 2 centred at 0. Since this inequality is true
for all u £ Wg'2 (Qi,K2) , we have, from the Sobolev-Poincare inequality and by taking
dk > 0 small enough,

[B%{xk + 2dky)Dau
iDfiui + bk{y) det Du{y) dy > 0,

where Q1/2 is the cube centred at 0 with side length 1. Hence from Theorem 1,
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Therefore

The proof is complete. D

PROOF OF T H E O R E M 3: Let us assume that b is of period 2, that is, b(x + z) =

b(x) for all z = (2j, 2k) where j , k are integers. Suppose that Xc ^ C for some

constant C > 0. Then we have

ac{u,Q) + \c f \u\2dx >0,
Jn

for all u e Wo'2(D,R2). Let us take a cube Qe with side length 2e such that Q2e C 0
with side length 4e has the same centre as Qc. Let v € Wo' (fi,R2) be such that v is
supported in the closure of Qic . We have

\v\2dx

Let xo be the centre of Qie. Change variables x — xo — ey, and let u(y) —V{XQ + ey).

We have from the Sobolev-Poincare inequality, and the bound of BXK, that

UC0+CC(Q2)e
2)\Du\2

for all u£ Wt>2(Q2,R
2). Therefore, | |6 | |B M O ( Q l ) < d + O(e), and hence | |6 | |B M O ( Q l )

^ C\. The proof is complete. 0
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