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Abstract. We give an example of a smooth map of an interval into itself, conjugate
to the Feigenbaum map, for which the attracting Cantor set has positive Lebesgue
measure.

0. Introduction

Let us consider a one-parameter family of smooth unimodal (i.e. with ‘one hump’)
maps of an interval into itself. As an example one can take f,(x)=ux(1—-x). If a
map depends on a parameter continuously and if the family contains maps with
both zero and positive topological entropy, it also contains a map f with periodic
points of periods 1,2,2% 2% ..., and no other periods. Suppose that f has no
homtervals (i.e. open intervals, on which all iterates of f are homeomorphisms).
Denote by I, the interval between the periodic point of period 2", closest to the
critical point, and the second point with the same image under f. Assume also that
one of the endpoints of the whole interval is a fixed point and the second endpoint
is mapped to the first one. Then f>"|;_ is topologically conjugate to f. Feigenbaum
[3] conjectured that for a ‘good’ map f, the sequence (f>"|;,)i-o, after rescaling (i.e.
an affine change of a coordinate) converges to a certain map F. We shall call this
limit map the Feigenbaum map. The detailed description of this and other connected
problems can be found in [2].

For the Feigenbaum map, F 2"|1", after rescaling, is equal to F. The existence
of this (real analytic) map was proved by Campanino and Epstein [1] and
Lanford [5].

From the kneading theory we know that if a map f has the same kneading
invariant as F (i.e. the images of the critical point lie to the left or right of the
critical point for the same iterates of both f and F) and f has no homtervals, then
f is topologically conjugate to F (see [2]).

The set of non-wandering points for a map f, topologically conjugate to F,
consists of a Cantor set (more exactly, a set homeomorphic to the Cantor set)
C=MNr-1 Ui=d f“,,), and periodic points, lying in the gaps of C. This Cantor
set attracts all points which are not eventually periodic ([6]).

In connection with the general question about the Lebesgue measure of attractors,
one can ask, what the measure of C is. If f satisfies the Feigenbaum conjecture,
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then the answer is zero. Since the rescaling constant for F is § < 1 the set Ui";ol f (I,
consists of 2" intervals, the longest of which has a length of approximately aé™
(for some constant «). Since 2"a8" -» 0 as n >0, C has Lebesgue measure zero.

The results for diffeomorphisms would suggest that the answer should be zero
for all C'** maps. However, here the situation is different. Namely, we prove the
following theorem:

THEOREM. There exists a C™ concave map f, conjugate to the Feigenbaum map,
with the attracting Cantor set C of positive Lebesgue measure.

This result does not give the complete solution to the problem. One can ask,
whether there is an example of such a map with some additional properties. The
desired properties would be, for instance:

{a) polynomial behaviour in a neighbourhood of a critical point (i.e. a critical
point not ‘flat’);

(b) absolute continuity of the unique invariant probabilistic measure on C with

respect to the Lebesgue measure.
Notice that (a) implies that the map is ‘almost symmetric’ (for x, y with f(x)=f(y),
the ratio of distances of x and y from the critical point is bounded). It can be
shown that even this ‘ailmost symmetry’ cannot be obtained by the technique used
in this paper. Lemma 4 shows that our example does not have property (b).

1. Construction
We start by defining two sequences of points of the interval [0, 1]: 0 =a, <b;<as<
b4<a6<b6< L <b7<a7<b5<a5<b3<a3<b1<a1 = 1, by Setting:

1 1

|an—bn|=(n—+T)Z, |an+z—bn|=m-

Since

nczz'l ((n :1)2"’"("11)2) =n02::1 (%_n _1'_1) =1,

we see that all points with even indices lie to the left of all points with odd indices
and there exists a common limit lying between even and odd points

¢ =lim a, =1lim b,,.
n n

Now we begin to define f:

fle)=1, f(a,.)=1———1— flba)=1-

n-n! n-(n+Y
Notice that
0=f(a1) <f(b1) <f(az) <f(b2) <flas)<f(b3)< ---

and
lipf(an) =1ipf(bn) =flc)=1.
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We define f as a linear (we use this word instead of the more precise ‘affine’)
map on each interval:
I = {[a,,, b,] ifniseven,
" \[b,, a.] ifnisodd.

We also set

[y Gnsa] if nis even,

M, = {[a,.+2, b.] ifn isodd.

Since
[0,11=fc}u U L.v U M,,

n=1 n=1
it remains to define f on intervals (‘gaps’) M,. Before doing it, we compute the
slope (i.e. the absolute value of the derivative) of f on L,. Denote this slope by
A,.. Then

_lf) ~flan)| _n+1

|6, —a,| n!’

Ay

Set
Mn =Aio_1 . Aix_z . Ai2_3 Tl /\%"*2.

We have w1 =1 and u,4+1=A, * p,f,. From this it is easy to check by induction that
wn = n! (this result may be surprising at a first glance — the numbers A; are mainly
very small, but their product u, is large).

Consider the intervals L, and L,., and the gap M, between them. We already
can draw the graphs of f on L, and L,.,; they are segments of straight lines. Let
us see where these lines intersect each other. Denote this point by

_ {(a,,+2 —Xn, flan+2)—yn) if riseven,
(@na2+xn, fla,42)—yn) if nisodd.

n

We have then:

Yn/xn =Ans2
f(an+2) _f(bn)_.Yn _

Vnm+1)D)—x, =
Solving this system of equations we get
xa=1/(n+2)[(n +1)*(n +2)~(n +3)1. 1)

For every n =1 we have 0<x, <3|M,|. To check it, it is enough to notice that the
first inequality is equivalent to

(n+1P°>1+1/(n +2),
and the second one to
2 +2n +1)(n2+2n+4)> (1 +2)(n +3).
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We consider an auxiliary function ¢ :R - R given by

x ifx=0

elx)= J A-y¢(y)dy if0<x<1

3 ifx=1

where
1

b= [ nwa/[ n@d and o =exp

It is easy to check that ¢ is of class C™ and concave.
We show how to use ¢ for filling the gaps. If a function g defined on (a ~¢,aju
[b, b +¢) is such that

g(x)={

1
tt—1)

gla)+a(x—a) forxela—e,al )
gB)+B(x—b) forxelb,b+e)

where
g@)—g(b) _a+p
a—b 2
and a <b, a >, then we can extend it to a concave function of class C” on
(a —¢&, b +¢) by setting for x € (a, b)

3)

§(x)=8(@)+B(x ~a)+(@-H)b-ae(;—2). @)

To prove this, it is enough to show that the formulae (2) and (4) coincide on

(a—g,a]ulb,b+e). This is a simple computation and we omit it. Concavity of g
follows from the fact that

and the concavity of ¢.
We estimate the derivative of g

lg'(x)| = max (|}, |B]) (5)
by the concavity of g. For £ > 1, we have

g(k)(x) =(a—B)b —a)l—k(p(k)(z—:g-).

Thus,
sup lg®l=(a—B)b-a) - sup ™| fork>1. (6)

Notice that condition (3) is equivalent to the fact that the point of intersection
of the lines defined by
y=gla)+alx—a) and y=g®b)+B(x—b)
has the first coordinate (a +56)/2.
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Now we are ready to define f on M,. On the interval (b,, dn+2—2x,] (f n is
even) or [a,+2+2x,, b,,) (if n is odd), we define it as the same linear function as
on L,. Then the gap which remains is such that the procedure described above
may be used. We do it and get f defined on the whole interval [0, 1].

2. Properties

From the construction it follows that f is continuous and concave on [0, 1] and of
class C* on [0, ¢} u(c, 1]. To see that it is of class C™ on the whole interval [0, 1],
we use (5) and (6). Since lim, A, =0, we get by (5),

lim |f'(x)]=0.
For k > 1, we have
lim (An — A,42)(2x,)" ™ sup [ | =0,
n [0,1]

because (2x,) “isa polynomial function of n and
SV ¥ L B
n! (n+1)n+2)
Hence, by (6),

lim | f*(x)] = 0.

Now the smoothness of f follows from the inductive use of the following fact: if ¢
is continuous on [0, 1] and of class C' on [0, ¢) U (c, 1], and the limit lim, .. ¢'(x)
exists, then ¢ is of class C' on [0, 1].

Hence, we have proved the following properties of f:

(A) f is concave and of class C* on [0, 1].

Remark. Our function is defined on [f*(c), f(c)]. If we want it to be defined on
some [a, b] such that f(a) = f() = a then we can take a = —3, b =2, and set

3x+3 forxe[-3,0),
—2x+2 forxe(1,3)

f(x)={

and f remains C™ and concave. Notice also that outside [0, 1] the slope of f defined
in this way is larger than 1.

We continue investigating the properties of f. Forn =1 we set g,, = f2“71°‘l[f(a,,),1]
and h, =",
LemMMA 1. For every n = 1 we have:

(@) ha(@n)=ani1;

(B) halbn)=an+2;

(€) hn(@n+1)=bn;

(d) halc)=an;

(e) gnis linear and has slope w,;

(f) gn is orientation-reversing if n is even and orientation-preserving if n is odd ;
(g) fis linearon f'(f(a,),11),i=0,1,2,...,2" ' —2.
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Proof. Notice first that since

flan) <f(bn) <flan+1) <1=f(c),

(e) implies:

1
Fin (@n) = B (bo)] = g (£(@2)) ~ g (FBAN] = —,

1 (B) = B(@ns )l = |82 (F(B2)) — go(fl@n+))| = 1)

and
1
lhn (an)—hn (C)l = |gn (f(an))—gn(1)| = ;
Consequently, (a), (e) and (f) imply (b), (c) and (d).

Now we shall prove (a), (e), (f) and (g) by induction. For n = 1, we have 2"zt
and g, = f°=id. Hence, (e), (f) and (g) hold for n = 1. We have f(a;)=0=a, and
therefore also (a) holds for n =1.

We assume that (a), (¢), (f) and (g) hold for n =k and shall prove them for
n=k+1. We have shown already that (), (c¢) and (d) hold for n =k. By (b)
and (c),

P (aes1) =17 (b)) = ars2s

and thus (a) holds for n =k +1. By (e) (for n = k), g, is monotone, and hence by
{¢) and (d) (also for n = k), we have g ({f(ar+1), 1]) = Li. Therefore

gk+1=8ko°fo° 8k|[f(ak+1),1]

is a composition of three linear maps, and consequently is linear itself. Its slope is
equal to

2
Ak * Mk = phic+1,

and this proves (e) for n =k +1. It is affecting the orientation in the same way as
flL,, and this proves (f) for n =k + 1. To prove (g) (for n =k + 1), notice that for
i=0,1,2,...,2" -2 it follows immediately from (g) for n =k that f is linear
on f'([f(ax+1), 1]). For i =2*"'—1 we know already that f'([f(ax+1), 1]) = L. For
i=2%"1,25"+1,...,2% -2 we also have to use the fact that

. e
fliraenn=1 o f © il f(ax. 1]

and
fegl[flax+1), 1) =f(Li) =[flaw), 1],
and (g) for n =k + 1 follows. O
Set
K = { [an, a,+1] if niseven,
" Alans1, @] if nisodd,
n=1,2,...
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LEMMA 2. The sets K, have the following properties :
(a) The sequence (K,)n-1 is descending;
(b) hn(Kns1)=Ln;
() ha(K,)=K,;
(d) The sets f'(K,),i=1,2,3,...,2" " (for n fixed) are disjoint;
(e) flyk, is linear fori=1,2,3, ..., 2" i1,
O 7 T K} Of Kas) =@ fori=1,2,3,...,2"7
(g) |U1=1f (Kn+1)| — _( 1 )

U A& \n+1

(where | - | denotes the Lebesgue measure of a set).

Proof. (a) follows from the definition of the points a,. (b) follows from lemma 1(¢),
(d) and {e).

By the definition of the points a,, b, and their images, we have f(L,) N f(K,+1) =
&. Now, (f) follows from this, (b) and lemma 1 (g). Since L, U K1 =Ky, (d) for
n =k +1 follows from (f) and (d) for n = k (for n = 1 it is obvious). (e) is equivalent
to lemma 1(g). (c¢) follows from lemma 1 (a), (d), (e). To prove (g), we have to
make computations, using (b)-(f):

2n

4 2 2 .
Uf Knn)| = L [ Kas)l = £ (f Ko+ L)
Kn+ Ln 2t i

_If(Kn+l)|+!f(Ln)| . 2t i

S Y K.
But we have

lf(Kn+l)| + lf(Ln)l - (1 - an+1) + (f(bn) _f(an)) =1-— (__l_)z D
[F(K)| 1-a, n+1/"°

We claim that
(B) f has the same kneading invariant as the Feigenbaum map.

To prove this, we have to know the trajectory of ¢. By lemma 1, A,(c)=a, and
h, is monotone on [a,, c] (or [c, a,]). Besides, h,.(a.) = a,.1, and hence ¢ belongs
to h,.((an, ¢)) (or h,((c, a,))). Consequently, if we set

+1 iff"(c)<c,
n ={—1 if f*(c)>c,
then
Erri=¢& fori=1,2,3,...,2"7'-1,
and
fon =~
Hence, &1 &5 ...- & =~1 and
E1 by gy ==& & & fori=1,2,3,...,2"-1.
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By the results of [4], this is equivalent to the existence of periodic points of all
periods being powers of 2, and of no other periods. This proves (B).
Define

U (K.

=1

S=
n=1

2n-
i

By lemma 2, and since
21-1

U f&n=Ki=(0,1]

we have
2

o 1
s i (1= ).
l l ,,1;11 n+1
i.e. the set § has positive Lebesgue measure.

LEMMA 3. The measures of the sets S " f (K,),i=1,2,3,...,2"" !, are

nlk e +1
ls‘ kl;[1 k+2 °

where (g1, ..., &) runs over all 0—1 sequences of length n — 1.

Proof. We use induction with respect to n. For n = 1, the conclusion of the lemma
obviously holds. Suppose now that it holds for n = m ; we shall prove itforn =m + 1.

Every set of form S N f (K,), i =1,2,3,...,2™ ", is a union of two disjoint sets:
SNf(Km+1) and S N f(L,.). Since

SAf (Km)=f"(S N f(Kn))
andallf',i=1,2,3,...,2™ "}, are linear on f(K,,), we have

Ismfi(.Km+l)l=if(Km+1)|= 1
ISAfLn)  fLw) m+1

Hence, the measures of § A f (K1) and S ~ f*" " (K,,.,) are

1 . 1
——[Snf'(Kn)| and 2—1’2 IS A K)-

But if
i _ m-1J . Er t+ 1
(S of &l =Is1 T =55
then these measures are
m k - + 1
. . e.=0,1. O
ISI kgl k+2 ° &

LEMMA 4, (a) S is a Cantor set. '
(b) The measure v on S, defined by v(f'(K,))=1/2""" fori=1,2,3,...,2" Y is
not absolutely continuous with respect to the Lebesgue measure.
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Proof. (a) By the definition of S, it is enough to show that max;<;<2=-1 |$ nf' (K,»)| >
0 as n » 0. But indeed,
— k n+1 1
max |S (K, = r[ ——= Il (1-7)~0
1=i=2""! k=1 +2 i=3 ]
as n » o, This proves (a).

(b) follows from the fact that for every n, one can find a set of v-measure 3 and
Lebesgue measure |S|/(n+1). This set is the union of these intervals f'(K,)
(intersected with §), for which the corresponding ¢, -, is equal to 1. O

Now we shall prove that

(C) f is topologically conjugate to the Feigenbaum map.

For this we have to prove that f has no homtervals. Consider again the gap M,,
between L, and L,.,. It is mapped by f monotonically and then by fz"_l"1 linearly
(by lemma 1(e) and since f(M,,) =[f(a,), 1]). Since we have f(a,) <f(bn) <f(@n+1) <
f(@n+2), Bn(by) =am+2 and h,(a,.1) = b,, our interval M, is mapped by h, homeo-
morphically onto some interval containing M,. By lemma 1(f), hn|a, reverses
orientation. Hence, A, s, has a unique fixed point. Call this point u,.

We know that f has slope A, on L,, A,+2 on L, ., and /‘2""'1 has slope u, on
[f(a.), 1]. Therefore (taking into account the orientation), we get:

hnle,=—Anun =—(n+1) (7)

hole —Anszppn = —(n +3)/(n +1)(n +2). (8)

n+2

By the construction, f (and consequently, also k,) is linear on the interval
[@n+2+ 2%, an]) (if 7 is 0dd) or [a,, a,+2—2x,] (if n is even), where x,, is given by
(1). If A, has a fixed point on this interval, this fixed point has to be equal to u,.
To find it we have to solve the equation (where u,, = b, +1,):

bntitn=a,2—t,(n+1)
(remember that the derivative is given by (7)). We get for ¢,:
th=(an+2—b,)/n +2.
This implies that the sign of ¢, is the same as of a,.>—b,. Hence, to prove that u,
lies on the considered interval, it is enough to show that |f,|+2x, <|an.2—b,| (cf.
figure 1). This inequality is equivalent to (n + 1)(n*+n+2)=n+3, which holds
because n +1>1 and n*>+2=3. Hence, we have shown that

hu(us)=—(n+1). 9
Since h, is monotone on [c, b,] (or [b,, c]) and
hn (bn) = An+2y hn (C) =ay,

the interval M, is mapped by A, homeomorphically onto some sub-interval of
M, U L,. The interval M,, U L, is divided by u, into two parts. By (7), (8), (9) and
the facts that f is concave and 4, is linear on f(M, UL,), the slope of 4, on one
of these parts is constant and equal to #n + 1 and on the other one is at least (n + 3)/

(n+1)(n +2). Since
n+3

MRCES i
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—(n+1),

l
i
|
|
|
|
1
/an+2 up | b"
[t

FIGURE 1

and h, reverses orientation on M,, U L,, we have
nlae > 1. (10)
Suppose now that J is a homterval. Since § is a Cantor set, J has to intersect
some of its gaps (or an ‘outer gap’). If it also intersects S, then it has to contain
some f'(K,) (remember that J is open). But some image of f'(K,) contains c, and
we get a contradiction. Hence J (and all its images) is disjoint from S.
Since, by lemma 1, all points a, and b, are images of ¢, they all belong to S (S
is invariant). Consequently, none of these points belong to J, or its images. We have

[0, 1]={c}u UO (M, UL,).

We take the subsequence of images of J, (f*())¥-1, defined by induction:
first, k(0)=0, second if f*"'(J)=M,, then k(n+1)=k(n)+2™; if f*"'J)<L,,
then k(n +1)=k(n)+2™"". By (7) and (10), we get

|(fk("+1)_k(")),|fk("‘(1)|>1- (11)

Therefore, for all n, |f*“(J)| =|J|. This is possible only if J is contained in a basin
of a sink. But this contradicts (11).

Hence, f has no homtervals, and consequently, (C) is proved.

To complete the proof of the theorem, we need to prove only that $=C
where the set C was defined in the introduction. But this follows from the straightfor-
ward remark that for every descending sequence (Q,)n~1 of neighbourhoods of ¢
with (%=, Q. = {c}, the set (-1 U%=0f*(Q,) is the same.
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