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Abstract. We give an example of a smooth map of an interval into itself, conjugate
to the Feigenbaum map, for which the attracting Cantor set has positive Lebesgue
measure.

0. Introduction
Let us consider a one-parameter family of smooth unimodal (i.e. with 'one hump')
maps of an interval into itself. As an example one can take fllL(x) = (ix(l-x). If a
map depends on a parameter continuously and if the family contains maps with
both zero and positive topological entropy, it also contains a map / with periodic
points of periods 1, 2, 22, 2 3 , . . . , and no other periods. Suppose that / has no
homtervals (i.e. open intervals, on which all iterates of / are homeomorphisms).
Denote by /„ the interval between the periodic point of period 2", closest to the
critical point, and the second point with the same image under /. Assume also that
one of the endpoints of the whole interval is a fixed point and the second endpoint
is mapped to the first one. Then f2" \In is topologically conjugate to /. Feigenbaum
[3] conjectured that for a 'good' map/, the sequence (/2"|jJ^=o, after rescaling (i.e.
an affine change of a coordinate) converges to a certain map F. We shall call this
limit map the Feigenbaum map. The detailed description of this and other connected
problems can be found in [2].

For the Feigenbaum map, F2"\In, after rescaling, is equal to F. The existence
of this (real analytic) map was proved by Campanino and Epstein [1] and
Lanford [5].

From the kneading theory we know that if a map / has the same kneading
invariant as F (i.e. the images of the critical point lie to the left or right of the
critical point for the same iterates of both / and F) and / has no homtervals, then
/ is topologically conjugate to F (see [2]).

The set of non-wandering points for a map /, topologically conjugate to F,
consists of a Cantor set (more exactly, a set homeomorphic to the Cantor set)
C = Pl"=i Ufc-"o1/fc(/n)» and periodic points, lying in the gaps of C. This Cantor
set attracts all points which are not eventually periodic ([6]).

In connection with the general question about the Lebesgue measure of attractors,
one can ask, what the measure of C is. If / satisfies the Feigenbaum conjecture,
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then the answer is zero. Since the rescaling constant for F is 8 < §, the set \Jl"Jo fk{In)
consists of 2" intervals, the longest of which has a length of approximately a8m

(for some constant a). Since 2na8" ->0 as n ->oo, C has Lebesgue measure zero.
The results for diffeomorphisms would suggest that the answer should be zero

for all C1+B maps. However, here the situation is different. Namely, we prove the
following theorem:

THEOREM. There exists a C°° concave map f, conjugate to the Feigenbaum map,
with the attracting Cantor set C of positive Lebesgue measure.

This result does not give the complete solution to the problem. One can ask,
whether there is an example of such a map with some additional properties. The
desired properties would be, for instance:

(a) polynomial behaviour in a neighbourhood of a critical point (i.e. a critical
point not 'flat');

(b) absolute continuity of the unique invariant probabilistic measure on C with
respect to the Lebesgue measure.
Notice that (a) implies that the map is 'almost symmetric' (for x, y with/(jc) =/(y),
the ratio of distances of x and y from the critical point is bounded). It can be
shown that even this 'almost symmetry' cannot be obtained by the technique used
in this paper. Lemma 4 shows that our example does not have property (b).

1. Construction
We start by defining two sequences of points of the interval [0,1]: 0 = a2 < b2 < a* <
b4<af><b(,< • • • <b-t <a-i<bs<a5<b3<a3<bi<a\ = 1, by setting:

\an+2~bn\ =————j.
n(n + 1)

Since
a o / 1 1 \ ° ° / 1 1 \
I I —2 + " 5l= I I - —l = l

n = i\(n + Y)2 n(n+lf) n = An n+V '

we see that all points with even indices lie to the left of all points with odd indices
and there exists a common limit lying between even and odd points

c = lim an = lim bn.
n n

Now we begin to define / :

1 1
/ ( f ln)=l - -

n • n\ n • (n + 1)!

Notice that

O = f(al)<f(b1)<f(a2)<f(b2)<f(a3)<f(b3)< • • •

and
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We define / as a linear (we use this word instead of the more precise 'affine')
map on each interval:

= l[an,bn] ifn is even,
\[bn, an] ifn is odd.

We also set

, , \\bn, an+2] ifn is even,

Since

it remains to define / on intervals ('gaps') Mn. Before doing it, we compute the
slope (i.e. the absolute value of the derivative) of / on Ln. Denote this slope by
\n. Then

. _\f(bn)-f(an)\ n + l
\bn-an\ n\

Set
_ , 2" , 2 ' . 2 2 , 2"-2

(*-n — A n - 1 ' A n - 2 " A n - 3 • . . . " A 1

We have fii = 1 and /xn+1 = An • JU.2. From this it is easy to check by induction that
/in = n! (this result may be surprising at a first glance - the numbers \k are mainly
very small, but their product nn is large).

Consider the intervals Ln and Ln+2 and the gap Mn between them. We already
can draw the graphs of / on Ln and Ln+2', they are segments of straight lines. Let
us see where these lines intersect each other. Denote this point by

(an+2 - x n , f(an+2) -yn) if n is even,
P" (an+2+xn, f{an+2)-yn) if n is odd.

We have then:

f(an+2)-f{bn)-yn_
\/{n{n+\f)-xn "•

Solving this system of equations we get

xn = l/(n + 2)[(n + l)2(n + 2) - (n + 3)]. (1)

For every « > l w e have 0<xn <2|Afn|. To check it, it is enough to notice that the
first inequality is equivalent to

and the second one to
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We consider an auxiliary function <p : R -» U given by

x ifx<0

| (l-i/»(y))dy ifO<x<l
Jo

.2 i fxa l

where

fy /f1 1
<P(y)=\ v(t)dt/\ r>(t)dt and T/(f) = exp———.

Jo / Jo t(t-\)
It is easy to check that <j> is of class C°° and concave.

We show how to use q> for filling the gaps. If a function g defined on (a -e, a ]u
[6, 6 + e) is such that

8 \g(b)+0(x-b) iorxe[b,b+e) (

where

g{a)-g{b) a
A 0 (3)

a-b 2
and a <b, a >/3, then we can extend it to a concave function of class C°° on
(a —e, b +e) by setting for x e (a, b)

(4)

To prove this, it is enough to show that the formulae (2) and (4) coincide on
(a—e,a]<j[b,b+e). This is a simple computation and we omit it. Concavity of g
follows from the fact that

and the concavity of (p.
We estimate the derivative of g

by the concavity of g. For k > 1, we have

Thus,

| ( ' ° | 1 ' | ( k ) | forjfc>l. (6)p | g | , p | p
[a,fc] [0,1]

Notice that condition (3) is equivalent to the fact that the point of intersection
of the lines defined by

y=g(a) + a(x-a) and y =g(b)+P(x-b)

has the first coordinate (a+b)/2.
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Now we are ready to define / on Mn. On the interval (bn, an+2~ 2jcn] (if n is
even) or [an+2 + 2xn, bn) (if n is odd), we define it as the same linear function as
on Ln. Then the gap which remains is such that the procedure described above
may be used. We do it and get / defined on the whole interval [0,1].

2. Properties
From the construction it follows that / is continuous and concave on [0,1] and of
class C°° on [0, c) u (c, 1]. To see that it is of class C°° on the whole interval [0, 1],
we use (5) and (6). Since limn An = 0, we get by (5),

For k>l, we have

lim (AB - An+2)(2xn)
1'ft sup |«p(fc)| = 0,

" [0,1]

because {2xn)
x~k is a polynomial function of n and

n+3

(n + l)(n+2).
Hence, by (6),

Now the smoothness of / follows from the inductive use of the following fact: if i/r
is continuous on [0,1] and of class C1 on [0, c)u (c, 1], and the limit limx^.c i/»'(x)
exists, then </r is of class C1 on [0,1].

Hence, we have proved the following properties of / :

(A) f is concave and of class C°° on [0,1].

Remark. Our function is defined on [/2(c),/(c)]. If we want it to be defined on
some [a, b] such that f{a) =f(b) = a then we can take a = -\,b=\, and set

b+l for xe [-1,0),
-2x+2 for xe (1,1],

and/ remains C°° and concave. Notice also that outside [0,1] the slope of / defined
in this way is larger than 1.

We continue investigating the properties of/. For n > l w e set gn =/2" 1 ~\nan),i]
and hn =f2"'\

LEMMA 1. For every n > 1 we have:
(a) hn(an) = an+1;
(b) hn(bn) = an+2;
(c) hn(an+1) = bn;
(d) hn(c) = an;
(e) gn is linear and has slope /nn;
if) gn is orientation-reversing if n is even and orientation-preserving if n is odd;
(g) fis linear on /'([/(«„), 1]), i = 0,1, 2 , . . . , 2""1 - 2 .
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Proof. Notice first that since

f(an)<f(bn)<f(an+1)<l=f{c),
(e) implies:

\hn{bn) - hn(an^)\ = \gnif(.bn)) ~ gn(f(an+j)\ = -
n(n+ir

and

\hn(an)-hn(c)\ = \gn(f(an))-gn(l)\ = --
n

Consequently, (a), (e) and (/) imply (b), (c) and (d).
Now we shall prove (a), (e), (/) and (g) by induction. For n = 1, we have 2""1 = 1

and gn =/° = id. Hence, (e), (/) and (g) hold for n = 1. We have /(ai) = 0 = a2 and
therefore also (a) holds for n = 1.

We assume that (a), (e), (/) and (g) hold for n =k and shall prove them for
n =k + \. We have shown already that (b), (c) and (d) hold for n=k. By (6)
and (c),

and thus (a) holds for n = k +1. By (e) (for « = fc), gfc is monotone, and hence by
(c) and (d) (also for n = it), we have g<c([/(afc+1), 1]) = Lk. Therefore

is a composition of three linear maps, and consequently is linear itself. Its slope is
equal to

and this proves (e) for n = k +1 . It is affecting the orientation in the same way as
f\Lk, and this proves (/) for n = k +1. To prove (g) (for n = k +1), notice that for
z = 0,1, 2 , . . . , 2(c"1-2 it follows immediately from (g) for n =k that / is linear
on f'([f(ak+i), 1]). For i = 2k~l-l we know already that f([f{ak+l), l]) = Lk. For
/ = 2k~\ 2k~i +1,..., 2k - 2 we also have to use the fact that

-• I .• 2 k - 1 I

/ I \.f(&k +1)»1 j J J O^\ t/(fl|c + l)' 1]

and
/ ° gk([f(ak+i), 1]) =/(Lt) c [f(ak), 1],

and (g) for n = k + 1 follows. •
Set

[[aB, aB+i] if « is even,
l[an+i, an] if n is odd,

n - 1 , 2 ,
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LEMMA 2. The sets Kn have the following properties:
(a) The sequence (Kn)™=.i is descending;
(b) hn(Kn+1) = Ln;
(c) hn(Kn) = Kn;
id) The setsf{Kn), i = 1, 2, 3 , . . . , 2""1 (for n fixed) are disjoint;
(«) /!/'<*„) « linear for i = 1, 2, 3 , . . . , 2""1 - 1 ;
(/) f2-'+i(Kn+1)nf(Kn+1)= 0 /or/ = 1, 2, 3 , . . . , 2"-1;

:7f(Kn)\ \n + l
(where \ • \ denotes the Lebesgue measure of a set).

Proof, (a) follows from the definition of the points an. (b) follows from lemma l(c),
id) and (e).

By the definition of the points an, bn and their images, we have f(Ln)r\f(Kn+i) =
0 . Now, (/) follows from this, (b) and lemma 1 (g). Since Lk \jKk+l^Kk, (d) for
n = k +1 follows from (/) and (d)iorn=k (for n = 1 it is obvious), (e) is equivalent
to lemma l(g). (c) follows from lemma 1 (a), (d), (e). To prove (g), we have to
make computations, using (b)-(f):

[Jf(Kn+1)
2-.-1

= I \f(Kn+1)\= I
i = 1 i = 1

\f(Kn+1)\ + \f(Ln)\

But we have

\f(Kn+1)\ + \f(Ln)\ (1 - an+1) + (f(bn)-f(an))
a\f(Kn)\ \-an

We claim that

(£?) / has the same kneading invariant as the Feigenbaum map.

To prove this, we have to know the trajectory of c. By lemma 1, hn(c) = an and
hn is monotone on [an, c] (or [c, an]). Besides, hn(an) = an+i, and hence c belongs
to hn((an, c)) (or hn((c, an))). Consequently, if we set

1 if fn(c)<c,
l - l if fn(c)>c,

then

and

Hence, f I • 6 • • • • • & - = - 1 and

fi • ft • • • • • ft-+< = - f t • ft • • • • • 6 for / = 1, 2, 3 , . . . . 2" - 1.
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By the results of [4], this is equivalent to the existence of periodic points of all
periods being powers of 2, and of no other periods. This proves (B).

Define

By lemma 2, and since

2 1 - 1

i = l '

we have

i.e. the set S has positive Lebesgue measure.

LEMMA 3. The measures of the sets S nf'(Kn), i = 1, 2, 3 , . . . , 2n~\ are

n-i fr . «., + 1

\s\ • n -~^,
it i fc+2

where (e\,..., £&) runs ouer a// 0-1 sequences of length n—l.

Proof. We use induction with respect to n. For n = 1, the conclusion of the lemma
obviously holds. Suppose now that it holds for n = m; we shall prove it for n = m +1.

Every set of form S n / 1 (A"m), i = 1, 2, 3 , . . . , 2m~\ is a union of two disjoint sets:
S nf'(Km+1) and 5 nf(Lm). Since

and all f'"1, i = 1, 2, 3 , . . . , 2m~\ are linear on / (^ m ) , we have

|5n/ '(Lm)|

Hence, the measures of S nf'(Km+i) and S nf2"" 1+'(Km+l) are

and
m + 2 ' ' x m" m + 2 '

But if

then these measures are

LEMMA 4. (a) S is a Cantor set.
(b) The measure v on S, defined by v{f{Kn)) = 1/2""1 for i = 1, 2, 3 , . . . , 2"'\ is
not absolutely continuous with respect to the Lebesgue measure.
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Proof, (a) By the definition of S, it is enough to show that maxisis2"-1 \S r^f'(Km)\ ->
0 as n -* oo. But indeed,

n-l t 4- 1 n + 1 / 1\

max \Snf(Kn)\=U-r-^=n ( 1 - T
as n -*oo. This proves (a).

(6) follows from the fact that for every n, one can find a set of v- measure \ and
Lebesgue measure |S|/(n + l). This set is the union of these intervals f'(Kn)
(intersected with 5), for which the corresponding en_i is equal to 1. •

Now we shall prove that
(C) / is topologically conjugate to the Feigenbaum map.

For this we have to prove that / has no homtervals. Consider again the gap Mm

between Ln and Ln+2. It is mapped by / monotonically and then by/2" - 1 linearly
(by lemma l(e) and since f(Mn) <= [f(an), 1]). Since we have f(an) <f(bn) <f(an+i) <
f(an+2), hn(bn) = am+2 and hn(an+i) = bn, our interval Mn is mapped by hn homeo-
morphically onto some interval containing Mn. By lemma 1(/), hn\Mn reverses
orientation. Hence, hn \M« has a unique fixed point. Call this point «„.

We know that / has slope \n on Ln, Kn+2 on Ln+2, and f2" '~x has slope fin on
if(an), 1]. Therefore (taking into account the orientation), we get:

(7)

(8)

By the construction, / (and consequently, also hn) is linear on the interval
[an+2 + 2xn, an] (if n is odd) or [an, an+2-2xn] (if n is even), where xn is given by
(1). If hn has a fixed point on this interval, this fixed point has to be equal to un.
To find it we have to solve the equation (where un = bn +/„):

bn + tn = an+2-tn(n + l)

(remember that the derivative is given by (7)). We get for tn:
tn = (an+2-bn)/n+2.

This implies that the sign of tn is the same as of an+2-bn. Hence, to prove that un

lies on the considered interval, it is enough to show that |?n| + 2.xn ̂ \an+2-bn\ (cf.
figure 1). This inequality is equivalent to (n + I)(n2 + n +2)>n + 3, which holds
because n +1 > 1 and n 2 + 2 > 3. Hence, we have shown that

h > „ ) = -(n + l). (9)

Since hn is monotone on [c, bn] (or (7>n, c]) and

hn(bn) = an+2, hn(c) = an,
the interval Mn is mapped by hn homeomorphically onto some sub-interval of
Mn uLn. The interval Mn \jLn is divided by un into two parts. By (7), (8), (9) and
the facts that / is concave and hn is linear on f(Mn uLn), the slope of hn on one
of these parts is constant and equal to n +1 and on the other one is at least (n + 3)/
(n + l)(n+2). Since
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FIGURE 1

and hn reverses orientation on Mn u Ln, we have

Wn\Mn\>\. (10)
Suppose now that / is a homterval. Since S is a Cantor set, / has to intersect

some of its gaps (or an 'outer gap'). If it also intersects 5, then it has to contain
some f{Kn) (remember that / is open). But some image of f(Kn) contains c, and
we get a contradiction. Hence / (and all its images) is disjoint from 5.

Since, by lemma 1, all points an and bn are images of c, they all belong to S (S
is invariant). Consequently, none of these points belong to /, or its images. We have

[0, l] = {c}uU(M,uin).
n>0

We take the subsequence of images of /, (/fc<n>(/))"=i, defined by induction:
first, k(0) = 0, second if fk""(/)cAf«, then k(n + l) = k(n) + 2m; if fk{n\j)cLm,
then k(n +1) = k(n) + 2 . By (7) and (10), we get

(ID

Therefore, for all n, |/fc<n>(/)| s |/|. This is possible only if / is contained in a basin
of a sink. But this contradicts (11).

Hence, / has no homtervals, and consequently, (C) is proved.
To complete the proof of the theorem, we need to prove only that S = C

where the set C was defined in the introduction. But this follows from the straightfor-
ward remark that for every descending sequence (Qn)"=i of neighbourhoods of c
with fX=i Qn = {c}, the set I T - ! U?=ofk(Qn) is the same.
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