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GENERALIZED ONO INVARIANT AND RABINOVITCH'S

THEOREM FOR REAL QUADRATIC FIELDS

RYUJI SASAKI

§ 1. Introduction

Let d be a square-free integer. Let

ω =
V d if d ΞΞ 2, 3 (mod 4)

i(l + V~d) if d ΞΞ 1 (mod 4),

and {1, ω} forms a Z-basis for the ring of integers of the quadratic field

Q(V d). We denote by Δ and hd the discriminant and the class number

of Q(V d), respectively. We define the polynomial P(X) by

P(X) = X2 + Tr(ω)X + Nm(ω)

where Tr and Nm are the trace and the norm. When d is negative, i.e.,

Q(V d) is an imaginary quadratic field, T. Ono define the natural number

Pa by

pd= Max degP(α) d Φ -1, - 3 ,

Here, for a positive integer iV, deg N means the number of prime divisors

of N (counting multiplicity). Concerning the Ono invariant pd) we have

the following ([8], [9]):

THEOREM. Assume d < 0, then we have

(1) Pa^hd,

(2) p d = l < = » Λ d = l ,

(3) Pd = 2£=$hd = 2.

(2) is so-called Rabinovitch's theorem. In this paper we define pd
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for a positive square-free integer d, which we call the generalized Ono

invariant (cf. §3), and we shall prove the following (cf. §4):

MAIN THEOREM. Assume d > 0, then we have

(1) P*£hd9

(2) pd = 1 Φ=Φ hd = 1.

When d — 4/n2 + 1 or d = m2 + 4 with odd m, M. Koike proved (1)

and H. Yokoi proved (2) ([4], [12]). By a different method from theirs, we

gave another characterization of real quadratic fields Q(V d), d = m2 + 4,

with hd = 1 ([10]).

Using our theorem, we can get some necessary conditions for hd = 1.

We shall give some of them in the last Section 5, which contain results

proved in [1], [6], [7] and [11].

§ 2. Preliminaries

We fix a positive square-free integer d. Let ω and Δ be as in the

introduction. The positive quadratic irrational can be expanded into the

periodic infinite continued fraction:

ω = [ α 0 , ά u , ά k ] = [ α 0 , Q>u •> a k , β i , • • • , < * * , • ]

1

α2 + —

where α0, al9 are positive integers. We call k = kd the period of ω.

We shall inductively define integers At (>0) and JB€, i = 0,1, , by

Ao = 1, β 0 = Tr(α0 — ω), Ax = —Nm(α0 — ω),

J3<+1 - -B, + 2α i+1A ί+1 and A,+1 = (Bt + V~J)l2ωi+ί

where ωi + ί = [αί + ί, α i+2> •] is the (i + 2)-th complete quotient of (cf. [3]

Ch. 10 Th. 8.1). By the periodicity of ω, we have Ak + i = A, and Bk + ί = B{.

As is well known, the integral quadratic forms with the discriminant

J = Bl + 4AtAί+1:

Ft = (lYA.X2 + BtXY + (-ϊ)ί+1Aί+ίY
2

are reduced in the classical sense and equivalent to each other (cf. [2]

Ch. VII).
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For a, β in Q(V d)f we denote by [a, β] the Z-submodule of Q{\/ d)

generated by a, β.

LEMMA A. The modules

a. = |*Af, — {Bt + Tr(α))) - ω\

are principal ideals.

Proof. By a simple calculation, we have

/I \

Nmί—(B t + Tr(ω)) — ω) = — A^A^!.

It follows that α* becomes an ideal. Now we shall show that it is

principal. Assume ί is even and put \{Bt + Tr(ω)) = bt. Consider the

correspondence between the ideals in Q(V d) and integral binary quadratic

forms with the discriminant Δ. Then the ideal at and the unit ideal

[1, aQ — ω] correspond to Ft and Fo, respectively. We notice here that

the order of bases is carefully chosen. Since Ft and Fo are equivalent,

at and [1, ω] — [1, α0 — ω] are also equivalent in the narrow sense; hence

cti is a principal ideal. When i is odd, the product of ideals

[A,, b, - ω][Aι+1, b, - ω]

is equal to the principal ideal [AiAί + u bt — ω] = (bt — ω). Therefore it

suffices to show that [Aί + 1, bt — ω] is a principal ideal. This ideal cor-

responds to the form

which is improperly equivalent to Ft. This means that [Aΐ+1, 6t — ω] is

equivalent to the unit ideal (in the wider sense); hence at is a principal

ideal. Q.E.D.

The following is fundamental in the theory of quadratic indeterminate

equations (e.g. cf. [3] Ch. 10 Th. 8.2):

LEMMA B. The equation X2 - Ύr(ω)XY + Nm(ω)Y2 = (-1VA, is al-

ways soluble. If ί Φ ( — VfAi and \ί\<.\\l Δ, then the equation X2—

Ύr(ω)XY + Nm(ω)Y2 = t has no solution.
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§ 3 Generalized Ono invariant

Let the notation be as before. We denote by a(d) the set of positive

integers:

α(d) = {Λ = 1, Λ, . . - , 4 ^ }

where k is the period of ω. Using a(d), we shall extend the notion of

the degree.

For a natural number N, we define the degree of N with respect to

the set a(d) by

degα(d)2V=
there exists a sequence (Nl9 N2, , N£)

of divisors of N satisfying (1) and (2).

(1) 1 < Nly Nt divides Nί+1 for 1 ^ i < £.

(2) Min {Nj/Nt, NNJNj] £ a(d) for 1 ^ i < j ^ £.

EXAMPLES 1. If a(d) = {1}, then degα(d)iV = deg N.

2. If d = m2 + 1 or m2 + 4 (m: odd), then jfed = 1 and α(d) = {1};

hence we have

degQ{d)N = degiV for all N.

3. If d = 4m2 + 1 > 5, then fcd = 3 and a(d) = {1, m}; hence we have

degα(d)iV = deg N for iV < m2.

In fact, let iV = p^s * * * Pt (t = deg iV) be the decomposition into prime

divisors. Set Nt = px - - - pt for 1 <̂  i ^ ί. If N < m2, then we have

(NJNiXNNJNj) = N<m. It follows that

1 < M4i = Min {NJNi9 NNJNj} < m.

Therefore Mti & a(d) = {1, m} for 1 ^ i < ; ^ ί, i.e., the sequence (N19 N2,

• , iVt) satisfies the conditions (1) and (2). Thus we have the assertion.

Now we define the generalized Ono invariant pd by

pd = Max (degβ(d)(-JP(α))),

where P(X) = Nm(X + ω) is the polynomial introduced in Section 1 and

[r] is the greatest integer not exceeding a real number r. Notice here

that P(a) is a negative integer for a in the above interval.
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§ 4. Proof of Main Theorem

When once we get the generalized Ono invariant for real quadratic

fields, our main theorem will be proved by the same way as in the case

of imaginary quadratic fields (cf. [91).

LEMMA. Let α, b (α > 0, b ^> 0) be integers such that a divides

Nm(6 + (o) and 2a < V Δ . If the ideal [α, b + ω] is a principal ideal, then

a e α(d).

Proof. If [α, b + ω] is a principal ideal generated by x — yω (x, y e Z ) ,

its norm, is equal to a = |Nm(x — yώ)\ — \x2 — Ύτ(ω)xy + Nm(ω)y2\. Since

2a < \l Δ, α coincides with some A4 by Lemma B. Q.E.D.

Proof of Main Theorem. (1) Assume p d = degα(d)(—P(b)) with 0 ^ 6

<J [iKV^ — Tr(ω))l. Let (iVi, , N4), t = p d , be a sequence of divisors of

N= —P(b) satisfying the conditions (1) and (2) in Section 3. Then the

ideal classes of pt — [Λ ,̂ b + ω], i — 1, 2, , ί, are mutually distinct. In

fact if pi is equivalent to pj9 then both of [NJN^ b + ω] and [NNJNί9

b + ω] are principal ideals. Moreover we have (NNJNjXNjIN^ = iV =

— P(b) ίg — P(0) = Nm(ω) ^ i J, where the last equality holds if and only

if d = 2, 3 (mod 4). If (NNJN XNJNi) = \ Δ = d and ΛflV /iV, = iN /̂iV,, it

follows that d is a square number; this is impossible. Thus we have

Min {NNJNJ9 iV̂ /JVJ < \ JΊΓ. By the Lemma above, it is contained in

a(d): this contradicts to the condition (3). Therefore we have pd ^hd.

(2) It is sufficient to show that pd = 1 implies hd = 1. Suppose

hd >̂ 2. Let p be a non-principal prime ideal having the smallest norm.

Then Nm p — p is a rational prime number and 1 < Nm p <C^Λ/ d <, j \ / Δ

(cf. Minkowski's lemma). Set p — [p, b + OJ] (O^bKpK^VΔ) ana

q = [N/p, b + ω], where iV = -iV(6 + ω), then pq = [AΓ(6 + ω), 6 + ω] is

a principal ideal hence q is not a principal ideal and Nm q = ΛΓ/p >̂ p.

The sequence (iV/p, JV) satisfies the condition (1) in Section 3 and

Min {NI(N/p)9 N(N/p)/N} = p. We shall show p £ a(d). Suppose p = A^ e α(d).

By Lemma A, we know that ĉ  = [Aiy bt — ω], bt = i(Bt + Tr(ω))> is a

principal ideal. Since p — At divides both of Nm(6 + ω) and N m ^ — ω),

p divides Nm(6 + ω) - Nmίfe, - ω) = (6 + 6^(6 - b, + Tr(ω)). If 6 + 6,

= np ίor some ne Z, then [p, 6 + ω] = [p, πp — bt + ω] = [p, 6̂  — α>] = <xt

is a principal ideal. If b — bί + Tr(cw) = /ip for some ne Z, then [p, 6 + ^1

= [P> &i — Tr(ω) + np + ω] = [p, 6t — ω7] = [p, 6, — ω]' = α' is a principal
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ideal, where o!t is the conjugate of at. Thus we get p&a(d); hence the

sequence (N/p, N) satisfies the conditions (1) and (2) is Section 3. This

means pd ^ degα(d)(-P(6)) ^ 2. Q.E.D.

§ 5. Applications

In this section we shall give necessary conditions for hd to be one

in several cases where the period kd of ω is relatively small. For this

problem, we refer to [1, 6, 7, 11].

We begin with the following which is proved in [10]:

PROPOSITION 1. (1) Assume d = 2, 3 (mod 4) then hd = kd = 1 if

and only if d = 2.

(2) Assume d = 1 (mod 4); then hd = kd — 1 if and only if d = 5, or

pd = l and P([Λ/d]) = — 1. In this case d = m2 + 4, where m is an odd

prime or 1.

In the following we prove only Proposition 5 and Proposition 6. By

similar ways, the others will be proved.

PROPOSITION 2. Let d = m2n2
 + 4 W Ξ 1 (mod 4) (m, n:odd; n > 0,

m > 1); then kd = 2 and a(d) = {1, m}. If hd = 1, £/ιen m and ran2 + 4

are primes.

PROPOSITION 3. Let d — m2 + r = 2, 3 (mod 4) swc/i ί/iaί r 12m and

m ^ r > 1; ί/ien kd = 2 and a(d) = {1, r}. // Λd = 1, then r = 2 and

ί—J = — 1 /or any odd prime divisor p of m, where (— J denotes the

Legendre symbol. In this case m2 + 2 or \(m2 + 2 ) is a prime according

as m is odd or even.

PROPOSITION 4. Let d = 4τn2 + 1 (m > 1); ί/ien &d = 3 and a(d) =

{1, m}. If hd = 1, Z/ien m and 4m2 + 1 are primes.

PROPOSITION 5. Let d = m2 — r = 1 (mod 4) swc/i ί/iaί m is euen and

0 < r |ra; /̂ιen kd = 4 and a(d) = {1, i(2/n - r - 1), r}. 7/ Λd = 1, ί/ien r

and d/r are primes.

Proof. Since m is even, r = 3 (mod 4). By a simple calculation, we

have kd - 4 and α(d) = {1, i(2m - r - 1), r}. Suppose r = r'r" (1 < r r

^ r"); then r7 = 2 ^ + 1 for some 0 < xr < [iW~d - 1)]. Set JV = -P(x'),

and r/ divides N = -(x7)2 - ^ + i(m2 - r - 1) - i(m2 - r - (2xr + I)2).
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Consider the sequence (r', N) of divisors of N. Then Min {N/r\ Nr'/N}

= Min {|(m2 - r - (rO'/r', r'} = r' £ α(rf); hence hd^pd^ άega(d)N ^ 2.

Therefore we see that r must be a prime. On the other hand, by the

theory of genera, we see that djr is a prime. Q.E.D.

P R O P O S I T I O N 6. Let d = m2 — r = 2 , S ( m o d 4) such that r\2m and

1 < r ^ ra; then kd = 4 ami a(d) = {1, 2/n — r — 1, r}. If hd = 1, £/ιera

r = 2 a/zd I ——) = — 1 for any odd prime divisor p Φ 2m — 3 of m. In
\ p )

this case m2 — 2 or \{m2 — 2) is a prime according as m is odd or even.

Proof. By a simple calculation, we get kd = 4 and a{d) — {1, 2m — r

— 1, r}. Suppose r is even and r > 2, then r' = r/2 is odd. Set iV =

- P ( r O Then r r divides N = - P ( r O - m2 - r - (rθ2 - r ^ / r 7 - 2 - r7).

Consider the sequence (r',N) of divisors of JV, then Min {iV/r7, Nr'/N} =

Min {/nVr7 - 2 - r7, rx} = r r g α(d); hence pd ^ degα((ί)iV ^ 2. This con-

tradicts to hd = l. If r = 2r' + 1 is odd, then r7 divides - P ( r 7 ) = m2 -

r — (rf)2 = (m — r; — ί)(m + r' + 1). If we consider the sequence (m — r'

- 1, JV), JV= —P(r'), we have p d ^ degβ(d)JV ^ 2. Thus we have r = 2

provided hd = 1. Suppose that r = 2 and there exists an odd prime

divisor p ^ 2m — 3 of m with (——) — 1. Then we have a solution

\ p )

s (0 < s < p ) for the equation X2 Ξ — 2 (mod p). Then p divides —P(s)

= w2 - (2 + s2) = p(m2/p - (2 + s2)/p). Set JV; = p and N2 = N = -P(s),

then Min {JVg/JV̂  NNJN2} = p £ a(d); hence p d ^ degQ(d)Λ/" ̂  2. This con-

tradicts to hd — 1. The last assertion comes from the theory of genera.

Q.E.D.
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