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ON THE RANK OF THE FIRST RADICAL LAYER OF
A P-CLASS GROUP OF
AN ALGEBRAIC NUMBER FIELD

HIROSHI YAMASHITA

Abstract. Let p be a prime number. Let M be a finite Galois extension of a
finite algebraic number field k. Suppose that M contains a primitive pth root
of unity and that the p-Sylow subgroup of the Galois group G = Gal(M/k) is
normal. Let K be the intermediate field corresponding to the p-Sylow subgroup.
Let g = Gal(K/k). The p-class group C of M is a module over the group ring
Z,G, where Z, is the ring of p-adic integers. Let J be the Jacobson radical
of Z,G. C/JC is a module over a semisimple artinian ring F,g. We study
multiplicity of an irreducible representation ® apperaring in C/JC and prove
a formula giving this multiplicity partially. As application to this formula, we
study a cyclotomic field M such that the minus part of C is cyclic as a Z,G-
module and a CM-field M such that the plus part of C vanishes for odd p.

To show the formula, we apply theory of central extensions of algebraic num-
ber field and study global and local Kummer duality between the genus group
and the Kummer radical for the genus field with respect to M/K.

Introduction

Let k be a finite extension of Q and M be a finite Galois extension of
k with a Galois group G. Let p be a prime number. Let H be the p-Hilbert
class field of M. The Galois group Gal(H /M) is isomorphic to the p-Sylow
subgroup C of the ideal class group of M. Let F,, be the field of p-elements
and denote by F,G the group ring of G over F,,. Let J be the Jacobson
radical of F,G. C ® F,, is an F,G-module and C ® F,,/JC @ F,, is called the
first radical layer of C @ F,.

We suppose that the p-Sylow group G, of G is a normal subgroup. Let
K be the intermediate field of M/k corresponding to G,. K is a Galois
extension of k such that p /K : k]. Denote by g the Galois group of K/k.
The abelian p-genus field of M/K is the compositum H*M, where H2P
is the maximal abelian subfield of H/K. The central p-genus field H"
is the intermediate field of H/M corresponding to Haer C°~1. We shall
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show that J is generated by {g—1: g € G,}. Therefore, C® F,/JC @ F), =
Gal(H*" /M)®F, and F,G/J = F,g. This means that Gal(H*" /M )®F,
is an Fpg-module which is isomorphic to the first radical layer.

F,g is a semisimple artinian ring, because of p f(g : 1), (c.f. Theorem
3.14, Curtis-Reiner [2]). By Theorem 1.3.5, Benson [1], we have an isomor-
phism

Fog =P M, (A)
=1

of rings, where A; is a division ring. Let L; be the minimal left ideal of
My, (A;). Fpg has exactly r isomorphism classes of irreducible modules L;,
i =1,---,r. Denote by ®; the irreducible character afforded with L;. Put
B(g) = {®; : 1 < i < r}. This set is called a basic set of irreducible F-
characters of g. These irreducible characters are linearly independent over
F,, (c.f., Lemma 3.3, Chapter 19, Karpilovsky [5]). Let 1; be the inverse
image of the identity matrix of M, (A;) with the above isomorphism. We
see

T
1= > L, Ll = &l
=1

When an irreducible character ® is given, there is ®; such that ®; = ®.
Hence, we write Ag, L, 1o for A;, L;, 1,. We also write dg for n;.
There is an integer ag > 1 such that

lo Gal(H“™ /M) ® F, = L§.

We shall give a formula describing the value of ag in the present paper.
This will be done in Theorem 9 in §4. We are able to determine for what
M and ® the value of ap equals 0 or 1. The number of generators of C over
Z,G is obtained from the values of as, where Z,G denotes the group ring
of G over the ring Z,, of p-adic integers. Suppose p is odd. When k = Q and
M is a cyclotomic field and if ap < 1 for every ® such that 71¢ # 1g, we
have CT~! & (7 —1)Z,G /(7 — 1)S, where 7 is the complex conjugation and
S is an ideal generated by the Stickelberger elements (c.f. Sinnott [9]). In
general, it is equivalent to C = 0 that ag vanishes for every ®. We are able
to apply this to study the Greenberg conjecture (c.f. Greenberg [3]). We
could obtain a criterion whether the conjecture holds in its ”trivial case”.
We denote by dim X the dimension over F), for an F,-module X. The
outline of our argument is as follows. Put M?» = M N H?". There is a
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non-negative integer 6(®) such that

]‘ : a a
ao = G dim 1¢ Gal(H*™ /M?®) @ F,, + 6(®).

We have the following inequality:
dim 1o Gal(H*®/K) ® F,, > dim 1o Gal(H*®/M**) @ F,,
>dim 1g Gal(H*/K) ® F), — dim 1 Gal(M®" /K) @ F,.
Hence, if 1¢ Gal(M®/K) ® F,, = 0, we have
dim 1 Gal(H** /K) ® F, = dim 1 Gal(H**/M*) @ F,,.
We shall obtain a formula of the value of
dim 14 Gal(H*™™/K) @ F,,

by studying the representation of g on Gal(H**/K) ® F,. In particular,
when G = G, x g, we have §(®) = 0 and dim 1¢ Gal(M?*"/K) @ F, = 0 if
® is not the unit character .

§1. The p-genus and central p-genus fields

The Jacobson radical J of F),G is the intersection of every maximal left
ideal, which is a two-sided ideal of F,G. Put R = F,G/J.

LEMMA 1. J is generated by {g —1: g € Gp}, and hence, R = F)g.

Proof. Let F,G — Fp,g be a homomorphism induced from the canoni-
cal map G — g. Let J’ be the kernel of this homomorphism. .J' is generated
by {9 —1:g € Gp} over F,,. Since F,, is a local commutative ring, we are
able to apply Proposition 5.26 in Curtis-Reiner [2] to this homomorphism.
We have J' C J. J/J' is contained in the Jacobson radical of F,G/J" = F,g.
Therefore, J/J' = 0. We obtain J = J’, and hence F,G/J = F,g.

0

We identify F,G/J with F,g in the remainder part. Put fo = dim Ag.
fo equals dim Homp(Lg, L), (c.f. Theorem 1.3.5, Benson [1]). We have

(1.1) dimLe = fodo.

Denote by A the group ring Z,g. We see R = A ® F,,. Since p f(g:1),
the center Z(A) (resp. Z(R)) of A (resp. R) is generated by {C(o) =
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ﬁZTegTUT_l : 0 € g}. Hence, Z(R) is the image of Z(A) with the
canonical map. We have the assumption of (iii) of Theorem 1.9.4, Benson
[1] is satisfied for A and R. Thus, every 1lg is lifted on a primitive central

idempotent 1 of A and
1= > s
@

Denote by Rg the simple ring 1g R. Let Y be a finitely generated A-module.
We have an isomorphism 1¢(Y ® F)) = iq,Y@Fp. Since Y @ F), 2 R®4Y,
we see 1gY ® F, = Ry ®4Y. Denote by rs(Y’) a non-negative integer such
that

oY ®F, & Regw,Y = L),

We use Ry ®4 Y rather than 1Y ® F, in the sequel. We have

(1.2) re(Y)

dim Ry ®4Y, dimY @F, = > re(V)feds.

_ 1
fods S

LEMMA 2. Let 0 - X — Y — Z — 0 be an exact sequence of A-
modules. Then, we have an exact sequence

Tor” (12, F,) — Ro ©4 X 5> Ro ©4Y — Re ©4 Z — 0.
If 167 is Z,-torsion free or if 1Y is an R-module, f is injective.
Proof. Let U be an A-module. We have
Tore? (1gU,F,) = 1aU @z, F) = Re ®4 U.
The exact sequence follows from an exact sequence
0 —1sX — 1LY — 1Z —0.

If 147 is Z,-torsion free, we have Tor’?(152,F,) = 0. If 1Y is an R-
module, we have 1Y = 16X ® 162 , because R is semisimple. Hence, this
short exact sequence splits. The lemma is proved.

By Lemma 1, we have
1o(C®F,/JCRF,) = Ro®@4 (C/CPUUyseq,C7 ") & 1 Gal(H ™ /M) ®F,,.

Let C'ys be the idele class group of M. By cup product with the canoni-
cal class of H%(Gp,Cpr), an isomorphism H3(Gp,Z) — H Y(Gp,Cpr) is
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defined. This isomorphism is a g-isomorphism. Furthermore, there is a sur-
jective homomorphism onto Gal(H™ /2P M ):

H3(G,Z) — H NG, Cy) — Gal(H®™/H™M),

(c.f. Jehne [4], Miyake [7], Shirai [8]). Since the p-primary torsion sub-
group of H73(G,,Z) is isomorphic to H3(Gp,Z,), 1o Gal(H*"/H?P M)
is a homomorphic image of 16 H~3(G), Z,). By towers of Galois extensions
Heent 5 H*P M 5 M and H*® 5 M2 5 K, we have exact sequences

13) 1 — Gal(H®" /H* M) — Gal(H*" /M) — Gal(H® /M) — 1,
' 1 — Gal(H*® /M) — Gal(H*®/K) — Gal(M?®/K) — 1.

Let © be the image of H3(G,,Z,) into Gal(H*"/M) @ F,, of the ho-
momorphism obtained by combining the surjection of H~3(Gp,Z,) onto
Gal(H" /H*P M) with the canonical map Gal(H*™/H*®M) ® F, —
Gal(H*"/M)®F,. Gal(H*®/K) is an abelian p-group, because Gal(M?*/K)
is an abelian p-group.

THEOREM 3. Denote by 6(®) the value of r(©). We have

- 1
dim 1o H 3(Gy, Zp) @ F, = dim Re ®4 H™3(Gp, Zy).
f<I>d<1> fq>d<1>

Further, the value ap = ro(C ® F,,/JC ® F)) satisfies an inequality

0(®) <

ro(Gal(H® /M®™)) +0(®) = agp > reo(Gal(H*™/K))
—re(Gal(M® /K)) + 0(®).

If one of 1g Gal(M?®®/K), 1¢ Gal(H*®/K)? and 1g Gal(H?®/M?") van-
ishes, we have

ro(Gal(H® /K)) = re(CGal(M®™/K)) + ro(Gal(H® /M?P)),
ap = ro(Gal(H®/K)) — re(Gal(M™/K)) + (D).

Proof. Since H™3(G),Z,) is an A-module, we have

ro(H 3 (Gp, Zy)) dim Rp @4 H (G, Z,)

" fads
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from (1.2). Since © is a homomorphic image of H (G, Z,), we see 0(®) <
re(H3(Gp,Zp)). By applying Lemma 2 to the sequence (1.3), we have the
following exact sequences:

0 — Rp ®4 0 — Rg @4 Gal(H*™ /M) — Rg @4 Gal(H* /M) — 0,
— Rp ®4 Gal(H™® /M) L, R @4 Gal(H™ /K)
— Rgp ®4 Gal(M®®/K) — 0.

The inequality concerning ag follows from these sequences. We also have f
is injective if 14 Gal(M?P/K) = 0 or if 1 Gal(H?"/K) is an R-module, or if
1s Gal(H?®/M?) = 0. 1g Gal(H?®/K) is an R-module if 1 Gal(H?"/K)P
= 0. If one of these conditions is satisfied, 7¢(Gal(H?P/M?P)) is equal
to difference of re(Gal(H*/K)) and re(Gal(M?P/K)). This proves the
theorem.

Let b be a normal subgroup of g and put g’ = g/h. Denote by R’ the
group ring Fpg’. Let Iy be the ideal of R generated by {o —1:0 € h}. We
have R’ = R/Iy. Denote by m the canonical homomorphism R — R’. Note
im 7 = R and ker m = I. Since b is normal, an element

1
1h = WOZEIJU

of R is a central idempotent and ker m > 1 —15. Denote by 7 restriction of 7
onto 1y R. 7 is an isomorphism, because of 7(1yR) = 7(R) and dim 1, R =
dim R’. We have a decomposition

(14) R = 1hR@(1—1b)R, 1yR = R/, (1—15)R = Iy.

Hence, ker 7 = (1—1)R. Let ¥ be an irreducible character of g’ and denote
by 1y the corresponding primitive central idempotent of R’. We see 771 (1y)
is also a primitive central idempotent. Let ® be an irreducible character
afforded with a minimal left ideal of #~!(1y)R. We have 1 = 7 1(1y)
and ® = W o 7. Conversely, if 0lg = 1g holds for every o € b, we have
1ply = 1lg. Hence, 1R = 1R’ by (1.4). Let ¥ be the character of g
afforded with a minimal left ideal of 1 R’. We have ® = W o 7. Therefore,
we denote by the same symbol ® this character .

LEMMA 4. Suppose there are normal subfields K' of K/k and M’ of
M/E such that M' D K', M = M'K and M'NK = K'. Puth = Gal(K/K").
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Let H' be the p-Hilbert class field of M'. Denote by H'*®™ the central p-genus
field of M'/K' and by H'® the mazimal abelian subfield of H'/K'. Let ©'
be the image of H=3(Gp, Z,) into Gal(H"**"*/M') @ F,. Suppose olg = 1o
holds for every o € . Then,

ro(Cal(H® /K)) = re(Gal(H™*/K")), 7$(0) = r5(0').
Moreover, we have r¢(Gal(H®™ /M)) = re(Gal(H'*™ /M")).

Proof. We have Gal(M'/K') = G, and Gal(M/M') = §. Let H; be
the maximal abelian subfield of H/K'. We see H*® > H;. Gal(H*/K")
is a semidirect product of the p-Sylow subgroup Gal(H?P/K) and b, be-
cause K/K' is a Galois extension and p f[K : K']. Hence, Gal(H1 K/K) =
Gal(H*/K)/ [Toes Gal(H?*?/K)?~!. We have the following isomorphism of
R-modules:

Gal(H\K/K) ® F), = Gal(H**/K)®@F,/ > (Gal(H*®/K) @ F,)7 ",
og€h

By (1.4), we see Gal(H** / K)®F, = 1, Gal(H* / K)®F,®1, Gal(H** /K)®
F,. Thus, we have 1¢ Gal(H; K/K) ® F, 2 14 Gal(H**/K) ® F,,. Namely,

ro(Gal(H1K/K)) = re(Gal(H* /K)).

Let H be the intermediate field corresponding to [] C°~lin H/M.
Since h acts on Gal(Hy M /M) trivially, we have Hy D Hy. Moreover, since
p JHH3(h, Z), the central p-genus field of M /M’ coincides with the abelian
p-genus field of M/M’. We have Hy = H'M. Note H'M = H'K, because
of H > M’ and M = M'K. Let H5® be the maximal abelian subfield
of Hy/K. Since Hy = H'K, we have Gal(Hy/K) = Gal(H'/K'). Tak-
ing the maximal abelian quotients, we obtain Hgb = H'®PK. This im-
plies H1 K = H"*PK, because of Hi® > H; D H'®P. Therefore, we have
Gal(H; K/K) = Gal(H"**/K') and

ro(Gal(H1 K/K)) = ro(Gal(H™/K")).
This proves ro(Gal(H*/K)) = r¢(Gal(H®? /K')).
Let Njpz/p be the norm map. By extending ideals of M "onto M, we

have a natural map jyr/a @ C' — C. Since Npg/ap 0 jyyne is [M 2 M']-th
power map, jar/n 18 injective and Npy/py is surjective. Note

1 -
WJM/M/ONM/M/ = 1’3
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We have L,C = ('. Hence, 1,C ® F,, = C' @ F),. Further, since 1yo = o1y for
every o € G, we have 1hJC ®F,= JL,C ® F),. Therefore,

1,(C®F,/JC®F,) =~ C'®F,/JC' &F,.

This proves ro(C @ F,/JC @ F)) Zre(C' @ Fp/JC' @ F,).
We have a commutative diagram

1 Gal(H*™ /M) ® F

) /
Lo H™*(Gyp, Zy) =

lp Gal(H* /M")® F,,
Thus, 160 = 10’. The lemma is proved.

§2. The Kummer group

We denote by (,,, a primitive m-th root of unity. We are able to calculate
the value of r4(C) in M((,) by virtue of Lemma 4 if M Z (,. We may
suppose (, € M. Let H* be the maximal elementary (p,---,p)-abelian
subfield of H/K. We see Gal(H*/K) = Gal(H*®/K) @ F,,. Let B = H*P N
K> /K*P be the Kummer group of H*/K. We consider B a submodule of
K*®F, = K*/K*P. Denote by T an R-module < (, > ®F),. The Kummer
pairing is a non-degenerate pairing having values in T:

<bg>= V¥ '®l, beB, gecGallH"/K).

Since H* is Galois over k, B and Gal(H*/K) are R-modules. Let w be
an irreducible character afforded with T. The action of o € g satisfies the
following relation on the pairing

<obog> = w(o)<bg>.

Let ® be a character defined by ®(¢) = ®(6~1). The reflection of & is
defined to be a character dw. Denote by ®* the reflection of ®. Let Lq;. =
Hom(Lg,F;,) be an R-module where o € g acts by o f = foa Lfor f € L.
Let Ly = Lo ® T be an R-module where g acts diagonally. o (resp. @) is
afforded with Lg (resp. L%).

LEMMA 5. We have
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(1) Lo = Lo and L% = Lo,
(2) ®* is irreducible,
(3) fo = for and do = do-.

Proof. By (iii) of Lemma 10.26, Curtis-Reiner [2], we have Lo =
Lg. When finitely generated R-modules L1 and Lo are given, we consider
Hom(Lq, Ly) (resp. L1 ® Ls) be an R-module by of = 0o foo~! (resp.
oz ®y) = ox ®oy) for f € Hom(Ly,Ls) (resp. z ® y € L1 ® La). By
Proposition 10.30, Curtis-Reiner [2], we have

Ly ® Ly Hom(Lq, L),

where L = Hom(Lq,F,). Since L} = Hom(L},F,) ® T and T®T F,,
an isomorphism Ly = L follows from
Hom(Lgy ® T,F,) ® T = Hom(T, Hom(Lg,F,)) ® T
~ Hom(T,Ls)®T & T®Le ®T = Lg.

~

Suppose L3 = M; @& M for non-trivial submodules M;. We have Ly =
M @ M;. However, this contradicts to that Le is simple. Thus, Ly is simple
and ®* is irreducible. Since Hom(Lg, L3)? = Hompg(Ls, Le) and Lo® Lo =
Hom(Lg, Lg), we have (L ® Lg)9 = Hompg(Le, Le). By (10.32), Curtis-
Reiner [2], we also have Homp(Lg, Le) = Hompg(Lg, Ly). This implies
(I:/q, ®Lq>)g = A(Lq> ®ﬁ¢)g. SinceA[A@* QLg+ = HOID(ﬁ@@T,Fp)@([A/@ ®T) =
(T ® Lq,) X (Lq> X T) =~ Lg ® L, we obtain (Lq>* X Lq,*)g = (Lq, ® Lq,)g.
Therefore,
fo = dimHom g(Lg, Ly) = dim(Le ® Lg)®
= dim(f@* ®Lq>*)g = dim Hom R(L@*,Lq,*) = fo+.

Since dim Ly = dim Lg«, we have dg = dg- from (1.1).

We have 1¢B and 1¢- Gal(H*/K) are dual to each other by means of
the Kummer pairing. Hence, a formula

(2.1) dim1sB = dimlg- Gal(H*/K)
is obtained. Since fedg = fo+dgo+, we have

(2.2) re(B) = re-(Gal(H™/K))
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from (1.2) and (2.1).

In accordance with Leopoldt [6], we are able to obtain a formula for
re(B) by modifying the argument developed there. Denote by K, the com-
pletion of K at a place v. Let U, be the unit group of K, when v is a finite
place. Let p, be the p-primary torsion subgroup of K. We have a tower
of Kummer extensions:

K' = K,(Yr:2e€K)) D K! = K,(Yz:2€U,) D K,.

v

Denote by vy a place of k. Let v (resp. w) denote a prolongation of vy (resp.
v) onto K (resp. M). Suppose vg|p. Let p/ be the absolute degree of the
valuation ideal p,,. KU((pp s_1) is the unramified abelian extension of degree

p over K,. Put
- p—1 fi .
o = Z gpfflqo'
=0
We have 55 € Ky and Ky(Cppr—1) = Kv(fv). Let &, be an element of U, such
that &) € &,K, 7. We have K,(¢/&,) = Ky((ppr—1). Let K, be the inertia
field in M,,/K,. Similarly, there is an unit &, of K such that K ({/&]) is

v
the unramified abelian extension of degree p over K.

LEMMA 6. Let vy be a finite place of k. Let a be an element of K.

(1) Suppose vy fp. My (¥/a)/ M, is unramified if and only if the ramifica-
tion index of K,(¥/a)/K, divides that of M,/ K,.

(2) Suppose vo|p. Let M2P be the mazimal abelian subfield of M,/ K,. We
have M,,(3/a) is unramified if and only if ¢/a € M2P(R/€}).

Proof. Since My, (¥/a)/M,, is tamely ramified for vy fp, (1) is obvious.
M,,(%/€]) is unramified and of degree p over M, for vo|p. Let Gy, (resp. G1,)
be the Galois group of M,,/K, (resp. M (/€})/Ky,)). Denote by G, and
G5 the subgroups generated by commutators. Since G, is a homomorphic
image of G, we have §G < #G'5. We see § G}, = pt Gy, and (G, : GI¢) >
p(Gy @ GS)). Hence, G5 = #GS,. This implies that the maximal abelian
subfield of M, ({/€))/K, is M2(%/€]). This proves (2), because K, ({/a)

is an abelian extension of K.

Let P be the set consisting of every place of kg lying above p. Denote
by P(K) the set of every prolongation onto K of every place contained in

https://doi.org/10.1017/50027763000007078 Published online by Cambridge University Press


https://doi.org/10.1017/S0027763000007078

P-CLASS GROUP OF ALGEBRAIC NUMBER FIELD 95

P. We use this convention for an arbitrary set of places of k. Denote by
e(w/v) the ramification index of M,,/K, for a finite place vy. Let T" and S
be sets of places of k defined by

T = {vo & P:wg foo, ple(w/v)} U{wy € P: MiP (/&) N K} ¢ K},
S = {vp:w isreal and K;P # K},

respectively. Let V,, be a closed subgroup of K¢ such that

MEP(R/E)*PnU, if ve P(K)\T(K),
(23) V, = MEP(R/E)PNK)Y if vePK)NT(K),
K)P if ve S(K).

Note V,, contains U} (resp. K,F) if v € P(K)\T(K) (resp. v € P(K) N
T(K)). We observe that M (¢/a)/M is unramified for a € K* if and only
if a € V,K,* for every v € P(K) U S(K) and v(a) = 0 mod p for every
finite places v not contained in 7'(K’), where we abuse notation and denote
by the same symbol v the normalized additive valuation belonging to v. B
is a subgroup of K* ® F), consisting of a ® 1 for every a € K* satisfying
this condition.

Let E7 be the group of T-units of K: Er = {a € K* : v(a) = 0 for every
finite place v ¢ T(K)}. Let Pr = K*/Er and Dr = @4 o ver(x) Ky /Un-
Pr is considered a subgroup of D by a diagonal map. We have an exact
sequence

0— Er®F, 5> K*®F, - ProF, — 0,

because Pr is torsion free. Put By = i~!(ker jN B). j(B) consists of (a)® 1
such that a®1 € B. Let Cr be the p-torsion subgroup of Dr/Pr. Let (a)®1
be an element of j(B) with a® 1 € B. Since v(a) = 0 mod p for every finite
place v € T(K), there is a € Dr such that a? = (a). We observe a is
principal if and only if a € K*PEp. Since a € K*PEp implies a® 1 € ker j,
a correspondence (a) ® 1 — cl(a) defines an injective homomorphism of
j(B) into Cp. Denote by By the image of this homomorphism. Observe
that cl(a) € By if and only if there is a € K* such that a? = (a) and
a € VoK, P for every v € P(K) U S(K). We have Leopoldt’s decomposition
of the Kummer group B:

00— By - B —By — 0,
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c.f. Leopoldt [6]. Hence, we obtain a formula
(2.4) ro(B) = re(B1)+re(Bo).

Let V be a direct product of V,, for v € P(K)U S(K). Put

(25) U = II uv.x I &:x ] &

ve P(K)\T(K) ve P(K)NT(K) veS(K)

V' is an open subgroup of U. Let « : Ep — U be the diagonal map. «(E7)V
is also an open subgroup. Let U’ be a closed subgroup of the idele group of
K such that

U = 11 ux [  Exx ] KX

v Joo,vg P(K)UT(K) veT(K)\P(K) v]oo,vgS(K)

Let Ky be the class field of K corresponding to an open subgroup K*UU’
of the idele group of K. Let K be a class field of K such that K1 D Kj
and Gal(K;/Ky) = K*UU'/K*VU'. Since K* N UU" = Ep, we have
Gal(K,/Ky) 2 UU'/EpVU'. Further, by projection onto U, we have

Gal(Kl/Ko) = U/L(ET)V.

Since V' O UP, we have a homomorphism Er®F, — U/V. Observe that the
cokernel is U/u(E7)V and that the kernel is B;. We have an exact sequence

26) 0 — B, — Ep®F, — U/V — Gal(K,/Ky) — 0.

Let K ;\T be a subgroup of K* consisting of a such that v(a) = 0 for

every v € P(K)\T(K). We extend ¢ onto K, ;.. Note L(K;\T)p C V. Each
element ¢ € Cr contains a € Dp such that af is generated by an element
a of K;\T. If there is a’ € ¢ such that a’? = (d/) for o’ € K;\T, we have
b € K* and = € Ep such that a = zbPa’. We see ((bP) € V, because

b e K;\T means b € K;\T. Hence, t(a)u(E7)V = (a')(E7)V. Therefore,
a homomorphism
(2.7) p:Cr — Gal(K;/K)

is well-defined by p(c) = t(aE7)V. Let (a) ® 1 € j(B). We may assume
a € V,K; P for every v € P(K)U S(K). Note V,K,* =V, for v € S(K).
By approximation theorem of valuations, there exists b, € K* for each v €
P(K)\T(K) such that v(b,) = 1 and u(b,) = 0 for every u € P(K)\(T(K)U

https://doi.org/10.1017/50027763000007078 Published online by Cambridge University Press


https://doi.org/10.1017/S0027763000007078

P-CLASS GROUP OF ALGEBRAIC NUMBER FIELD 97

{v}). Since v(ab;v(a)) = 0 and v(a) = 0 mod p, there is b € K* such that
ab? € K ;\T. We have (abP?) € V. This implies By C ker p. Conversely, let
cl(a) € ker p. There are a € K;\T, b € K* such that (a) = (bP)aP, and
there are * € Ep, w € V such that «(a) = t(z)w. Since 1(ax™!) € V, we
have az~! ® 1 € B. This means cl(a) € By. We have ker p C By. Therefore,

another exact sequence
(28) 0 — BO — CT £> Gal(Kl/Ko)
is obtained. Let a(®) = r¢(coker p)

THEOREM 7. Put fr(®) = re(Er @ Fp), v7(®) = r6(Cr), k1(P) =
ro(URF,) and ka(®) = ro(V/UP). We have ro-(Gal(H*® /K)) = ro(By)+
ro(Boy) and

Br(®)+yr(®) > ro(Bi)+re(Bo) = a(®)+B8r(P)+y7(P)—k1(P)+r2(P).

Proof. By (2.2) and (2.4), the value of r¢+(Gal(H*/K)) equals the
sum of r¢(B1) and r¢(By). We see Or(®) > re(B1) and yr(P®) > ro(Bo).
Hence Br(®) + v7r(®) > re-(Gal(H*®/K)). Since U/V = (U/UP)/(V/UP),
we have ro(U/V') = ro(U/UP)—re(V/UP). The values of r¢(B1) and 74 (By)
are described with a(®), G (®), v7(P) and k;(P) by means of the sequences
(2.6) and (2.8).

§3. The character of the representation on Gal(H*/K)

The character afforded with a finitely generated R-module Y may have
no significance. We have

Y = Pley = Lp®.
(]

However, if 7¢(Y") = 0 mod p for every ®, the character is 0. By this reason,
we introduce a free abelian group ch(R) on B(g). > me® > > neP means
mg > ng holds for every ® and there is at least one ® such that mge > ne.
In the sequel, if we say a character afforded with Y or a character of the
representation on Y, we mean an element ) 4 76 (Y)® of ch(R).

Let « (resp. fBr, yr) be the character of the representation of g on an
R-module coker p (resp. Er @ Fp,, Cr). Let k1 (resp. k2) be the character
afforded with an R-module U ® F), (resp. V/UP). Let ¢p be the character
afforded with B. By virtue of Theorem 7, we have

(3.1) Br+yr =2 v = a+ Br+yr — K1+ Ka.
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LEMMA 8. LetP and @ be finitely generated Zy-torsion free A-modules.
If P®z, Qp, = Q ®z, Qp, we have P @z, F), = Q @z, F),.

Proof. By virtue of Corollary 18.16, Curtis-Reiner [2], we have P = Q)
if P Xz, Qp ~Q Xz, Qp- Hence, P Xz, Fp ~Q Xz, Fp.

Let T\ be union of T" and all of infinite places {vg 1, -, vo,} of k. For
each vy € T, we choose a prolongation v onto K and fix it once for all.
Denote by v; the prolongation of vg;. Let g, C g be the decomposition
group of v. Denote by Zg/g, a left Zg-module

P zs,

€9/ 8v

where & denotes a coset og,. Similarly, we denote by F,g/g, a left R-module
generated by . We see Zg/g, ® F, = Fp,g/g..

We have a system of Minkowsky’s units of the relative Galois field K/k.
Namely, there exist units H; of K such that

‘HZ"Uz > 1, ’Hi‘avj <1 if ’L;éj or Uggyi7
ocH;, = H; for o € [y /39

where | - |,, is the multiplicative valuation belonging to v;. Let F' be a g-
submodule of the unit group Ej generated by {H;}!_;. Let ux be the torsion
submodule of Ey. We have (Ey : Fug) < oco. Put Wo = ®]_,Zg/g.,.
Denote by H; the image of H; into Fux/purx. We have a surjective g-
homomorphism of Wy, onto Fur /pux:

Boo:( Z miﬁ(_f:lgigr) — ﬁ H UI:I:”’&.

€9/ gv; i=1c€g/gv,

Put e¢; = Z&Gg/gv. 0 € Zg, where ¢ denotes a representative of 6. h; = e; H;
is a unit of k£ and there is a non-trivial relation

r

1= []r"

i=1

Put e = (mye; : 1 < i < 1) € Wy. We see ker o, D Zge # 0. Since the
Z-rank of Ey equals ). (g : gy,) — 1 and since the action of g on Zge is
trivial, we have ker £ is a trivial g-module of rank 1. Set P = Ey/ux ® Z,
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and Q = (Wa®Z,)/(ker {oo®Z,,) in Lemma 8. Since W, /ker £ is torsion
free, we have

,
Ey/ux ®Fy = Woo @ Fp/ker log @ F)y = (@ Fpg/gw> /Fyp.
=1

Similarly, E7 contains an element H, for each vy € T such that v(H,) > 0
and u(ocH,) = 0if v # w or if 0 € g,. Let Fr be a g-submodule of Ep
generated by {H,: vg € T'} and Ey. We have (E7 : Fr) < oo and the Z-rank
of Fr/Ey equals ), (g : gv). Put Wr = @yyerZg/gy. By considering a
surjective homomorphism Wr — Fr/Ey, we obtain Wy = Fr/Ey. Set
P=FEr/Ey®Z, and Q = Wr ® Z,, in Lemma 8. We have

(3.2) Er/ByoF, = P Fug/g..
vo €T

Denote by R, the group ring F,g,. Let ind,F, be the induced module
indngp = R ®pg, F) of the trivial R,-module F,. Note ind,F, = F,g/g..
Let €,, be a character afforded with ind,F,. Since the sequences

0 — pg @Fp — Eg@F, — Ey/ux ©F, — 0,
0 - EyoF, - Er®F, — ET/E@(X)FP — 0

are exact, we have

(3.3) br = w+ Z €y — €

v0€ 0
from the above isomorphisms.
Let U51) be the group of principal units of K, for v € P(K) and p, be
the p-primary torsion subgroup of U51). U, ®F, =U,/ U? is isomorphic to
U51) ® F) and Uqgl)/uv is a torsion free Z,-module. Thus, the sequence

0 — ®F, - U,@F, - UV /u, @F, — 0

is exact. The p-adic logarithm maps U51) into K, which is a g,-homomor-
phism. Let p, be the valuation ideal of K. There is m > 1 such that the
p-adic exponential function converges on p;'. Let b be a normal basis of
Ky /kyy and {b1, - -+, by, } be a Qp-basis of ky,, where my, = [ky, : Qp]. We

have
mUO

K, = P Qpao(th).
=1
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We may assume bb; € p)'. Let F}, be a Z,g,-submodule of p]’ generated by
bby, - -+, bbp,, . We have F) = (Z,g9,)™. Let F, be the inverse image of F}

in U51) by the p-adic logarithm. We have

Fvﬂv/,ufv = Fqg = (Zpgv)mvo :

Since ( Al F,) < 0o, we obtain Ut /,uv ®z, Fp = >~ R, "0 by puttlng P =

Uzgl)/,uv and @ = Fy /1ty in Lemma 8. Note Ué )/,uv®Fp ~ Uv / UUél)p ~
Uy/py @z Fp. Hence, we have

(3.4) Uy@F, = (1, ®F,) @ R,"™.

Denote by w,, a character afforded with ind,u, ® F, = ind,T. Let ¢4
denote the character of the left regular representation on R. Since ind, R, =
R and Hulvo U, ® F, £ ind,U, ® F,, the character of representation on
Hum Uy ®@F ) is wyy +myypg. Since K /U, = Z, we have ind, (K /U,)®F,
affords ey,. Thus, the character of the representation on [],, K ® Fy is
Way + Mg + €vy for vg € PNT. If vg € S, we denote by p,, the torsion
subgroup of K¢ for ulvg and have ] ® F), affords w,,. Note wy,, =0
if p # 2. We obtain

(3.5) ko= ke Qlogt D wet Y et D Wi

voEP voEPNT voES

because of > —pmy, = [k: Q.
We have an isomorphism of R-modules:

v/ior = P ndV,/UF @ @ ind,V,/ K.
’UQEP\T voePNT

U|U0 Hu

Let Wy (resp. Wa) be the submodule generated by V,, (resp. V, NU,) in
K} ®F), (resp. U, ®F,). By inclusion U, ® F, C K ®F,, we consider Wy
a submodule of W;. Since K} /U, =2 Z, we have W1 /Wy = F) if vg € PNT.
Note Wy = Wy if vg € P\T'. Let W3 be a submodule of U, ® F), generated
by & ® 1 over R,,. Since K, (¥/&,) is compositum of K, and the unramified
abelian extension of degree p over ky,, we see Gal(K,({/&,)/K,) = F, as
R,-modules. By the Kummer duality, this means W3 = T. Put W, = K}
if vo € PNT, and W, = U, for vyp € P\T. We have dim W3 = 1 and
(V /Wp) (Wl/WQ) (WQ/Wg) ¢ Ws. By (3.4), we have

mvo

v = (Uv®Fp)/W3 > Wg/Wg.
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Let d,, be the character afforded with ind,,Ws/W3. We have

(36) K2 = Z(Wvo + 0uy) + Z o> dvy < My Pg.
voEP vo€PNT

We have the following formula from (3.5), (3.6) and (2.6):
(3.7) k1 — kg = [k: Q]‘Pg - ZUOGP Oy + ZvoES Wuo
k1 — ke —fPr+¢B = «

where pp, is the character of the representation onto Bj.

84. The value of ag-

We denote by ¢(®) the coefficient of ¢ for an element ¢ of ch(R). If ¢
is a character afforded with an R-module Y, we have

(4.1) @(@) = ro(Y) = — dim Hom p(Le,Y) = — dim Hom x(Y, Le)
fo fo

because of fp = dimHompg(Lg, Lg). We recall characters:

characters modules
o coker (Cr & Gal(K1/Ky) = U/u(Er)V)
Br Er®F,
YT Cr
Suo ind,(V, NU,/UE < & >) for vy € P
Exg ind,F,, for v|ug

Let 6 be the character afforded with ©.

THEOREM 9. The value of ag+ = re+(C ® F),/JC @ F,,) satisfies an
inequality

Br(®) +yr(P) + 0(27)

> g
> a(®) + Br(®) +7(D) + 0(2%) + D 64(P)
voEP
— ) wiy (@) = [k : Qlde — ro- (Gal(M*?/K)).

v ES

Moreover, we have the following statements:
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(1) If g Gal(M?/K) = 0 or if 1o+ Gal(H*®/K)P = 0, the value of agp+

equals
D)+ Y (@) +w(®) — (@) +97(D) + O(P) + Y 5y (®)
v0€T 0 voEP
=) wiy(®) = [k : Qlde — re- (Gal(M™/K)).
voES

(2) If G = g x G, we have 1o« Gal(M?®/K) and 1o+ H=3(G), Z,) vanish
for ®* #£ €.

(3) Suppose p > 2. If by, (P) = my,do for every vy € P, we have a(P) = 0.

Proof. The inequality and the statement (1) follow from Theorem 3, 7
and formulas (3.7), (3.3). If G = g x G, we have g acts trivially on G, with
conjugation. Hence, Gal(M?"/K) and H~3(G,,Z,) are trivial g-modules.
Hence,

lo« Gal(M™/K) = 0,  1oH 3(Gp,Z,) = 0

whenever ®* # ¢. This proves (2). Suppose p is odd. We see w,,, = 0 for vy €
S.1f 0y, (@) = myyde for every vy € P, we have ) 6y, (P) = [k : Q]do.
By (3.7), we have a(®) < k1(®) — k2(P) = 0, because of fr — pp, > 0.

We denote by Uy, Vs the closed subgroup of the idele group of K
defined by (2.3) and (2.5) with adding subscript to specify the field M. We
also denote by pys the map defined in (2.7). We write Bys, B1 ar, Bo,wr for
B, By, By.

LEMMA 10. Let p be an odd prime. If k,, # (p, and g, acts on
Gal(M2P/K,) trivially for every vg € P, we have T N P = (). Moreover,
we have an Ry-isomorphism V,/US = T¢ for ¢ = dim Gal(M2P(¢/€)) N
K»/K,).

Proof. By (2.3), we see V, K,? / K,? is the Kummer radical of
a Kummer extension MZ"({/€)) N K} /K,. Let Q4" be the maximal un-

v

ramified abelian p-extension of Q. Since MZ"({/€)) is a subfield Q¥ M3"
and since g, acts trivially on Gal(Q," M2 / K,) with conjugation, we
have Gal(M3P({¢/€))/Ky) is a trivial g,-module. Thus, considering the

Kummer pairing, the Kummer radical is isomorphic to T¢ for ¢ =

dim Gal(M2P (/€ )NK;/K,). Note T 2 F), as g,-modules, because of ky, ¥
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(p- Since K} /U,K; " is a trivial g,-module, the image of V,K,?/K;? —
K} /U,K;" is 0 in an exact sequence

0= Vo N U JUP — V,KXPJKXP — KX JUKXP.
Hence, V,, C U,K,P. This proves T N P = .

LEMMA 11. Let p be an odd prime. Suppose that M is an abelian ex-
tension of Q containing C,r for t > 2 such that K,((yt) is ramified over K,
for every vg € P. Furthermore, we also suppose ky, Z Cp for every vg € P.
Put N = M NUp>1K({pn). We have a commutative diagram

PN,o
0 —— loBoy —— 160y —— 1a(Un/u(Ep)VN)

95 J 9o l he l
PM,d

0 —— loBoyy — 1loCr —— 1o(Un/u(Er)Var)

where pyre and pye denote restriction onto the lg-components, respec-
tively. Moreover, we have

D (@) Zraker he) = Y £4y(®) —r9(Biy) +ro(Bin).
vo€T vo €T

If ZyoeT Evo(q)) =0, we have T@(BM) = T@(BN)-

Proof. By Lemma 10, we have TN P = (). Hence, Uy; = Uy. To
prove the lemma, we need to show Vj; = V. Denote by Vi, be the v-
component of the direct product Vs = [], ¢ P(K) Vu. We see Vg, C U,.
Since Q" M,, contains M, (%/¢,) and is abelian over Q,, there are m > t,
a > 0 and b > 0 such that a is prime to p and so that Qp(Cpm,Cpapb_l)

contains M, ({/€]). The p-Sylow subgroup of Gal(Qyp(¢ym, Cpapbil)/Qp) is
isomorphic to Z/p™1Z x Z/p’Z. Hence, Gal(M,,({/€])/K,) is an abelian

/

v
p-group generated by one or two elements. Let p® be the ramification index
of Ky((pt)/Ky. We see

Gal(K, (G, ¥/€))/K,) = Z/pZ x Z/p°Z,

because of K7,(,t)NK(¢/&]) = K,,, where K, is the inertia field of M,,/K,.
This means Gal(M,,({/§;,)/K,) is not cyclic. We have an R,-isomorphism

Gal(M, (/&) N K;/K,) = F2.
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Therefore, by Lemma 10, we have
(4.2) Vire/UP = T2

In particular, we have Vy,/US = T? if M = N. Suppose M # N. Let
u be restriction of w onto N and K be the inertia field of N,/K,. Let
K]/(%/€]) be an unramified cyclic extension of degree p over K. Since
Mw(f/g) ) Nu(f/_’v’), we have Viry O V. Viw = Vi, follows from
isomorphisms V., /U 2 Viy,,/UY = T2, This proves Vay = Vy.

Denote by U (resp. V') the group Uy = Uy (resp. Viy = V) with
omitting the subscript. Let Y be a submodule of Dy generated by {op, : 0 €
g,v9 € T}. We have Dy = Dr @Y. Denote by a = o/ +a” the decomposition
of a € Dy into a sum of @’ € Dy and a” € Y. A homomorphism Dy/Py —
Dr/Pr is induced from a — o'. Let g : Cy — Cp be restriction of this
homomorphism onto the p-torsion submodules. Denote by h a canonical
map U/u(Ey)V — UJu(Er)V. Let go (resp. hg) be restriction of g (resp.
h) onto the ®-component. Put gg = go|14B, - Since o = (a) in Dy for
a € K* implies a” = (a) in Dy and since every element ¢ € Cp contains
a € Dy such that (a,p) = 1, the commutativity of the diagram follows from
the definition (2.7) of the maps pys and pp.

We have By y = EyNe™ (V) /E} and By y = Erne™!(V)/E}. Observe

ker h = o(E7)V/u(Ep)V = (E7)/(L(Er) N V)u(Ep)
= Br/(BEr N (V) Ey,
because of ker : N Er C Er N 1~1(V). Therefore, we obtain exact sequences
0 — Biny — Biy — (Er N (V) /(Eyn v (V) ES — 0,
0— (Br Nt (V))/(Byn e (V) Ef. — Er/EyEf — kerh — 0.

Thus, re(ker h) < >, &y (®) follows from (3.2). Furthermore, we also
have the formula of r¢(ker h) from these sequences.

Suppose ) ., c7 €v, (®) = 0. By virtue of the formula, we obtain ker he
0 and r¢(B1,N) = re(Bi,a). Thus, he is an isomorphism. Since Dr/Pr
Dy/PyY , we have an exact sequence

el

loY ® Z, — 16Dy/Py®Z, — 1o Dy /Pr®Z, — 0.

Denote by p, an element p,®1 of Y ®Z,,. We see Y ®Z,, = @y e A P Since

Apy = A®g,4,Zp and 1o(ROp, Fp) = L0 we have 1¢(A-p, @F,) = 0.
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This implies 1¢(A-p,) = 0. Hence, 16Y @ Z, = 0. We see 1gDy/Py ® Z,, =
1eDr/Pr @ Z,. Since 15Cy (resp. 1¢Cr) is the p-torsion submodule of
1o Dy/Py®Z, (vesp. 1o D7/ Pr®Zy), we have 16Cy = 16C7. Therefore, g
is an isomorphism. By the commutative diagram, g4 is also an isomorphism.
We obtain ro(Bo,n) = 7o(Bo,m). Consequently, 7¢(By) = ro(By) holds
by virtue of the formula (2.4).

PROPOSITION 12. Let notations and assumptions be same as those in
Lemma 11. In addition, we suppose k = Q and that ® satisfies Tl = 1o
for the complex conjugation 7. Then, we have ag« < 1 if and only if ®
satisfies one of the following conditions:

(1) PYT((I)) = ZvOeT 51}0((1)) =0 Zf wp(CI)) =1,

(2) re(Bi,m) <1 and yp(P®) = 0 if wy(P) =0, ® # € and ZUQET £ (D) =
1,

(3) 1p(@7) 1 if wp(®) =0, B £ & and Xy g eun (@) =0,
4) T+ a(e) <2 if P =c.

Proof. We may take t = 2 in Lemma 11. Suppose 714 = l¢. Note
Tlg = lg is equivalent to T1g+ # lg+. Tlgx # lg+ means ®* # e. Since
M/Q is abelian, we have 0(®*) = re«(Gal(M?"/Q)) = 0 from (2) of Theo-
rem 9. g, is a normal subgroup generated by 7 for vg = 0. e is afforded
with F,g/ < 7 >. Hence, e5,(®) = 1. By (3.3), we have

Br(®) =1+ Y cyy(®) — (@)

vo€T

Let vo = p. By (3.6) and (4.2), we have ko = 6, +w), = 2w,. Hence, ,, = wy,.
Suppose wy,(P) # 0. We have 6,(P) = 1. Hence, ® # €. Note 1 =m, =
de. By (1) and (3) of Theorem 9, we observe ag« equals 1+ 7 &y, (®) +
vr(®). Thus, ag- < 1if and only if Y, 7 ey, (®) =y7(®) = 0.
Suppose wy(P) =0 and ¢ # . We have

age = D)+ Y (@) + (@)
vo€T

We observe that ) pey(®) < 1 if ag« < 1. Firstly, let @ satisfy
Y voer Euo (@) = 1. If ag+ < 1, we have a(®) = yr(®) = 0. Since y7(®) =0
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implies 7¢(Bo,v) = 0, we have r¢(B1 ) < 1 from (2.4). Conversely, if
re(Bi,v) < 1 and yp(®) = 0, we also have ag- < 1 from (2.4). Secondly,
let @ satisfy > 7€y (®) = 0. By virtue of Lemma 11, we are able to
reduce to N. We may suppose M = N. Since T' C P, we see T = () from
Lemma 10. Since rg = 2wy, we have 1¢(V/UP) = 0. Put W =[] ¢ p(s) K-
We also have 1¢(VWP/WP) = 0. Hence, 1¢(W/VWP) = 15(W/WP). Ob-
serve that a®1 € K*®F), for (a) € DS is an element of B)y if and only if the
image of a into W/VWP is equal to 0. When a ® 1 € 1By, we have t(a) €
VWP is equivalent to t(a) € WP, because of 1¢(W/VWP) = 14(W/WP).
Namely, K (¥/a)/K is unramified p-decomposed, where we call K(¢/a)/K p-
decomposed if every place lying above p is completely decomposed there. Let
K5 be the maximal unramified p-decomposed elementary (p,-- -, p)-abelian
extension of K. Let B’ be the Kummer radical of K3/K. By the Kum-
mer duality, B" is dual to Dp/Pp ® F),. Hence, 1o B’ and 1¢-Dp/Pp @ F,,
are dual to each other. We have vp(®*) = ro(B’). 16 B’ D 14 B follows
from the above argument. Since K5 is a subfield of the maximal unramified
abelian p-extension H of M, we have By; D B’. We have 1By = 1¢B’.
Therefore, we obtain ag+ = yp(P*).

Suppose ¢ = . We see ®* = w. Let My be the maximal p-extension
of Q contained in M. We have M = MyK. By Lemma 4, we are able to
compute the value a, in My((,). Hence, suppose M = My((,) and K =
Q(¢p)- We have

a, = a(e)+ Y eyle) = 1+1(e).
vo€T
Since the class number of Q is one, we have yr(¢) = 0. Therefore,
a, = ofe) + 4T — 1, because of g,,(¢) = dimHomg(R ®g, Fp,F,) =
dim Hompg, (F,,Fp) = 1.

PROPOSITION 13. Let p be odd and k be a totally real field. Let M be
a CM-field containing Cpn for n > 2. Suppose M = K((pn) and M # K.
Let hj/[ be the class number of the maximal totally real subfield of M and

hi be the relative class number of K. Let T be the complex conjugation of
M.

(1) We have p Jhi, if p fhx and if a. = 0.

(2) Suppose k = Q and M/Q is abelian. We have p fhi,, if v9(®*) = 1
and a(®*) = wy(P*) = 0 for every ®* such that ®* # w, Tle« # lg-
and vp(P*) > 0.
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Proof. Let My be the maximal p-extension over Q contained in Q((pn).
Since M = MyK, we see G = G, x g. Hence, C is a Zpg-module. Since
C= EB@LDC, we have C"t! = 0 if and only if 16C = 0 for every ® such that
71l = lg. Further, 14C = 0 is equivalent to ag = 0. Thus, p /{hL if and
only if ap = 0 for every ® such that 71 = 1.

By (2) of Theorem 9, we have (®) = 0 and 1g Gal(M?*"/K) = 0 for
® # e. Note P O T. We can show T = (). In fact, for v € P(K), if M,,/K,
is unramified, we see M, ({/€)) N K} = K,(/&,), because M, (%/&,)/K,
is unramified. Contrarily, if M, /K, is ramified, we have M, ({/€))/K, is
not cyclic, because M, ({/€,)/M, is an unramified extension of degree p.
Hence Gal(Mw({’/g’})/Ky) ~ Z/p*Z x Z/pZ, where p* = [M,, : K,]. Let
K,(¥/x)/K, be an extension of degree p for x € K such that M,, K, (¥/x) =
My (/€]). Since K|, C M,, = K,(¢n), there is 1 < e < n such that
K| = K,((pe). Considering the structure of the Galois group, we have
Ky(Cpet1, ¥/x) contains K, ({/€)). Since {C o1, V2P, 2/EIPY C K], there
are integers 0 < ¢,s < p such that & = Cp xsyP for y € K/*. We see
x5 = &0y P € Ky Note s # 0, because K (Cye+1)/K), is ramified. Since
K! /K, is unramified, this shows that = € U,K,”. Thus, we have T = ().

Since 7 generates a normal subgroup, we have (3(®*) = 0 for & # ¢
such that 714 = 1. Therefore,

(4.3) (") > ag = a(®*) +p(P*) + Y 64y (%) — dos [k : Q).
voEP

Since Cgrl = D,1,-1, Llo-Cp, we have 1p(®*) = 0 for every ® # ¢ such
that 71¢ = 1s, if p fhy. This proves (1).

Suppose k = Q and that M/Q is abelian. By Lemma 4, the computa-
tion of the value of a. is reduced to My. Hence, we have a. = 0, because
of p /tho. Let @ be an irreducible character such that v4(®*) > 0, & # ¢
and 7l = lg. Note 6, = w, and de+ = 1. We observe ap > 0 from
(4.3) if yp(P*) > 2. If yy(P*) = 1, we also observe ap = 0 if and only if
a(®*) = w,(P®*) = 0. We have (2).

ExAMPLE 1. Example Let M be the cyclotomic field Q((m,(pn),
p fm, n > 2 and k be the maximal p-subfield of Q(()/Q. We have
K = Q(Gm, Gp)- If p is not decomposed in k/Q, the class number of Mok is
prime to p. By Lemma 4, this means a. = 0 . For the following pairs (m, p),
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we have p fhy and that p is not decomposed in k:

(13,3), (3,13), (4,13), (4,17), (3,19), (5,11), (35,3)
(15,7), (16,7), (28,5), (20,7), (4,29), (7,11), (3,31),
(8,17), (12,17), (19,5), (4,41), (20,11), (3,43), (47,3),
(65,3), (39,5), (52,5), (84,5), (60,7).

These are additional examples to Yamashita [10] for which the Greenberg
conjecture are valid for p in the maximal real subfields of Q((m, (p)-
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