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ON THE RANK OF THE FIRST RADICAL LAYER OF

A P -CLASS GROUP OF

AN ALGEBRAIC NUMBER FIELD

HIROSHI YAMASHITA

Abstract. Let p be a prime number. Let M be a finite Galois extension of a
finite algebraic number field k. Suppose that M contains a primitive pth root
of unity and that the p-Sylow subgroup of the Galois group G = Gal(M/k) is
normal. Let K be the intermediate field corresponding to the p-Sylow subgroup.
Let g = Gal(K/k). The p-class group C of M is a module over the group ring
ZpG, where Zp is the ring of p-adic integers. Let J be the Jacobson radical
of ZpG. C/JC is a module over a semisimple artinian ring Fpg. We study
multiplicity of an irreducible representation Φ apperaring in C/JC and prove
a formula giving this multiplicity partially. As application to this formula, we
study a cyclotomic field M such that the minus part of C is cyclic as a ZpG-
module and a CM-field M such that the plus part of C vanishes for odd p.

To show the formula, we apply theory of central extensions of algebraic num-
ber field and study global and local Kummer duality between the genus group
and the Kummer radical for the genus field with respect to M/K.

Introduction

Let k be a finite extension of Q and M be a finite Galois extension of

k with a Galois group G. Let p be a prime number. Let H be the p-Hilbert

class field of M . The Galois group Gal(H/M) is isomorphic to the p-Sylow

subgroup C of the ideal class group of M . Let Fp be the field of p-elements

and denote by FpG the group ring of G over Fp. Let J be the Jacobson

radical of FpG. C ⊗Fp is an FpG-module and C ⊗Fp/JC ⊗Fp is called the

first radical layer of C ⊗ Fp.

We suppose that the p-Sylow group Gp of G is a normal subgroup. Let

K be the intermediate field of M/k corresponding to Gp. K is a Galois

extension of k such that p6 |[K : k]. Denote by g the Galois group of K/k.

The abelian p-genus field of M/K is the compositum HabM , where Hab

is the maximal abelian subfield of H/K. The central p-genus field Hcent

is the intermediate field of H/M corresponding to
∏

σ∈Gp
Cσ−1. We shall
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show that J is generated by {g− 1 : g ∈ Gp}. Therefore, C ⊗Fp/JC ⊗Fp
∼=

Gal(Hcent/M)⊗Fp and FpG/J ∼= Fpg. This means that Gal(Hcent/M)⊗Fp

is an Fpg-module which is isomorphic to the first radical layer.

Fpg is a semisimple artinian ring, because of p 6 |(g : 1), (c.f. Theorem

3.14, Curtis-Reiner [2]). By Theorem 1.3.5, Benson [1], we have an isomor-

phism

Fpg ∼=
r
⊕

i=1

Mni
(∆i)

of rings, where ∆i is a division ring. Let Li be the minimal left ideal of

Mni
(∆i). Fpg has exactly r isomorphism classes of irreducible modules Li,

i = 1, · · · , r. Denote by Φi the irreducible character afforded with Li. Put

B(g) = {Φi : 1 ≤ i ≤ r}. This set is called a basic set of irreducible Fp-

characters of g. These irreducible characters are linearly independent over

Fp, (c.f., Lemma 3.3, Chapter 19, Karpilovsky [5]). Let 1i be the inverse

image of the identity matrix of Mni
(∆i) with the above isomorphism. We

see

1 =

r
∑

i=1

1i, 1i1j = δi,j1i.

When an irreducible character Φ is given, there is Φi such that Φi = Φ.

Hence, we write ∆Φ, LΦ, 1Φ for ∆i, Li, 1i. We also write dΦ for ni.

There is an integer aΦ ≥ 1 such that

1Φ Gal(Hcent/M) ⊗ Fp
∼= LaΦ

Φ .

We shall give a formula describing the value of aΦ in the present paper.

This will be done in Theorem 9 in §4. We are able to determine for what

M and Φ the value of aΦ equals 0 or 1. The number of generators of C over

ZpG is obtained from the values of aΦ, where ZpG denotes the group ring

of G over the ring Zp of p-adic integers. Suppose p is odd. When k = Q and

M is a cyclotomic field and if aΦ ≤ 1 for every Φ such that τ1Φ 6= 1Φ, we

have Cτ−1 ∼= (τ − 1)ZpG/(τ − 1)S, where τ is the complex conjugation and

S is an ideal generated by the Stickelberger elements (c.f. Sinnott [9]). In

general, it is equivalent to C = 0 that aΦ vanishes for every Φ. We are able

to apply this to study the Greenberg conjecture (c.f. Greenberg [3]). We

could obtain a criterion whether the conjecture holds in its ”trivial case”.

We denote by dim X the dimension over Fp for an Fp-module X. The

outline of our argument is as follows. Put Mab = M ∩ Hab. There is a
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non-negative integer θ(Φ) such that

aΦ =
1

dimLΦ
dim 1Φ Gal(Hab/Mab) ⊗Fp + θ(Φ).

We have the following inequality:

dim1Φ Gal(Hab/K) ⊗ Fp ≥ dim 1Φ Gal(Hab/Mab) ⊗ Fp

≥dim1Φ Gal(Hab/K) ⊗ Fp − dim 1Φ Gal(Mab/K) ⊗ Fp.

Hence, if 1Φ Gal(Mab/K) ⊗ Fp = 0, we have

dim 1Φ Gal(Hab/K) ⊗ Fp = dim 1Φ Gal(Hab/Mab) ⊗Fp.

We shall obtain a formula of the value of

dim 1Φ Gal(Hab/K) ⊗ Fp

by studying the representation of g on Gal(Hab/K) ⊗ Fp. In particular,

when G = Gp × g, we have θ(Φ) = 0 and dim 1Φ Gal(Mab/K) ⊗ Fp = 0 if

Φ is not the unit character ε.

§1. The p-genus and central p-genus fields

The Jacobson radical J of FpG is the intersection of every maximal left

ideal, which is a two-sided ideal of FpG. Put R = FpG/J .

Lemma 1. J is generated by {g − 1 : g ∈ Gp}, and hence, R ∼= Fpg.

Proof. Let FpG → Fpg be a homomorphism induced from the canoni-

cal map G → g. Let J ′ be the kernel of this homomorphism. J ′ is generated

by {g − 1 : g ∈ Gp} over Fp. Since Fp is a local commutative ring, we are

able to apply Proposition 5.26 in Curtis-Reiner [2] to this homomorphism.

We have J ′ ⊂ J . J/J ′ is contained in the Jacobson radical of FpG/J ′ = Fpg.

Therefore, J/J ′ = 0. We obtain J = J ′, and hence FpG/J ∼= Fpg.

We identify FpG/J with Fpg in the remainder part. Put fΦ = dim ∆Φ.

fΦ equals dim HomR(LΦ, LΦ), (c.f. Theorem 1.3.5, Benson [1]). We have

dimLΦ = fΦdΦ.(1.1)

Denote by A the group ring Zpg. We see R = A ⊗ Fp. Since p 6 |(g : 1),

the center Z(A) (resp. Z(R)) of A (resp. R) is generated by {C(σ) =
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1
(g:1)

∑

τ∈g τστ−1 : σ ∈ g}. Hence, Z(R) is the image of Z(A) with the

canonical map. We have the assumption of (iii) of Theorem 1.9.4, Benson

[1] is satisfied for A and R. Thus, every 1Φ is lifted on a primitive central

idempotent 1̃Φ of A and

1 =
∑

Φ

1̃Φ.

Denote by RΦ the simple ring 1ΦR. Let Y be a finitely generated A-module.

We have an isomorphism 1Φ(Y ⊗Fp) ∼= 1̃ΦY ⊗Fp. Since Y ⊗Fp
∼= R⊗A Y ,

we see 1̃ΦY ⊗Fp
∼= RΦ ⊗A Y . Denote by rΦ(Y ) a non-negative integer such

that

1̃ΦY ⊗Fp
∼= RΦ ⊗A Y ∼= L

rΦ(Y )
Φ .

We use RΦ ⊗A Y rather than 1̃ΦY ⊗Fp in the sequel. We have

rΦ(Y ) =
1

fΦdΦ
dim RΦ ⊗A Y, dim Y ⊗ Fp =

∑

Φ

rΦ(Y )fΦdΦ.(1.2)

Lemma 2. Let 0 → X → Y → Z → 0 be an exact sequence of A-

modules. Then, we have an exact sequence

Tor
Zp

1 (1̃ΦZ,Fp) → RΦ ⊗A X
f→ RΦ ⊗A Y → RΦ ⊗A Z → 0.

If 1̃ΦZ is Zp-torsion free or if 1̃ΦY is an R-module, f is injective.

Proof. Let U be an A-module. We have

Tor
Zp

0 (1̃ΦU,Fp) = 1̃ΦU ⊗Zp Fp
∼= RΦ ⊗A U.

The exact sequence follows from an exact sequence

0 → 1̃ΦX → 1̃ΦY → 1̃ΦZ → 0.

If 1̃ΦZ is Zp-torsion free, we have Tor
Zp

1 (1̃ΦZ,Fp) = 0. If 1̃ΦY is an R-

module, we have 1̃ΦY = 1̃ΦX ⊕ 1̃ΦZ, because R is semisimple. Hence, this

short exact sequence splits. The lemma is proved.

By Lemma 1, we have

1Φ(C⊗Fp/JC⊗Fp) = RΦ⊗A (C/Cp∪∪σ∈GpCσ−1) ∼= 1Φ Gal(Hcent/M)⊗Fp.

Let CM be the idele class group of M . By cup product with the canoni-

cal class of H2(Gp, CM ), an isomorphism H−3(Gp,Z) → H−1(Gp, CM ) is
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defined. This isomorphism is a g-isomorphism. Furthermore, there is a sur-

jective homomorphism onto Gal(Hcent/HabM):

H−3(Gp,Z)
∼=−→ H−1(Gp, CM ) −→ Gal(Hcent/HabM),

(c.f. Jehne [4], Miyake [7], Shirai [8]). Since the p-primary torsion sub-

group of H−3(Gp,Z) is isomorphic to H−3(Gp,Zp), 1̃Φ Gal(Hcent/HabM)

is a homomorphic image of 1̃ΦH−3(Gp,Zp). By towers of Galois extensions

Hcent ⊃ HabM ⊃ M and Hab ⊃ Mab ⊃ K, we have exact sequences

1 → Gal(Hcent/HabM) → Gal(Hcent/M) → Gal(Hab/Mab) → 1,

1 → Gal(Hab/Mab) → Gal(Hab/K) → Gal(Mab/K) → 1.
(1.3)

Let Θ be the image of H−3(Gp,Zp) into Gal(Hcent/M) ⊗ Fp of the ho-

momorphism obtained by combining the surjection of H−3(Gp,Zp) onto

Gal(Hcent/HabM) with the canonical map Gal(Hcent/HabM) ⊗ Fp →
Gal(Hcent/M)⊗Fp. Gal(Hab/K) is an abelian p-group, because Gal(Mab/K)

is an abelian p-group.

Theorem 3. Denote by θ(Φ) the value of rΦ(Θ). We have

θ(Φ) ≤ 1

fΦdΦ
dim 1̃ΦH−3(Gp,Zp)⊗Fp =

1

fΦdΦ
dimRΦ ⊗A H−3(Gp,Zp).

Further, the value aΦ = rΦ(C ⊗ Fp/JC ⊗ Fp) satisfies an inequality

rΦ(Gal(Hab/Mab)) + θ(Φ) = aΦ ≥ rΦ(Gal(Hab/K))

−rΦ(Gal(Mab/K)) + θ(Φ).

If one of 1̃Φ Gal(Mab/K), 1̃Φ Gal(Hab/K)p and 1̃Φ Gal(Hab/Mab) van-

ishes, we have

rΦ(Gal(Hab/K)) = rΦ(Gal(Mab/K)) + rΦ(Gal(Hab/Mab)),

aΦ = rΦ(Gal(Hab/K)) − rΦ(Gal(Mab/K)) + θ(Φ).

Proof. Since H−3(Gp,Zp) is an A-module, we have

rΦ(H−3(Gp,Zp)) =
1

fΦdΦ
dimRΦ ⊗A H−3(Gp,Zp)
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from (1.2). Since Θ is a homomorphic image of H−3(Gp,Zp), we see θ(Φ) ≤
rΦ(H−3(Gp,Zp)). By applying Lemma 2 to the sequence (1.3), we have the

following exact sequences:

0 → RΦ ⊗A Θ → RΦ ⊗A Gal(Hcent/M) → RΦ ⊗A Gal(Hab/Mab) → 0,

→ RΦ ⊗A Gal(Hab/Mab)
f→ RΦ ⊗A Gal(Hab/K)

→ RΦ ⊗A Gal(Mab/K) → 0.

The inequality concerning aΦ follows from these sequences. We also have f

is injective if 1̃Φ Gal(Mab/K) = 0 or if 1̃Φ Gal(Hab/K) is an R-module, or if

1̃Φ Gal(Hab/Mab) = 0. 1̃Φ Gal(Hab/K) is an R-module if 1̃Φ Gal(Hab/K)p

= 0. If one of these conditions is satisfied, rΦ(Gal(Hab/Mab)) is equal

to difference of rΦ(Gal(Hab/K)) and rΦ(Gal(Mab/K)). This proves the

theorem.

Let h be a normal subgroup of g and put g′ = g/h. Denote by R′ the

group ring Fpg
′. Let Ih be the ideal of R generated by {σ − 1 : σ ∈ h}. We

have R′ ∼= R/Ih. Denote by π the canonical homomorphism R → R′. Note

im π = R′ and ker π = Ih. Since h is normal, an element

1h =
1

(h : 1)

∑

σ∈h

σ

of R is a central idempotent and ker π 3 1−1h. Denote by π̃ restriction of π

onto 1hR. π̃ is an isomorphism, because of π(1hR) = π(R) and dim 1hR =

dim R′. We have a decomposition

R = 1hR ⊕ (1 − 1h)R, 1hR ∼= R′, (1 − 1h)R = Ih.(1.4)

Hence, ker π = (1−1h)R. Let Ψ be an irreducible character of g′ and denote

by 1Ψ the corresponding primitive central idempotent of R′. We see π̃−1(1Ψ)

is also a primitive central idempotent. Let Φ be an irreducible character

afforded with a minimal left ideal of π̃−1(1Ψ)R. We have 1Φ = π̃−1(1Ψ)

and Φ = Ψ ◦ π. Conversely, if σ1Φ = 1Φ holds for every σ ∈ h, we have

1Φ1h = 1Φ. Hence, 1ΦR ∼= 1ΦR′ by (1.4). Let Ψ be the character of g′

afforded with a minimal left ideal of 1ΦR′. We have Φ = Ψ ◦ π. Therefore,

we denote by the same symbol Φ this character Ψ.

Lemma 4. Suppose there are normal subfields K ′ of K/k and M ′ of

M/k such that M ′ ⊃ K ′, M = M ′K and M ′∩K = K ′. Put h = Gal(K/K′).
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Let H ′ be the p-Hilbert class field of M ′. Denote by H ′cent the central p-genus

field of M ′/K ′ and by H ′ab the maximal abelian subfield of H ′/K ′. Let Θ′

be the image of H−3(Gp,Zp) into Gal(H ′cent/M ′) ⊗Fp. Suppose σ1Φ = 1Φ

holds for every σ ∈ h. Then,

rΦ(Gal(Hab/K)) = rΦ(Gal(H ′ab/K ′)), rΦ(Θ) = rΦ(Θ′).

Moreover, we have rΦ(Gal(Hcent/M)) = rΦ(Gal(H ′cent/M ′)).

Proof. We have Gal(M ′/K ′) ∼= Gp and Gal(M/M ′) ∼= h. Let H1 be

the maximal abelian subfield of H/K ′. We see Hab ⊃ H1. Gal(Hab/K ′)

is a semidirect product of the p-Sylow subgroup Gal(Hab/K) and h, be-

cause K/K ′ is a Galois extension and p 6 |[K : K ′]. Hence, Gal(H1K/K) ∼=
Gal(Hab/K)/

∏

σ∈h Gal(Hab/K)σ−1. We have the following isomorphism of

R-modules:

Gal(H1K/K) ⊗Fp
∼= Gal(Hab/K) ⊗ Fp/

∑

σ∈h

(Gal(Hab/K) ⊗ Fp)
σ−1.

By (1.4), we see Gal(Hab/K)⊗Fp = 1h Gal(Hab/K)⊗Fp⊕Ih Gal(Hab/K)⊗
Fp. Thus, we have 1Φ Gal(H1K/K) ⊗ Fp

∼= 1Φ Gal(Hab/K) ⊗ Fp. Namely,

rΦ(Gal(H1K/K)) = rΦ(Gal(Hab/K)).

Let H2 be the intermediate field corresponding to
∏

σ∈h Cσ−1 in H/M .

Since h acts on Gal(H1M/M) trivially, we have H2 ⊃ H1. Moreover, since

p 6 |]H−3(h,Z), the central p-genus field of M/M ′ coincides with the abelian

p-genus field of M/M ′. We have H2 = H ′M . Note H ′M = H ′K, because

of H ′ ⊃ M ′ and M = M ′K. Let Hab
2 be the maximal abelian subfield

of H2/K. Since H2 = H ′K, we have Gal(H2/K) ∼= Gal(H ′/K ′). Tak-

ing the maximal abelian quotients, we obtain Hab
2 = H

′abK. This im-

plies H1K = H ′abK, because of Hab
2 ⊃ H1 ⊃ H ′ab. Therefore, we have

Gal(H1K/K) ∼= Gal(H ′ab/K ′) and

rΦ(Gal(H1K/K)) = rΦ(Gal(H ′ab/K ′)).

This proves rΦ(Gal(Hab/K)) = rΦ(Gal(H ′ab/K ′)).

Let NM/M ′ be the norm map. By extending ideals of M ′ onto M , we

have a natural map jM/M ′ : C′ → C. Since NM/M ′ ◦ jM/M ′ is [M : M ′]-th

power map, jM/M ′ is injective and NM/M ′ is surjective. Note

1

(h : 1)
jM/M ′ ◦ NM/M ′ = 1̃h.
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We have 1̃hC ∼= C′. Hence, 1hC ⊗Fp
∼= C′ ⊗Fp. Further, since 1hσ = σ1h for

every σ ∈ Gp, we have 1̃hJC ⊗ Fp
∼= J 1̃hC ⊗ Fp. Therefore,

1h(C ⊗ Fp/JC ⊗ Fp) ∼= C′ ⊗ Fp/JC′ ⊗ Fp.

This proves rΦ(C ⊗ Fp/JC ⊗ Fp) ∼= rΦ(C′ ⊗ Fp/JC′ ⊗ Fp).

We have a commutative diagram

1̃Φ Gal(Hcent/M) ⊗ Fp

↗
1̃ΦH−3(Gp,Zp) ↓∼=

↘
1̃Φ Gal(H ′cent/M ′) ⊗ Fp

Thus, 1ΦΘ ∼= 1ΦΘ′. The lemma is proved.

§2. The Kummer group

We denote by ζm a primitive m-th root of unity. We are able to calculate

the value of rΦ(C) in M(ζp) by virtue of Lemma 4 if M 63 ζp. We may

suppose ζp ∈ M . Let H∗ be the maximal elementary (p, · · · , p)-abelian

subfield of H/K. We see Gal(H∗/K) = Gal(Hab/K)⊗Fp. Let B = H×p ∩
K×/K×p be the Kummer group of H∗/K. We consider B a submodule of

K×⊗Fp = K×/K×p. Denote by T an R-module < ζp > ⊗Fp. The Kummer

pairing is a non-degenerate pairing having values in T:

< b, g > =
p
√

bg−1 ⊗ 1, b ∈ B, g ∈ Gal(H∗/K).

Since H∗ is Galois over k, B and Gal(H∗/K) are R-modules. Let ω be

an irreducible character afforded with T. The action of σ ∈ g satisfies the

following relation on the pairing

< σb, σg > = ω(σ) < b, g > .

Let Φ̂ be a character defined by Φ̂(σ) = Φ(σ−1). The reflection of Φ is

defined to be a character Φ̂ω. Denote by Φ∗ the reflection of Φ. Let L̂Φ =

Hom(LΦ,Fp) be an R-module where σ ∈ g acts by σf = f ◦σ−1 for f ∈ L̂Φ.

Let L∗
Φ = L̂Φ ⊗ T be an R-module where g acts diagonally. Φ̂ (resp. Φ∗) is

afforded with L̂Φ (resp. L∗
Φ).

Lemma 5. We have
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(1)
ˆ̂
LΦ

∼= LΦ and L∗∗
Φ

∼= LΦ,

(2) Φ∗ is irreducible,

(3) fΦ = fΦ∗ and dΦ = dΦ∗.

Proof. By (iii) of Lemma 10.26, Curtis-Reiner [2], we have
ˆ̂
LΦ

∼=
LΦ. When finitely generated R-modules L1 and L2 are given, we consider

Hom(L1, L2) (resp. L1 ⊗ L2) be an R-module by σf = σ ◦ f ◦ σ−1 (resp.

σ(x ⊗ y) = σx ⊗ σy) for f ∈ Hom(L1, L2) (resp. x ⊗ y ∈ L1 ⊗ L2). By

Proposition 10.30, Curtis-Reiner [2], we have

L̂1 ⊗ L2
∼= Hom(L1, L2),

where L̂1 = Hom(L1,Fp). Since L∗∗
Φ

∼= Hom(L∗
Φ,Fp) ⊗ T and T̂ ⊗ T ∼= Fp,

an isomorphism L∗∗
Φ

∼= LΦ follows from

Hom(L̂Φ ⊗ T,Fp) ⊗ T ∼= Hom(T,Hom(L̂Φ,Fp)) ⊗T

∼= Hom(T, LΦ) ⊗ T ∼= T̂ ⊗ LΦ ⊗ T ∼= LΦ.

Suppose L∗
Φ = M1 ⊕ M2 for non-trivial submodules Mi. We have L∗∗

Φ
∼=

M∗
1 ⊕M∗

2 . However, this contradicts to that LΦ is simple. Thus, L∗
Φ is simple

and Φ∗ is irreducible. Since Hom(LΦ, LΦ)g = HomR(LΦ, LΦ) and L̂Φ⊗LΦ
∼=

Hom(LΦ, LΦ), we have (L̂Φ ⊗ LΦ)g ∼= HomR(LΦ, LΦ). By (10.32), Curtis-

Reiner [2], we also have HomR(LΦ, LΦ) ∼= HomR(L̂Φ, L̂Φ). This implies

(L̂Φ⊗LΦ)g ∼= (LΦ⊗L̂Φ)g. Since L̂Φ∗⊗LΦ∗ = Hom(L̂Φ⊗T,Fp)⊗(L̂Φ⊗T) ∼=
(T̂ ⊗ LΦ) ⊗ (L̂Φ ⊗ T) ∼= LΦ ⊗ L̂Φ, we obtain (L̂Φ∗ ⊗ LΦ∗)g ∼= (LΦ ⊗ L̂Φ)g.

Therefore,

fΦ = dim Hom R(LΦ, LΦ) = dim(L̂Φ ⊗ LΦ)g

= dim(L̂Φ∗ ⊗ LΦ∗)g = dim Hom R(LΦ∗ , LΦ∗) = fΦ∗ .

Since dimLΦ = dimLΦ∗ , we have dΦ = dΦ∗ from (1.1).

We have 1ΦB and 1Φ∗ Gal(H∗/K) are dual to each other by means of

the Kummer pairing. Hence, a formula

dim 1ΦB = dim1Φ∗ Gal(H∗/K)(2.1)

is obtained. Since fΦdΦ = fΦ∗dΦ∗ , we have

rΦ(B) = rΦ∗(Gal(Hab/K))(2.2)
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from (1.2) and (2.1).

In accordance with Leopoldt [6], we are able to obtain a formula for

rΦ(B) by modifying the argument developed there. Denote by Kv the com-

pletion of K at a place v. Let Uv be the unit group of Kv when v is a finite

place. Let µv be the p-primary torsion subgroup of K×
v . We have a tower

of Kummer extensions:

K∗
v = Kv(

p
√

x : x ∈ K×
v ) ⊃ K̃∗

v = Kv(
p
√

x : x ∈ Uv) ⊃ Kv.

Denote by v0 a place of k. Let v (resp. w) denote a prolongation of v0 (resp.

v) onto K (resp. M). Suppose v0|p. Let pf be the absolute degree of the

valuation ideal pv . Kv(ζppf−1) is the unramified abelian extension of degree

p over Kv. Put

ξ̃v =

p−1
∑

i=0

ζpfi

ppf−1
ζ i
p.

We have ξ̃p
v ∈ Kv and Kv(ζppf−1) = Kv(ξ̃v). Let ξv be an element of Uv such

that ξ̃p
v ∈ ξvK

×p
v . We have Kv(

p
√

ξv) = Kv(ζppf−1). Let K ′
v be the inertia

field in Mw/Kv . Similarly, there is an unit ξ′v of K ′
v such that K ′

v(
p
√

ξ′v) is

the unramified abelian extension of degree p over K ′
v.

Lemma 6. Let v0 be a finite place of k. Let a be an element of K×
v .

(1) Suppose v0 6 |p. Mw( p
√

a)/Mw is unramified if and only if the ramifica-

tion index of Kv( p
√

a)/Kv divides that of Mw/Kv.

(2) Suppose v0|p. Let Mab
w be the maximal abelian subfield of Mw/Kv. We

have Mw( p
√

a) is unramified if and only if p
√

a ∈ Mab
w ( p
√

ξ′v).

Proof. Since Mw( p
√

a)/Mw is tamely ramified for v0 6 |p, (1) is obvious.

Mw( p
√

ξ′v) is unramified and of degree p over Mw for v0|p. Let Gw (resp. G′
w)

be the Galois group of Mw/Kv (resp. Mw( p
√

ξ′v)/Kv)). Denote by Gc
w and

G′c
w the subgroups generated by commutators. Since Gw is a homomorphic

image of G′
w, we have ]Gc

w ≤ ]G′c
w. We see ]G′

w = p]Gw and (G′
w : G′c

w) ≥
p(Gw : Gc

w). Hence, ]G′c
w = ]Gc

w. This implies that the maximal abelian

subfield of Mw( p
√

ξ′v)/Kv is Mab
w ( p
√

ξ′v). This proves (2), because Kv( p
√

a)

is an abelian extension of Kv.

Let P be the set consisting of every place of k0 lying above p. Denote

by P (K) the set of every prolongation onto K of every place contained in
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P . We use this convention for an arbitrary set of places of k. Denote by

e(w/v) the ramification index of Mw/Kv for a finite place v0. Let T and S

be sets of places of k defined by

T = {v0 6∈ P : v0 6 |∞, p|e(w/v)} ∪ {v0 ∈ P : Mab
w ( p
√

ξ′v) ∩ K∗
v 6⊂ K̃∗

v},
S = {v0 : w is real and K×p

v 6= K×
v },

respectively. Let Vv be a closed subgroup of K×
v such that

Vv =















Mab
w ( p
√

ξ′v)
×p ∩ Uv if v ∈ P (K)\T (K),

Mab
w ( p
√

ξ′v)
×p ∩ K×

v if v ∈ P (K) ∩ T (K),

K×p
v if v ∈ S(K).

(2.3)

Note Vv contains Up
v (resp. K×p

v ) if v ∈ P (K)\T (K) (resp. v ∈ P (K) ∩
T (K)). We observe that M( p

√
a)/M is unramified for a ∈ K× if and only

if a ∈ VvK
×p
v for every v ∈ P (K) ∪ S(K) and v(a) ≡ 0 mod p for every

finite places v not contained in T (K), where we abuse notation and denote

by the same symbol v the normalized additive valuation belonging to v. B

is a subgroup of K× ⊗ Fp consisting of a ⊗ 1 for every a ∈ K× satisfying

this condition.

Let ET be the group of T -units of K: ET = {a ∈ K× : v(a) = 0 for every

finite place v 6∈ T (K)}. Let PT = K×/ET and DT = ⊕v 6 |∞,v 6∈T (K)K
×
v /Uv .

PT is considered a subgroup of DT by a diagonal map. We have an exact

sequence

0 → ET ⊗ Fp
i→ K× ⊗ Fp

j→ PT ⊗ Fp → 0,

because PT is torsion free. Put B1 = i−1(ker j∩B). j(B) consists of (a)⊗1

such that a⊗1 ∈ B. Let CT be the p-torsion subgroup of DT /PT . Let (a)⊗1

be an element of j(B) with a⊗ 1 ∈ B. Since v(a) ≡ 0 mod p for every finite

place v 6∈ T (K), there is a ∈ DT such that ap = (a). We observe a is

principal if and only if a ∈ K×pET . Since a ∈ K×pET implies a⊗ 1 ∈ ker j,

a correspondence (a) ⊗ 1 → cl(a) defines an injective homomorphism of

j(B) into CT . Denote by B0 the image of this homomorphism. Observe

that cl(a) ∈ B0 if and only if there is a ∈ K× such that ap = (a) and

a ∈ VvK
×p
v for every v ∈ P (K)∪ S(K). We have Leopoldt’s decomposition

of the Kummer group B:

0 → B1 → B → B0 → 0,
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c.f. Leopoldt [6]. Hence, we obtain a formula

rΦ(B) = rΦ(B1) + rΦ(B0).(2.4)

Let V be a direct product of Vv for v ∈ P (K) ∪ S(K). Put

U =
∏

v∈P (K)\T (K)

Uv ×
∏

v∈P (K)∩T (K)

K×
v ×

∏

v∈S(K)

K×
v .(2.5)

V is an open subgroup of U . Let ι : ET → U be the diagonal map. ι(ET )V

is also an open subgroup. Let U ′ be a closed subgroup of the idele group of

K such that

U ′ =
∏

v 6 |∞,v 6∈P (K)∪T (K)

Uv ×
∏

v∈T (K)\P (K)

K×
v ×

∏

v|∞,v 6∈S(K)

K×
v .

Let K0 be the class field of K corresponding to an open subgroup K×UU ′

of the idele group of K. Let K1 be a class field of K such that K1 ⊃ K0

and Gal(K1/K0) ∼= K×UU ′/K×V U ′. Since K× ∩ UU ′ = ET , we have

Gal(K1/K0) ∼= UU ′/ET V U ′. Further, by projection onto U , we have

Gal(K1/K0) ∼= U/ι(ET )V.

Since V ⊃ Up, we have a homomorphism ET ⊗Fp → U/V . Observe that the

cokernel is U/ι(ET )V and that the kernel is B1. We have an exact sequence

0 → B1 → ET ⊗ Fp → U/V → Gal(K1/K0) → 0.(2.6)

Let K×
P\T be a subgroup of K× consisting of a such that v(a) = 0 for

every v ∈ P (K)\T (K). We extend ι onto K×
P\T . Note ι(K×

P\T )p ⊂ V . Each

element c ∈ CT contains a ∈ DT such that ap is generated by an element

a of K×
P\T . If there is a′ ∈ c such that a′p = (a′) for a′ ∈ K×

P\T , we have

b ∈ K× and x ∈ ET such that a = xbpa′. We see ι(bp) ∈ V , because

bp ∈ K×
P\T means b ∈ K×

P\T . Hence, ι(a)ι(ET )V = ι(a′)ι(ET )V . Therefore,

a homomorphism

ρ : CT → Gal(K1/K0)(2.7)

is well-defined by ρ(c) = ι(aET )V . Let (a) ⊗ 1 ∈ j(B). We may assume

a ∈ VvK
×p
v for every v ∈ P (K) ∪ S(K). Note VvK

×p
v = Vv for v ∈ S(K).

By approximation theorem of valuations, there exists bv ∈ K× for each v ∈
P (K)\T (K) such that v(bv) = 1 and u(bv) = 0 for every u ∈ P (K)\(T (K)∪
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{v}). Since v(ab
−v(a)
v ) = 0 and v(a) ≡ 0 mod p, there is b ∈ K× such that

abp ∈ K×
P\T . We have ι(abp) ∈ V . This implies B0 ⊂ ker ρ. Conversely, let

cl(a) ∈ ker ρ. There are a ∈ K×
P\T

, b ∈ K× such that (a) = (bp)ap, and

there are x ∈ ET , w ∈ V such that ι(a) = ι(x)w. Since ι(ax−1) ∈ V , we

have ax−1 ⊗ 1 ∈ B. This means cl(a) ∈ B0. We have ker ρ ⊂ B0. Therefore,

another exact sequence

0 → B0 → CT
ρ→ Gal(K1/K0)(2.8)

is obtained. Let α(Φ) = rΦ(coker ρ)

Theorem 7. Put βT (Φ) = rΦ(ET ⊗ Fp), γT (Φ) = rΦ(CT ), κ1(Φ) =

rΦ(U⊗Fp) and κ2(Φ) = rΦ(V/Up). We have rΦ∗(Gal(Hab/K)) = rΦ(B1)+

rΦ(B0) and

βT (Φ)+γT (Φ) ≥ rΦ(B1)+rΦ(B0) = α(Φ)+βT (Φ)+γT (Φ)−κ1(Φ)+κ2(Φ).

Proof. By (2.2) and (2.4), the value of rΦ∗(Gal(Hab/K)) equals the

sum of rΦ(B1) and rΦ(B0). We see βT (Φ) ≥ rΦ(B1) and γT (Φ) ≥ rΦ(B0).

Hence βT (Φ) + γT (Φ) ≥ rΦ∗(Gal(Hab/K)). Since U/V ∼= (U/Up)/(V/Up),

we have rΦ(U/V ) = rΦ(U/Up)−rΦ(V/Up). The values of rΦ(B1) and rΦ(B0)

are described with α(Φ), βT (Φ), γT (Φ) and κi(Φ) by means of the sequences

(2.6) and (2.8).

§3. The character of the representation on Gal(H∗/K)

The character afforded with a finitely generated R-module Y may have

no significance. We have

Y =
⊕

Φ

1ΦY ∼= L
rΦ(Y )
Φ .

However, if rΦ(Y ) ≡ 0 mod p for every Φ, the character is 0. By this reason,

we introduce a free abelian group ch(R) on B(g).
∑

mΦΦ >
∑

nΦΦ means

mΦ ≥ nΦ holds for every Φ and there is at least one Φ such that mΦ > nΦ.

In the sequel, if we say a character afforded with Y or a character of the

representation on Y , we mean an element
∑

Φ rΦ(Y )Φ of ch(R).

Let α (resp. βT , γT ) be the character of the representation of g on an

R-module coker ρ (resp. ET ⊗ Fp, CT ). Let κ1 (resp. κ2) be the character

afforded with an R-module U ⊗ Fp (resp. V/Up). Let ϕB be the character

afforded with B. By virtue of Theorem 7, we have

βT + γT ≥ ϕB = α + βT + γT − κ1 + κ2.(3.1)
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Lemma 8. LetP and Q be finitely generated Zp-torsion free A-modules.

If P ⊗Zp Qp
∼= Q ⊗Zp Qp, we have P ⊗Zp Fp

∼= Q ⊗Zp Fp.

Proof. By virtue of Corollary 18.16, Curtis-Reiner [2], we have P ∼= Q

if P ⊗Zp Qp
∼= Q ⊗Zp Qp. Hence, P ⊗Zp Fp

∼= Q ⊗Zp Fp.

Let T∞ be union of T and all of infinite places {v0,1, · · · , v0,r} of k. For

each v0 ∈ T∞, we choose a prolongation v onto K and fix it once for all.

Denote by vi the prolongation of v0,i. Let gv ⊂ g be the decomposition

group of v. Denote by Zg/gv a left Zg-module

⊕

σ̄∈g/gv

Zσ̄,

where σ̄ denotes a coset σgv. Similarly, we denote by Fpg/gv a left R-module

generated by σ̄. We see Zg/gv ⊗ Fp = Fpg/gv.

We have a system of Minkowsky’s units of the relative Galois field K/k.

Namely, there exist units Hi of K such that

|Hi|vi
> 1, |Hi|σvj

< 1 if i 6= j or σ 6∈ gvi
,

σHi = Hi for σ ∈ gvi
,

where | · |vi
is the multiplicative valuation belonging to vi. Let F be a g-

submodule of the unit group E∅ generated by {Hi}r
i=1. Let µK be the torsion

submodule of E∅. We have (E∅ : FµK) < ∞. Put W∞ = ⊕r
i=1Zg/gvi

.

Denote by H̄i the image of Hi into FµK/µK . We have a surjective g-

homomorphism of W∞ onto FµK/µK :

`∞ :

(

∑

σ̄∈g/gvi

mi,σ̄σ̄ : 1 ≤ i ≤ r

)

−→
r
∏

i=1

∏

σ̄∈g/gvi

σH̄
mi,σ̄

i .

Put ei =
∑

σ̄∈g/gvi
σ̃ ∈ Zg, where σ̃ denotes a representative of σ̄. hi = eiHi

is a unit of k and there is a non-trivial relation

1 =

r
∏

i=1

hmi

i .

Put e = (miei : 1 ≤ i ≤ r) ∈ W∞. We see ker `∞ ⊃ Zge 6= 0. Since the

Z-rank of E∅ equals
∑r

i=1(g : gvi
) − 1 and since the action of g on Zge is

trivial, we have ker `∞ is a trivial g-module of rank 1. Set P = E∅/µK ⊗Zp
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and Q = (W∞⊗Zp)/(ker `∞⊗Zp) in Lemma 8. Since W∞/ker `∞ is torsion

free, we have

E∅/µK ⊗ Fp
∼= W∞ ⊗ Fp/ker `∞ ⊗ Fp

∼=
(

r
⊕

i=1

Fpg/gvi

)

/Fp.

Similarly, ET contains an element Hv for each v0 ∈ T such that v(Hv) > 0

and u(σHv) = 0 if v 6= u or if σ 6∈ gv. Let FT be a g-submodule of ET

generated by {Hv: v0 ∈ T} and E∅. We have (ET : FT ) < ∞ and the Z-rank

of FT /E∅ equals
∑

v0∈T (g : gv). Put WT = ⊕v0∈TZg/gv. By considering a

surjective homomorphism WT → FT /E∅, we obtain WT
∼= FT /E∅. Set

P = ET /E∅ ⊗ Zp and Q = WT ⊗ Zp in Lemma 8. We have

ET /E∅ ⊗ Fp
∼=

⊕

v0∈T

Fpg/gv.(3.2)

Denote by Rv the group ring Fpgv. Let indvFp be the induced module

indg
gv

Fp = R ⊗Rv Fp of the trivial Rv-module Fp. Note indvFp = Fpg/gv.

Let εv0
be a character afforded with indvFp. Since the sequences

0 → µK ⊗ Fp → E∅ ⊗ Fp → E∅/µK ⊗ Fp → 0,

0 → E∅ ⊗ Fp → ET ⊗ Fp → ET /E∅ ⊗ Fp → 0

are exact, we have

βT = ω +
∑

v0∈T∞

εv0
− ε(3.3)

from the above isomorphisms.

Let U
(1)
v be the group of principal units of Kv for v ∈ P (K) and µv be

the p-primary torsion subgroup of U
(1)
v . Uv ⊗Fp

∼= Uv/Up
v is isomorphic to

U
(1)
v ⊗ Fp and U

(1)
v /µv is a torsion free Zp-module. Thus, the sequence

0 → µv ⊗ Fp → Uv ⊗ Fp → U (1)
v /µv ⊗ Fp → 0

is exact. The p-adic logarithm maps U
(1)
v into Kv, which is a gv-homomor-

phism. Let pv be the valuation ideal of Kv. There is m ≥ 1 such that the

p-adic exponential function converges on pm
v . Let b be a normal basis of

Kv/kv0
and {b1, · · · , bmv0

} be a Qp-basis of kv0
, where mv0

= [kv0
: Qp]. We

have

Kv =

mv0
⊕

i=1

Qpgv(bbi).
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We may assume bbi ∈ pm
v . Let F ′

v be a Zpgv-submodule of pm
v generated by

bb1, · · · , bbmv0
. We have F ′

v
∼= (Zpgv)

mv0 . Let Fv be the inverse image of F ′
v

in U
(1)
v by the p-adic logarithm. We have

Fvµv/µv
∼= F ′

v
∼= (Zpgv)

mv0 .

Since (U
(1)
v : Fv) < ∞, we obtain U

(1)
v /µv ⊗Zp Fp

∼= R
mv0
v by putting P =

U
(1)
v /µv and Q = Fvµv/µv in Lemma 8. Note U

(1)
v /µv⊗Fp

∼= U
(1)
v /µvU

(1)p
v

∼=
Uv/µv ⊗Z Fp. Hence, we have

Uv ⊗ Fp
∼= (µv ⊗ Fp) ⊕ R

mv0
v .(3.4)

Denote by ωv0
a character afforded with indvµv ⊗ Fp

∼= indvT. Let ϕg

denote the character of the left regular representation on R. Since indvRv =

R and
∏

u|v0
Uu ⊗ Fp

∼= indvUv ⊗ Fp, the character of representation on
∏

u|v0
Uu⊗Fp is ωv0

+mv0
ϕg. Since K×

v /Uv
∼= Z, we have indv(K

×
v /Uv)⊗Fp

affords εv0
. Thus, the character of the representation on

∏

u|v0
K×

v ⊗ Fp is

ωv0
+ mv0

ϕg + εv0
for v0 ∈ P ∩ T . If v0 ∈ S, we denote by µu the torsion

subgroup of K×
u for u|v0 and have

∏

u|v0
µ×

u ⊗Fp affords ωv0
. Note ωv0

= 0

if p 6= 2. We obtain

κ1 = [k : Q]ϕg +
∑

v0∈P

ωv0
+

∑

v0∈P∩T

εv0
+
∑

v0∈S

ωv0
(3.5)

because of
∑

v0∈P mv0
= [k : Q].

We have an isomorphism of R-modules:

V/Up ∼=
⊕

v0∈P\T

indvVv/Up
v ⊕

⊕

v0∈P∩T

indvVv/K×p
v .

Let W1 (resp. W2) be the submodule generated by Vv (resp. Vv ∩ Uv) in

K×
v ⊗Fp (resp. Uv ⊗Fp). By inclusion Uv ⊗Fp ⊂ K×

v ⊗Fp, we consider W2

a submodule of W1. Since K×
v /Uv

∼= Z, we have W1/W2
∼= Fp if v0 ∈ P ∩T .

Note W1 = W2 if v0 ∈ P\T . Let W3 be a submodule of Uv ⊗ Fp generated

by ξv ⊗ 1 over Rv. Since Kv(
p
√

ξv) is compositum of Kv and the unramified

abelian extension of degree p over kv0
, we see Gal(Kv(

p
√

ξv)/Kv) ∼= Fp as

Rv-modules. By the Kummer duality, this means W3
∼= T. Put Wv = K×

v

if v0 ∈ P ∩ T , and Wv = Uv for v0 ∈ P\T . We have dim W3 = 1 and

(Vv/W p
v ) ∼= (W1/W2) ⊕ (W2/W3) ⊕ W3. By (3.4), we have

R
mv0
v

∼= (Uv ⊗ Fp)/W3 ⊃ W2/W3.
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Let δv0
be the character afforded with indv0

W2/W3. We have

κ2 =
∑

v0∈P

(ωv0
+ δv0

) +
∑

v0∈P∩T

εv0
, δv0

≤ mv0
ϕg.(3.6)

We have the following formula from (3.5), (3.6) and (2.6):

κ1 − κ2 = [k : Q]ϕg −
∑

v0∈P δv0
+
∑

v0∈S ωv0
,

κ1 − κ2 − βT + ϕB1
≥ α

(3.7)

where ϕB1
is the character of the representation onto B1.

§4. The value of aΦ∗

We denote by ϕ(Φ) the coefficient of Φ for an element ϕ of ch(R). If ϕ

is a character afforded with an R-module Y , we have

ϕ(Φ) = rΦ(Y ) =
1

fΦ
dim Hom R(LΦ, Y ) =

1

fΦ
dimHom R(Y,LΦ)(4.1)

because of fΦ = dim HomR(LΦ, LΦ). We recall characters:

characters modules

α coker (CT
ρ→ Gal(K1/K0) = U/ι(ET )V )

βT ET ⊗ Fp

γT CT

δv0
indv(Vv ∩ Uv/Up

v < ξv >) for v0 ∈ P

εv0
indvFp for v|v0

Let θ be the character afforded with Θ.

Theorem 9. The value of aΦ∗ = rΦ∗(C ⊗ Fp/JC ⊗ Fp) satisfies an

inequality

βT (Φ) + γT (Φ) + θ(Φ∗)

≥ aΦ∗

≥ α(Φ) + βT (Φ) + γT (Φ) + θ(Φ∗) +
∑

v0∈P

δv0
(Φ)

−
∑

v0∈S

ωv0
(Φ) − [k : Q]dΦ − rΦ∗(Gal(Mab/K)).

Moreover, we have the following statements:
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(1) If 1̃Φ∗ Gal(Mab/K) = 0 or if 1̃Φ∗ Gal(Hab/K)p = 0, the value of aΦ∗

equals

α(Φ) +
∑

v0∈T∞

εv0
(Φ) + ω(Φ) − ε(Φ) + γT (Φ) + θ(Φ∗) +

∑

v0∈P

δv0
(Φ)

−
∑

v0∈S

ωv0
(Φ) − [k : Q]dΦ − rΦ∗(Gal(Mab/K)).

(2) If G = g × Gp, we have 1̃Φ∗ Gal(Mab/K) and 1̃Φ∗H−3(Gp,Zp) vanish

for Φ∗ 6= ε.

(3) Suppose p > 2. If δv0
(Φ) = mv0

dΦ for every v0 ∈ P , we have α(Φ) = 0.

Proof. The inequality and the statement (1) follow from Theorem 3, 7

and formulas (3.7), (3.3). If G = g×Gp, we have g acts trivially on Gp with

conjugation. Hence, Gal(Mab/K) and H−3(Gp,Zp) are trivial g-modules.

Hence,

1̃Φ∗ Gal(Mab/K) = 0, 1̃Φ∗H−3(Gp,Zp) = 0

whenever Φ∗ 6= ε. This proves (2). Suppose p is odd. We see ωv0
= 0 for v0 ∈

S. If δv0
(Φ) = mv0

dΦ for every v0 ∈ P , we have
∑

v0∈P δv0
(Φ) = [k : Q]dΦ.

By (3.7), we have α(Φ) ≤ κ1(Φ) − κ2(Φ) = 0, because of βT − ϕB1
≥ 0.

We denote by UM , VM the closed subgroup of the idele group of K

defined by (2.3) and (2.5) with adding subscript to specify the field M . We

also denote by ρM the map defined in (2.7). We write BM , B1,M , B0,M for

B, B1, B0.

Lemma 10. Let p be an odd prime. If kv0
63 ζp and gv acts on

Gal(Mab
w /Kv) trivially for every v0 ∈ P , we have T ∩ P = ∅. Moreover,

we have an Rv-isomorphism Vv/Up
v

∼= Tc for c = dim Gal(Mab
w ( p
√

ξ′v) ∩
K∗

v/Kv).

Proof. By (2 . 3), we see Vv K×p
v /K×p

v is the Kummer radical of

a Kummer extension Mab
w ( p
√

ξ′v) ∩ K∗
v/Kv. Let Qur

p be the maximal un-

ramified abelian p-extension of Qp. Since Mab
w ( p
√

ξ′v) is a subfield Qur
p Mab

w

and since gv acts trivially on Gal (Qur
p Mab

w /Kv) with conjugation, we

have Gal(Mab
w ( p
√

ξ′v)/Kv) is a trivial gv-module. Thus, considering the

Kummer pairing, the Kummer radical is isomorphic to Tc for c =

dim Gal(Mab
w ( p
√

ξ′v)∩K∗
v/Kv). Note T 6∼= Fp as gv-modules, because of kv0

63
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ζp. Since K×
v /UvK

×p
v is a trivial gv-module, the image of VvK

×p
v /K×p

v →
K×

v /UvK
×p
v is 0 in an exact sequence

0 → Vv ∩ Uv/Up
v → VvK

×p
v /K×p

v → K×
v /UvK

×p
v .

Hence, Vv ⊂ UvK
×p
v . This proves T ∩ P = ∅.

Lemma 11. Let p be an odd prime. Suppose that M is an abelian ex-

tension of Q containing ζpt for t ≥ 2 such that Kv(ζpt) is ramified over Kv

for every v0 ∈ P . Furthermore, we also suppose kv0
63 ζp for every v0 ∈ P .

Put N = M ∩ ∪n≥1K(ζpn). We have a commutative diagram

0 −−−→ 1ΦB0,N −−−→ 1ΦC∅

ρN,Φ

−−−→ 1Φ(UN/ι(E∅)VN )

g′
Φ







y

gΦ







y

hΦ







y

0 −−−→ 1ΦB0,M −−−→ 1ΦCT

ρM,Φ

−−−→ 1Φ(UM/ι(ET )VM )

where ρM,Φ and ρN,Φ denote restriction onto the 1Φ-components, respec-

tively. Moreover, we have
∑

v0∈T

εv0
(Φ) ≥ rΦ(ker hΦ) =

∑

v0∈T

εv0
(Φ) − rΦ(B1,M ) + rΦ(B1,N ).

If
∑

v0∈T εv0
(Φ) = 0, we have rΦ(BM ) = rΦ(BN ).

Proof. By Lemma 10, we have T ∩ P = ∅. Hence, UM = UN . To

prove the lemma, we need to show VM = VN . Denote by VM,v be the v-

component of the direct product VM =
∏

v∈P (K) Vv. We see VM,v ⊂ Uv.

Since Qur
p Mw contains Mw( p

√

ξ′v) and is abelian over Qp, there are m ≥ t,

a > 0 and b > 0 such that a is prime to p and so that Qp(ζpm , ζ
papb−1

)

contains Mw( p
√

ξ′v). The p-Sylow subgroup of Gal(Qp(ζpm, ζ
papb−1

)/Qp) is

isomorphic to Z/pm−1Z × Z/pbZ. Hence, Gal(Mw( p
√

ξ′v)/Kv) is an abelian

p-group generated by one or two elements. Let pe be the ramification index

of Kv(ζpt)/Kv . We see

Gal(K′
v(ζpt , p

√

ξ′v)/K ′
v)

∼= Z/pZ × Z/peZ,

because of K ′
v(ζpt)∩K ′

v(
p
√

ξ′v) = K ′
v, where K ′

v is the inertia field of Mw/Kv .

This means Gal(Mw( p
√

ξ′v)/Kv) is not cyclic. We have an Rv-isomorphism

Gal(Mw( p
√

ξ′v) ∩ K∗
v/Kv) ∼= F2

p.

https://doi.org/10.1017/S0027763000007078 Published online by Cambridge University Press

https://doi.org/10.1017/S0027763000007078


104 H. YAMASHITA

Therefore, by Lemma 10, we have

VM,v/Up
v

∼= T2.(4.2)

In particular, we have VN,v/Up
v

∼= T2 if M = N . Suppose M 6= N . Let

u be restriction of w onto N and K ′′
v be the inertia field of Nu/Kv. Let

K ′′
v ( p
√

ξ′′v ) be an unramified cyclic extension of degree p over K ′′
v . Since

Mw( p
√

ξ′v) ⊃ Nu( p
√

ξ′′v ), we have VM,v ⊃ VN,v. VM,v = VN,v follows from

isomorphisms VM,v/Up
v
∼= VN,v/Up

v
∼= T2. This proves VM = VN .

Denote by U (resp. V ) the group UM = UN (resp. VM = VN ) with

omitting the subscript. Let Y be a submodule of D∅ generated by {σpv : σ ∈
g, v0 ∈ T}. We have D∅ = DT ⊕Y . Denote by a = a′+a′′ the decomposition

of a ∈ D∅ into a sum of a′ ∈ D∅ and a′′ ∈ Y . A homomorphism D∅/P∅ →
DT /PT is induced from a → a′. Let g : C∅ → CT be restriction of this

homomorphism onto the p-torsion submodules. Denote by h a canonical

map U/ι(E∅)V → U/ι(ET )V . Let gΦ (resp. hΦ) be restriction of g (resp.

h) onto the Φ-component. Put g′Φ = gΦ|1ΦB0,N
. Since ap = (a) in D∅ for

a ∈ K× implies a′p = (a) in DT and since every element c ∈ C∅ contains

a ∈ D∅ such that (a, p) = 1, the commutativity of the diagram follows from

the definition (2.7) of the maps ρM and ρN .

We have B1,N
∼= E∅∩ι−1(V )/Ep

∅ and B1,M
∼= ET ∩ι−1(V )/Ep

T . Observe

ker h = ι(ET )V/ι(E∅)V ∼= ι(ET )/(ι(ET ) ∩ V )ι(E∅)

∼= ET /(ET ∩ ι−1(V ))E∅,

because of ker ι∩ET ⊂ ET ∩ ι−1(V ). Therefore, we obtain exact sequences

0 → B1,N → B1,M → (ET ∩ ι−1(V ))/(E∅ ∩ ι−1(V ))Ep
T → 0,

0 → (ET ∩ ι−1(V ))/(E∅ ∩ ι−1(V ))Ep
T → ET /E∅E

p
T → ker h → 0.

Thus, rΦ(ker h) ≤ ∑

v0∈T εv0
(Φ) follows from (3.2). Furthermore, we also

have the formula of rΦ(ker h) from these sequences.

Suppose
∑

v0∈T εv0
(Φ) = 0. By virtue of the formula, we obtain ker hΦ =

0 and rΦ(B1,N ) = rΦ(B1,M ). Thus, hΦ is an isomorphism. Since DT /PT
∼=

D∅/P∅Y , we have an exact sequence

1̃ΦY ⊗ Zp → 1̃ΦD∅/P∅ ⊗ Zp → 1̃ΦDT /PT ⊗ Zp → 0.

Denote by p̃v an element pv⊗1 of Y ⊗Zp. We see Y ⊗Zp = ⊕v0∈T A·p̃v. Since

A·p̃v
∼= A⊗Zpgv Zp and 1Φ(R⊗Rv Fp) ∼= L

εv0
(Φ)

Φ , we have 1Φ(A·p̃v⊗Fp) = 0.
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This implies 1̃Φ(A · p̃v) = 0. Hence, 1̃ΦY ⊗Zp = 0. We see 1̃ΦD∅/P∅ ⊗Zp
∼=

1̃ΦDT /PT ⊗ Zp. Since 1ΦC∅ (resp. 1ΦCT ) is the p-torsion submodule of

1̃ΦD∅/P∅⊗Zp (resp. 1̃ΦDT /PT ⊗Zp), we have 1ΦC∅
∼= 1ΦCT . Therefore, gΦ

is an isomorphism. By the commutative diagram, g′Φ is also an isomorphism.

We obtain rΦ(B0,N ) = rΦ(B0,M ). Consequently, rΦ(BM ) = rΦ(BN ) holds

by virtue of the formula (2.4).

Proposition 12. Let notations and assumptions be same as those in

Lemma 11. In addition, we suppose k = Q and that Φ satisfies τ1Φ = 1Φ

for the complex conjugation τ . Then, we have aΦ∗ ≤ 1 if and only if Φ

satisfies one of the following conditions:

(1) γT (Φ) =
∑

v0∈T εv0
(Φ) = 0 if ωp(Φ) = 1,

(2) rΦ(B1,M ) ≤ 1 and γT (Φ) = 0 if ωp(Φ) = 0, Φ 6= ε and
∑

v0∈T εv0
(Φ) =

1,

(3) γP (Φ∗) ≤ 1 if ωp(Φ) = 0, Φ 6= ε and
∑

v0∈T εv0
(Φ) = 0,

(4) ]T + α(ε) ≤ 2 if Φ = ε.

Proof. We may take t = 2 in Lemma 11. Suppose τ1Φ = 1Φ. Note

τ1Φ = 1Φ is equivalent to τ1Φ∗ 6= 1Φ∗ . τ1Φ∗ 6= 1Φ∗ means Φ∗ 6= ε. Since

M/Q is abelian, we have θ(Φ∗) = rΦ∗(Gal(Mab/Q)) = 0 from (2) of Theo-

rem 9. gv is a normal subgroup generated by τ for v0 = ∞. ε∞ is afforded

with Fpg/ < τ >. Hence, ε∞(Φ) = 1. By (3.3), we have

βT (Φ) = 1 +
∑

v0∈T

εv0
(Φ) − ε(Φ).

Let v0 = p. By (3.6) and (4.2), we have κ2 = δp +ωp = 2ωp. Hence, δp = ωp.

Suppose ωp(Φ) 6= 0. We have δp(Φ) = 1. Hence, Φ 6= ε. Note 1 = mp =

dΦ. By (1) and (3) of Theorem 9, we observe aΦ∗ equals 1+
∑

v0∈T εv0
(Φ)+

γT (Φ). Thus, aΦ∗ ≤ 1 if and only if
∑

v0∈T εv0
(Φ) = γT (Φ) = 0.

Suppose ωp(Φ) = 0 and Φ 6= ε. We have

aΦ∗ = α(Φ) +
∑

v0∈T

εv0
(Φ) + γT (Φ).

We observe that
∑

v0∈T εv0
(Φ) ≤ 1 if aΦ∗ ≤ 1. Firstly, let Φ satisfy

∑

v0∈T εv0
(Φ) = 1. If aΦ∗ ≤ 1, we have α(Φ) = γT (Φ) = 0. Since γT (Φ) = 0
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implies rΦ(B0,M ) = 0, we have rΦ(B1,M ) ≤ 1 from (2.4). Conversely, if

rΦ(B1,M ) ≤ 1 and γT (Φ) = 0, we also have aΦ∗ ≤ 1 from (2.4). Secondly,

let Φ satisfy
∑

v0∈T εv0
(Φ) = 0. By virtue of Lemma 11, we are able to

reduce to N . We may suppose M = N . Since T ⊂ P , we see T = ∅ from

Lemma 10. Since κ2 = 2ωp, we have 1Φ(V/Up) = 0. Put W =
∏

v∈P (K) K×
v .

We also have 1Φ(V W p/W p) = 0. Hence, 1Φ(W/V W p) ∼= 1Φ(W/W p). Ob-

serve that a⊗1 ∈ K×⊗Fp for (a) ∈ Dp
∅ is an element of BM if and only if the

image of a into W/V W p is equal to 0. When a⊗ 1 ∈ 1ΦBM , we have ι(a) ∈
V W p is equivalent to ι(a) ∈ W p, because of 1Φ(W/V W p) ∼= 1Φ(W/W p).

Namely, K( p
√

a)/K is unramified p-decomposed, where we call K( p
√

a)/K p-

decomposed if every place lying above p is completely decomposed there. Let

K2 be the maximal unramified p-decomposed elementary (p, · · · , p)-abelian

extension of K. Let B′ be the Kummer radical of K2/K. By the Kum-

mer duality, B′ is dual to DP /PP ⊗ Fp. Hence, 1ΦB′ and 1Φ∗DP /PP ⊗ Fp

are dual to each other. We have γP (Φ∗) = rΦ(B′). 1ΦB′ ⊃ 1ΦBM follows

from the above argument. Since K2 is a subfield of the maximal unramified

abelian p-extension H of M , we have BM ⊃ B′. We have 1ΦBM = 1ΦB′.

Therefore, we obtain aΦ∗ = γP (Φ∗).

Suppose Φ = ε. We see Φ∗ = ω. Let M0 be the maximal p-extension

of Q contained in M . We have M = M0K. By Lemma 4, we are able to

compute the value aω in M0(ζp). Hence, suppose M = M0(ζp) and K =

Q(ζp). We have

aω = α(ε) +
∑

v0∈T

εv0
(ε) − 1 + γT (ε).

Since the class number of Q is one, we have γT (ε) = 0. Therefore,

aω = α(ε) + ]T − 1, because of εv0
(ε) = dim HomR(R ⊗Rv Fp,Fp) =

dim HomRv (Fp,Fp) = 1.

Proposition 13. Let p be odd and k be a totally real field. Let M be

a CM-field containing ζpn for n ≥ 2. Suppose M = K(ζpn) and M 6= K.

Let h+
M be the class number of the maximal totally real subfield of M and

h−
K be the relative class number of K. Let τ be the complex conjugation of

M .

(1) We have p 6 |h+
M if p 6 |h−

K and if aε = 0.

(2) Suppose k = Q and M/Q is abelian. We have p 6 |h+
M , if γ∅(Φ

∗) = 1

and α(Φ∗) = ωp(Φ
∗) = 0 for every Φ∗ such that Φ∗ 6= ω, τ1Φ∗ 6= 1Φ∗

and γ∅(Φ
∗) > 0.
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Proof. Let M0 be the maximal p-extension over Q contained in Q(ζpn).

Since M = M0K, we see G = Gp × g. Hence, C is a Zpg-module. Since

C = ⊕Φ1̃ΦC, we have Cτ+1 = 0 if and only if 1̃ΦC = 0 for every Φ such that

τ1Φ = 1Φ. Further, 1̃ΦC = 0 is equivalent to aΦ = 0. Thus, p 6 |h+
M if and

only if aΦ = 0 for every Φ such that τ1Φ = 1Φ.

By (2) of Theorem 9, we have θ(Φ) = 0 and 1̃Φ Gal(Mab/K) = 0 for

Φ 6= ε. Note P ⊃ T . We can show T = ∅. In fact, for v ∈ P (K), if Mw/Kv

is unramified, we see Mw( p
√

ξ′v) ∩ K∗
v = Kv(

p
√

ξv), because Mw( p
√

ξ′v)/Kv

is unramified. Contrarily, if Mw/Kv is ramified, we have Mw( p
√

ξ′v)/Kv is

not cyclic, because Mw( p
√

ξ′v)/Mw is an unramified extension of degree p.

Hence Gal(Mw( p
√

ξ′v)/Kv) ∼= Z/paZ × Z/pZ, where pa = [Mw : Kv]. Let

Kv( p
√

x)/Kv be an extension of degree p for x ∈ K×
v such that MwKv( p

√
x) =

Mw( p
√

ξ′v). Since K ′
v ⊂ Mw = Kv(ζpn), there is 1 ≤ e < n such that

K ′
v = Kv(ζpe). Considering the structure of the Galois group, we have

Kv(ζpe+1 , p
√

x) contains K ′
v(

p
√

ξ′v). Since {ζp
pe+1 ,

p
√

xp, p
√

ξ′v
p} ⊂ K ′

v, there

are integers 0 ≤ t, s < p such that ξ′v = ζt
pexsyp for y ∈ K ′×

v . We see

xs = ξ′vζ
−t
pe y−p ∈ Kv. Note s 6= 0, because K ′

v(ζpe+1)/K ′
v is ramified. Since

K ′
v/Kv is unramified, this shows that x ∈ UvK

×p
v . Thus, we have T = ∅.

Since τ generates a normal subgroup, we have β∅(Φ
∗) = 0 for Φ 6= ε

such that τ1Φ = 1Φ. Therefore,

γ∅(Φ
∗) ≥ aΦ = α(Φ∗) + γ∅(Φ

∗) +
∑

v0∈P

δv0
(Φ∗) − dΦ∗ [k : Q].(4.3)

Since Cτ−1
∅ =

⊕

τ1Φ=1Φ
1Φ∗C∅, we have γ∅(Φ

∗) = 0 for every Φ 6= ε such

that τ1Φ = 1Φ, if p 6 |h−
K . This proves (1).

Suppose k = Q and that M/Q is abelian. By Lemma 4, the computa-

tion of the value of aε is reduced to M0. Hence, we have aε = 0, because

of p 6 |h+
M0

. Let Φ be an irreducible character such that γ∅(Φ
∗) > 0, Φ 6= ε

and τ1Φ = 1Φ. Note δp = ωp and dΦ∗ = 1. We observe aΦ > 0 from

(4.3) if γ∅(Φ
∗) ≥ 2. If γ∅(Φ

∗) = 1, we also observe aΦ = 0 if and only if

α(Φ∗) = ωp(Φ
∗) = 0. We have (2).

Example 1. Example Let M be the cyclotomic field Q(ζm, ζpn),

p 6 |m, n ≥ 2 and k be the maximal p-subfield of Q(ζm)/Q. We have

K = Q(ζm, ζp). If p is not decomposed in k/Q, the class number of M0k is

prime to p. By Lemma 4, this means aε = 0 . For the following pairs (m,p),
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we have p 6 |h−
K and that p is not decomposed in k:

(13, 3), (3, 13), (4, 13), (4, 17), (3, 19), (5, 11), (35,3)

(15, 7), (16, 7), (28, 5), (20, 7), (4, 29), (7, 11), (3, 31),

(8, 17), (12, 17), (19, 5), (4, 41), (20,11), (3, 43), (47,3),

(65, 3), (39, 5), (52, 5), (84, 5), (60,7).

These are additional examples to Yamashita [10] for which the Greenberg

conjecture are valid for p in the maximal real subfields of Q(ζm, ζp).
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