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Abstract

We study a risk process with dividend barrier b where the claims arrive according to
a Markovian additive process (MAP). For spectrally negative MAPs, we present linear
equations for the expected discounted dividends and the expected discounted penalty
function. We apply results for the first exit times of spectrally negative Lévy processes
and change-of-measure techniques. Explicit expressions are given when there are positive
and negative claims, with phase-type distribution.
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1. Introduction

Risk models evolving in a Markovian environment have received considerable attention
in recent years. In these models the environmental state is a continuous-time Markov chain
(CTMC) with a finite state space. When the environment state is i, the process behaves as a
compound Poisson risk model, where the claim amount distribution, the premium rate, and the
claim arrival intensity depend on i. The process can be perturbed by a Brownian motion with
state-dependent volatility. In addition, a claim arrival can occur with a transition of the random
environment states. Such models are called Markov additive risk processes. In this paper we
study a Markov additive risk process with a dividend barrier, where all the surplus above a
given barrier is paid as dividends to the shareholders.

Ahn and Badescu (2007) considered a Markov additive risk process without the Brownian
motion component. They applied the fluid version of the model, and the matrix-analytic
approach for the first passage times. For the same model, Li and Lu (2007), (2008), and Lu and
Li (2009) derived integrodifferential equations for the moments of the discounted dividends and
the penalty function. Lu and Tsai (2007) considered a similar model with a Brownian motion
component and obtained an integrodifferential equation for the expected discounted penalty
function. More recently, Cheung and Landriault (2009) considered a model discussed in this
paper. They derived integrodifferential equations for the quantities of interest and solved them
using Laplace transforms. The Laplace transforms can be easily converted when the claim
amounts have rational transforms.

Our method is different. We consider a Markov additive risk process with phase-type claim
amount. We use the semiregenerative points in the process to obtain linear equations for the
expected discounted dividends and the expected discounted penalty function. Then we apply
the change of measure and the fluid version of the process to solve these equations explicitly.
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Our penalty function is less general than in Cheung and Landriault (2009) since it is only
a function of the time to ruin and the deficit at ruin, but not of the surplus before ruin as
in Cheung and Landriault. We obtain the expected discounted dividends while Cheung and
Landriault obtained higher moments of the discounted dividends. However, applying the
methods presented in this paper, we obtain some significant generalizations of the results of
Cheung and Landriault (2009). Cheung and Landriault assumed that at each environmental
state the risk process is perturbed by a Brownian motion, i.e. the volatility coefficient is positive
for all the environmental states, and the premium rate is positive for all states. Using the method
presented in this paper, we obtain results for risk processes with positive or negative premium
rate, and positive or zero volatility coefficient (depending on the random environment).

The main advantage of our method is that it can be applied to both negative and positive
claims. Positive claims are usually considered as losses or claim payments, while negative
claims (or positive jumps) are lump gains. Avanzi et al. (2007) and Avanzi and Gerber (2008)
studied risk models with negative claims only, referring to them as dual models, which are a
special case of ours. In recent years there has been a growing interest in models with two-sided
jumps. Recently, Cheung (2011) obtained differential equations for a very general risk model
with two-sided jumps.

Note that Cheung and Landriault’s results apply to general claim amount distributions, and
their results have a simple form when the claim amounts have rational transforms. Our results
are applicable to phase-type claim amounts. However, the phase-type distribution is dense in
the class of distributions of nonnegative random variables; thus, we can apply our results to
general distributions. It seems that Cheung and Landriault’s results are more applicable when
the premium rates and the volatility coefficients are positive for all states and there are only
negative jumps.

Cheung and Landriault (2009) also considered a Markov additive risk process, where the
barrier strategy depends on the environmental state, i.e. there are dividend payments at state i

only if the surplus is above bi . They obtained the moments of the discounted dividends for the
two-state case and described how to generalize it for an arbitrary number of states. We apply
our methods to analyzing the two-state case for positive claims (only) and for the dual model,
i.e. negative claims (only). We obtain linear equations for the expected discounted dividends
and the expected discounted penalty function. These equations are very easily solved—their
coefficients are the solutions of a system of linear equations.

The rest of the paper is organized as follows. In Section 2 we introduce some properties of
Lévy processes, and review basic properties of Markov additive processes (MAPs) that are used
later. In Section 3 we explain the general idea of our method, and how to obtain the expected
discounted dividends and the expected discounted time to ruin. In Section 4 we present explicit
results for positive claims with phase-type distribution. In Section 5 we extend the results to
the case where there are both positive and negative claims. We prove that the dividends paid
until ruin have phase-type distribution and find its parameters. A numerical example is given
in Section 6. Finally, in Section 7 we consider the state-dependent barrier strategy, where the
claims are either positive or negative.

2. Preliminaries

2.1. Lévy process

In this paper we consider only the Lévy risk process X(t) which is the sum of two independent
processes. The first is a Brownian motion with drift and the second is a compound Poisson
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process:

X(t) = µt −
N(t)∑
j=1

Zj + σB(t), σ ≥ 0.

Here N(t) is a Poisson process with rate λ, and the Zj are independent, identically
distributed (i.i.d.) random variables with distribution G and moment generating function Ĝ(s) =∫ ∞
−∞ esx dG(x). Note that in the classical risk process the Zj are nonnegative random variables,

i.e. positive claims. The Lévy exponent ϕ(θ) for this process is given by

ϕ(θ) = log(E[eθX(1)]) = θµ + 1
2σ 2θ2 − λ(1 − Ĝ(−θ)).

An important tool to analyze a Lévy risk process is the Wald martingale (see Asmussen
(2003, Remark 8.9, p. 104)). Let

L(θ, t) = exp(θX(t) − ϕ(θ)t).

Let Ft denote the natural filtration for X(t), let I (A) denote the indicator of the event A, and
let P(A) denote the probability of event A. Define

P
c(A) = E[L(c, t)I (A)];

P
c is a probability measure. Under P

c, X(t) is a Lévy process with Lévy exponent

ϕc(θ) = ϕ(θ + c) − ϕ(c).

In our case,

ϕc(θ) = θ(µ + σ 2c) + σ 2θ2

2
− λĜ(−c)

(
1 − Ĝ(−(θ + c))

Ĝ(−c)

)
.

Thus, under the change of measure, X(t) is the sum of a Brownian motion with drift µ + cσ 2,
and a compound Poisson process with arrival rate λĜ(−c) and jump distribution G̃, where

dG̃(x) = e−cx dG(x)

Ĝ(−c)
.

For more details on the change of measure, we refer the reader to Chapter XIII.3 of Asmussen
(2003). A Lévy process without positive jumps is known as a spectrally negative Lévy process.
Let �(q) be the largest root of the equation ϕ(θ) = q, which exists (by convexity of ϕ(θ)) with
�(q) ≥ 0. Let τ+

b = inf{t > 0 : X(t) ≥ b} and τ−
a = inf{t > 0 : X(t) ≤ a}.

Definition 2.1. Let X(t) be a spectrally negative Lévy process. For q ≥ 0, there exists a unique
continuous function W(q) : [0, ∞] → [0, ∞], called the q-scale function, such that∫ ∞

0
e−θxW(q)(x) dx = 1

ϕ(θ) − q
, θ > �(q).

Another function related to the q-scale function is the adjoint q-scale function Z(q).

Definition 2.2. For q ≥ 0,

Z(q)(x) = 1 + q

∫ x

0
W(q)(s) ds.
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The importance of the functions W(q)(x) and Z(q) is due to the following proposition.

Proposition 2.1. Let X(t) be a spectrally negative Lévy process. Then, for 0 < x < b and
q ≥ 0,

Ex[e−qτ+
b I (τ+

b < τ−
0 )] = W(q)(x)

W(q)(b)
,

Ex[e−qτ−
0 I (τ+

b > τ−
0 )] = Z(q)(x) − W(q)(x)

Z(q)(b)

W(q)(b)
.

The scale function of a Brownian motion with drift µ and coefficient of variation σ > 0 is

W(q)(x) = 2√
2qσ 2 + µ2

e−µx/σ 2
sinh

(
x

σ 2

√
2qσ 2 + µ2

)
. (2.1)

The scale function for the case σ = 0 is

W(q)(x) = 1

µ
eqx/µ. (2.2)

For more details on the scale function and the first passage time of Lévy processes, see Chapter 8
of Kyprianou (2006) and the references therein. In the sequel we will also consider the reflected
Lévy process. Consider a spectrally negative Lévy process X(t), X(0) = 0. Let

M(t) = sup(s ≤ t : X(s)),

and let
Y (t) = M(t) − X(t);

Y (t) is the reflected process at its maximum. Let Tb = inf{t : Y (t) ≥ b} be the first time that
Y (t) reaches b. The Laplace transform of Tb is given by Proposition 2 of Pistorius (2004):

LTb
(q) = E0[e−qTb ] = Z(q)(b) − q(W(q)(b))2

W(q)′(b)
. (2.3)

Denote by Eq an independent, exponentially distributed random variable with parameter q.
Let δ > 0, and let

qrq(x) dx = E[e−δEq I (Eq < Tb, Y (Eq) ∈ dx)]. (2.4)

Then, by Theorem 1 of Pistorius (2004),

rq(y) = W(q+δ)(b)
W(δ+q)′(y)

W(δ+q)′(b)
− W(δ+q)(y), y �= 0,

rq(0) = W(q+δ)(b)
W(q)(0)

W(q)′(b)
. (2.5)

Let x ∧ y = min(x, y).

Theorem 2.1. It holds that

E

∫ Tb∧Eq

0
e−δt dM(t) = W(q+δ)(b)

W(q+δ)′(b)
.

The proof of Theorem 2.1 for the case where the upper limit of the integral is Tb is the same
as that of Theorem 1 of Avram et al. (2004), and uses excursion theory. The proof for the case
where the limit is as in the theorem is straightforward.
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2.2. Markov additive arrival process

A barrier free Markov additive risk process {R(t), t ≥ 0} is defined in terms of the
background CTMP J (t) on a finite state space E with n states, and transition intensity matrix �.
When J (t) = i, the risk process behaves as a compound Poisson process perturbed by a
Brownian motion. Thus, claims arrive according to a Poisson process Ni(t), at rate βi , and
are i.i.d. with distribution Gii , density function gii , and moment generating function (MGF)
Ĝii(θ) = E[eθZi ]. Denote the premium rate by ci . The process might be perturbed by a
Brownian motion B(t), with volatility coefficient σi . Thus, when J (t) = i, the risk process
behaves as a Lévy process with Lévy exponent

ϕi(α) = log E[eθRi(1)] = ciα + 1
2σ 2

i α2 − βi(1 − Ĝii(−α)).

Note that, when σi = 0, the process increases or decreases linearly between jumps.
Additional claim arrivals might occur upon transition of J (t) from i to j : with probability pij ,

a claim arrival occurs upon transition from state i to state j . This claim has distribution Gij ,
density function gij , and MGF Ĝij (θ) = ∫ ∞

−∞ eθxGij (dx), i �= j . In the classical risk process
the claims are positive; thus, only negative jumps are considered. Later in the paper we consider
both positive and negative jumps. We decompose the transition rate matrix � as

� = D0 + D1,

where D0 is the transition rate matrix without arrivals and D1 is the transition rate matrix with
claim arrivals:

D0(i, j) = 
(i, j)(1 − pij ), i �= j, D0(i, i) = 
(i, i) − βi,

D1(i, j) = 
(i, j)pij , i �= j, D1(i, i) = βi.

Note that σi can be also 0. As in Breuer (2008), (2010), we exclude the case in which ci =
σi = 0. In our model ci can be either positive or negative. As in Breuer (2008), (2010), we
decompose the state space E as E = Ep ∪ En ∪ Eσ , where

Ep = {i ∈ E, ci > 0, σi = 0},
En = {i ∈ E, ci < 0, σi = 0},
Eσ = {i ∈ E, σi > 0}.

Let |A| be the number of elements in a finite set A, and let np = |Ep|, nn = |En|, and
nσ = |Eσ |.

Let D̂(α) be a matrix with (i, j)th element, i �= j , equal to λijpij (Ĝij (−α) − 1) and (i, i)th
element equal to 0. Define the cumulant generating function matrix of R(t) as

K(α) = � + diag(ϕ1(α), . . . , ϕn(α)) + D̂(α).

Proposition 2.2 of Asmussen (2003, Chapter XI) states that E[eαR(t); J (t) = j | J (0) = i]
is the (i, j)th element of the matrix eK(α)t . The matrix K(α) has a real eigenvalue κ(α) with
maximal real part. Let the column vector h(α) be its right eigenvector. Its components may
be chosen to be positive. When α = 0, the components of h(0) are equal and can be chosen to
be 1. The eigenvalue κ(α) is convex in α. The derivative of κ(α) at 0 determines the asymptotic
behavior of R(t) at ∞. Denote by �(q) the right inverse of κ(α):

�(q) = sup{α ≥ 0 : κ(α) = q}.
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The properties of κ imply that �(q) > 0 for q > 0. We have �(0) > 0 if and only if κ ′(0) < 0;
otherwise, �(0) = 0. For more details, see Chapter XI of Asmussen (2003). In the sequel we
will apply the Wald martingale for the process R(t).

2.2.1. Wald martingale and change of measure.

Proposition 2.2. (Asmussen (2003, Chapter XI).) It holds that

L(t) = eαR(t)−κ(α)thJ (t)(α)

is a martingale.

Let F be the natural filtration, and let P be the probability measure defined by the MAP R(t).
Let A ∈ Ft . Define the probability measure by P

α(A) = E[L(t)I (A)]. By Theorem 8.2
of Asmussen (2003, Chapter XIII), the probability P

α defines a MAP with the following
parameters. The transition rate matrix �α is given by

�α = �−1
h(α)

K(α)�h(α) − κ(α)I ,

where �h(α) is a diagonal matrix with hi(α) on the diagonal, and I is an n × n identity matrix.
The (i, j)th element of �α is


α(i, j) = hj (α)

hi(α)
λ(i, j)[1 + pij (Ĝij (−α) − 1)], i �= j.

The probability for a claim triggered by a transition from i to j is

pα
ij = pij Ĝij (−α)

1 + pij (Ĝij (−α) − 1)
.

The distribution of the claim arriving at state i or upon transition from state i to j is

Gα
ij (dx) = e−αxGij (dx)

Ĝij (−α)
.

The drift parameter is cα
i = ci + σ 2

i α, while σα
i = σi . The claim arrival intensity when J (t) = i

is βα
i = βiĜii(−α). Note that Kα(θ) = �−1

h(α)
K(α + θ)�h(α) − κ(α)I .

Throughout the paper, we denote by Ei,u and Pi,u the conditional expectation and probability
given that Rb(0) = u and J (0) = i.

2.2.2. Exit times for MAPs. Let τ+
b = inf{t > 0 : R(t) ≥ b} and τ−

a = inf{t > 0 : R(t) ≤ a}.
Similarly to Proposition 2.1 for spectrally negative Lévy processes, Kyprianou and Palmowski
(2008) proved the following theorem for the spectrally negative MAP. We cite only the parts of
this theorem relevant to our paper.

Theorem 2.2. For each q ≥ 0, there exist n×n matrix functions W (q)(·) and Z(q)(·) such that
the following statements hold (for convenience, we will write W (0) = W ).

(i) For x ≤ b, the (i, j)th element of

W (q)(x)W (q)(b)−1 (2.6)

is
Ei,x[e−qτ+

b I (τ+
b < τ−

0 ); J (τ+
b = j)].
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(ii) The (i, j)th element of

Z(q)(x) − W (q)(x)W (q)(b)−1Z(q)(b) (2.7)

is

Ei,x[e−qτ−
0 I (τ−

0 < τ+
b ); J (τ−

0 = j)].

3. The general spectrally negative Markov additive risk process

3.1. The expected discounted dividends

In this section we consider a Markov additive risk process R(t) with only negative jumps
(positive claims) and a dividend barrier b. Denote by Rb(t) = R(t) − D(t), where D(t) is the
amount of dividends paid until time t . Let Vi(u, b) be the expected discounted dividends paid
until ruin when the initial modulating state is i, the initial reserve is u, u ≤ b, and the discount
factor is δ:

Vi(u, b) =
∑
j∈E

Ei,u[e−δτ+
b , τ+

b < τ−
0 , J (τ+

b ) = j)]Vj (b, b). (3.1)

Given that J (0) = i, let Ei be the time until a claim arrival or change of the modulating state.
Here Ei is an exponentially distributed random variable with parameter ηi = βi − 
(i, i),
and is independent of the risk process. Given that Rb(0) = b, then up to time Ei the process
b − Rb(t) behaves as a process Yi , which is the reflection at the maximum of the Lévy process
Xi(t) = ci t + σiB(t). Let Tb,i be the time until the reflected process Yi reaches the level b.
The Laplace transform of Tb,i follows by substituting the scale function of Xi in (2.3). We
calculate Vi(b, b) in two steps.

1. Calculate wi , the expected discounted dividends up to time Ei ∧ Tb,i .

2. Calculate the expected discounted dividends from time Ei ∧ Tb,i until ruin.

Let ri(x) = rηi
(x) be as defined in (2.4) and (2.5) with q replaced by ηi , and where the scale

function in (2.5) is the scale function for Xi(t), given by (2.1) or (2.2).

Proposition 3.1. Let Vi(b, b) be the expected discounted dividends given that J (0) = i and
Rb(0) = b. Then, for i = 1, . . . , n,

Vi(b, b) = wi

+
n∑

j=1

n∑
k=1

D1(i, k)

∫ b

0

∫ x

0
ri(x − y)Gik(dy)

× Ek,b−x[e−δτ+
b , τ+

b < τ−
0 , J (τ+

b ) = j ] dxVj (b, b)

+
m∑

j=1

∑
k �=i

D0(i, k)

∫ b

0
ri(x)Ek,b−x[e−δτ+

b , τ+
b < τ−

0 , J (τ+
b ) = j ] dxVj (b, b).

(3.2)

The proof is straightforward from the definition of ri and the fact that the process is
semiregenerative: semiregenerative points are when the process reaches b. Note that

(i) Ei,b−x[e−δτ+
b , τ+

b < τ−
0 , J (τ+

b ) = j ] is the (i, j)th element of W (δ)(b − x)W (δ)(b)−1

given in Theorem 2.2,

https://doi.org/10.1239/aap/1370870126 Published online by Cambridge University Press

https://doi.org/10.1239/aap/1370870126


458 E. FROSTIG

(ii) wi is the expected discounted dividends up to time Ei ∧ Tb,i , given that Rb(0) = b. Let

Mi(t) = sup
0≤s≤t

(cis + σiB(s)).

Following Avram et al. (2004), and applying Theorem 2.1 and (2.1), we obtain, for
σi > 0,

wi = E

∫ Ei∧Tb,i

0
e−δt dMi(t) = W(ηi+δ)(b)

W(ηi+δ)′(b)
=

(−ci

σ 2
i

+ ai

σ 2
i

coth

(
b

σ 2
i ai

))−1

, (3.3)

where

ai =
√

ci + 2σ 2
i (λi + βi + δ).

For σi = 0 and ci > 0, we obtain

wi = ci

δ + ηi

. (3.4)

The main difficulty lies in deriving W (q)(x)W (q)(b)−1. In the next section we will show
how to obtain an explicit solution when the claim amount is phase type.

3.2. The expected discounted time to ruin

Let Tb be the time to ruin, i.e. the first time that Rb(t) drops below 0, and let ξ−
0 be the

deficit at ruin. Let f be a function called the penalty function, and let ωi(u, b) be its expected
discounted value:

ωi(u, b) = Ei,u[e−δTbf (ξ−
0 )]. (3.5)

In this subsection we present similar equations to (3.2) for the Laplace transform of the time to
ruin, i.e. for ωi(u, b) for the special case where f (·) = 1. Thus, our goal in this section is to
obtain

ωi(u, b) = Eu,i[e−δTb ].
For 0 < u < b,

ωi(u, b) = Ei,u[e−δτ−
0 , τ−

0 < τ+
b ] +

∑
j∈E

Ei,u[e−δτ+
b , τ+

b < τ−
0 , J (τ+

b ) = j ]ωj (b, b).

We can form a system of linear equations for ωi(b, b):

ωi(b, b) = E[e−δTb,i I (Tb,i < Ei )] +
n∑

k=1

D1(i, k)

∫ b

0
ri(x)(1 − Gik(b − x)) dx (3.6)

+
n∑

j=1

n∑
k=1

D1(i, k)

∫ b

0

∫ x

0
ri(x − y)Gik(dy)

× Ek,b−x[e−δτ−
0 , τ−

0 < τ+
b , J (τ−

0 ) = j ] dx

(3.7)

+
n∑

j=1

n∑
k=1

D0(i, k)

∫ b

0
ri(x)Ek,b−x[e−δτ−

0 , τ−
0 < τ+

b , J (τ−
0 ) = j ] dx (3.8)

+
n∑

j=1

n∑
k=1

D1(i, k)

∫ b

0

∫ x

0
ri(x − y)Gi,k(dy)

× Ek,b−x[e−δτ+
b , τ+

b < τ−
0 , J (τ+

b ) = j ] dxωj (b, b)

(3.9)
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+
m∑

j=1

∑
k �=i

D0(i, k)

×
∫ b

0
ri(x)Ek,b−x[e−δτ+

b , τ+
b < τ−

0 , J (τ+
b ) = j ] dxωj (b, b).

(3.10)

The first term in (3.6) is the expected time to ruin occurring by diffusion before Ei . The
second term in (3.6) describes the expected discounted time to ruin, when ruin occurs at time Ei

due to a claim arrival with a state transition. The terms in (3.7) and (3.8) are the expected
discounted times to ruin when ruin occurs after Ei and before reaching b. The terms in (3.9)
and (3.10) describe the expected discounted ruin times, where ruin occurs after Ei and after the
surplus reaches b. Note that Ek,b−x[e−δτ−

0 , τ−
0 < τ+

b , J (τ−
0 ) = j ] is the (k, j)th element of

the matrix in (2.7) at b−x, while Ek,b−x[e−δτ+
b , τ+

b < τ−
0 , J (τ+

b ) = j ] is the (k, j)th element
of the matrix in (2.6).

In the next section we assume that the claim amounts are phase type, allowing us to obtain
explicit ωi(u, b).

4. Spectrally negative risk process with phase-type claim amount

In this section we assume that the claim size distributions Gij are phase type with
representation (πij , Tij ). Thus, Gij is the distribution of the time until absorption of a CTMC
with mij transient states and one absorbing state. Let Tij be its intensity transition matrix
among the transient states, let πij be the vector of the initial probabilities, and let tij = −Tij 1
be the intensity rate vector to absorption from each state, where 1 is a column vector of 1s with
the appropriate dimension. We have

1 − Gij (x) = πij exp(Tij x)1, x > 0.

The density function is gij (x) = πij exp(Tij x)tij .
To derive (3.2) for the expected discounted dividends, and (3.7)–(3.8) for the expected

discounted penalty function, we need to find expressions for the expected discounted time to
reach the level b before ruin, and the expected discounted time to reach 0 before b. Let

ν+
k,j (x) = Ek,x[e−δτ+

b , τ+
b < τ−

0 , J (τ+
b ) = j ]. (4.1)

Let �(δ) > 0 be a number such that the eigenvalue with the maximal real part of K(�(δ)) is δ,
and let h(�(δ)) be the right eigenvector for κ(�(α)). Applying the change-of-measure formula
given in Equation (17) of Kyprianou and Palmowski (2008) or Asmussen (2003, p. 377), we
obtain

ν+
k,j (x) = Ek,x[e−δτ+

b , τ+
b < τ−

0 , J (τ+
b ) = j ]

= hk(�(δ))P
�(δ)
k,x (τ+

b < τ−
0 , J (τ+

b ) = j)
1

hj (�(δ))
e−�(δ)(b−x). (4.2)

Thus, the problem is reduced to finding the probability of hitting b before 0 under the
measure P

�(δ). Under the measure P
�(δ), the process R(t) is a MAP. We denote its parameters

with a tilde. Asmussen (2003, Chapter XIII.8) obtained the following parameters for the process
under P

�(δ).

(P1) Premium rate c̃i = ci + �(δ)σ 2
i .

(P2) The volatility, σ̃ 2
i = σ 2

i .
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(P3) The claim arrival rate when J (t) = i is β̃i = βiĜii(−�(δ)).

(P4) The transition rates


̃(i, j) = hj (�(δ))

hi(�(δ))

(i, j)[1 + pij (Ĝij (−�(δ)) − 1)].

(P5) The probability of claim at transition from state i to state j ,

p̃ij = pij Ĝij (−�(δ))

1 + pij (Ĝij (−�(δ)) − 1)
.

(P6) The claim distribution at transition from state i to j ,

G̃ij (dx) = e−�(δ)x

Ĝij (−�(δ))
Gij (dx).

(P7) K̃(α) = �−1
h(�(δ))

K(�(δ) + α)�h(�(δ)) − δI .

Let
kij (θ) = (−θI − Tij )

−1tij ,

and let �kij (θ) be a diagonal matrix with the components of kij (θ) on the diagonal. We will
need the following result obtained by Asmussen (1989).

Lemma 4.1. The claim distribution G̃ij is phase type with representation (π̃ij , T̃ij ), where

T̃ = �−1
kij (−�(δ))

Tij�kij (−�(δ)) − �(δ)I , (4.3a)

π̃ij = πij�kij (−�(δ))/Ĝ(−�(δ)), (4.3b)

t̃ij = �−1
kij (−�(δ))

tij . (4.3c)

To obtain ν+
ij (x) in (4.2), we need to derive γ +

ij (x) = P
�(δ)
k,x (τ+

b < τ−
0 , J (τ+

b ) = j). To find
γ +
ij (x), we consider the fluid model of the process R(t), under the measure P

�(δ). In the fluid
model a downwards jump of size v is replaced by a linear line with slope −1 for v time units.
Thus, when in state i ∈ E, the process evolves as a Brownian motion with drift c̃i , or linearly
with slope c̃i , and in states (ij, l) linearly with slope −1. We augment the state space E of J

by E− = {(ij, k), i, j ∈ E, k = 1, . . . , mij }, where (ik, j) denotes the ikth claim at phase j .
The fluid model behaves as a MAP without jumps, and state space E ∪ E− =

Ep ∪ En ∪ Eσ ∪ E−. The transition rate matrix Q for the fluid model under the measure P
�(δ)

is

Q(i, j) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩


̃(i, j)(1 − p̃ij ), i �= j, i, j ∈ E,


̃(i, i) − β̃i , i = j, i ∈ E,

β̃i π̃ii (k), i ∈ E, j = (ii, k),


̃(i, k)p̃ikπ̃ik(l), i, k ∈ E, j = (ik, l),

T̃st (r, l), i = (st, r), j = (st, l),

t̃st (l), i = (st, l), j = t.

Let (Rf (t), J f (t)) be the MAP that describes the risk fluid model, where Rf is the fluid
level and J f is the modulated state. Then

E
�(δ)[eαRf (t), J f (t) = j̃ | Rf (0) = 0, J f (0) = ĩ], ĩ, j̃ ∈ E ∪ E−,
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is the (ĩ, j̃ )th element of eF (α)t , where

F (α) = Q + diag(ϕ1(α), . . . , ϕn(α), −α, . . . , −α)

and ϕi(α) = c̃iα + σ 2
i α2/2 is the cumulant matrix for the fluid model. Let τ+f

b and τ
−f
0 be the

hitting times for the fluid model at levels b and 0, respectively, i.e. τ
f +
b = min{t : Rf (t) = b}

and τ
f −
0 = min{t : Rf (t) = 0}. It is not difficult to see that the probability that Rf hits b

before it hits 0 is the same as the probability of the same event for the original process (under
the measure P

�(δ)):

P
�(δ)
i,x (τ

+f
b < τ

−f
0 , J (τ

+f
b ) = j) = P

�(δ)
i,x (τ+

b < τ−
0 , J (τ+

b ) = j).

Consider now the fluid model under the probability measure P
�(δ). For i, j ∈ E, let γ +

i,j (x)

be the probability of hitting b before hitting 0 with J f (τ
f +
b ) = j , let γ −

i,j (x) be the probability
of hitting 0 before hitting b with J f (τ

f −
0 ) = j ∈ E, and let γ −

i,(kj,l)(x) be the probability of
hitting 0 before hitting b with J f (τ

f −
0 ) = (kj, l), k, j ∈ E. Thus,

γ +
k,j (x) = P

�(δ)(J f (τ+
b ) = j, τ+

b < τ−
0 | Rb(0) = x, J (0) = k), k, j ∈ E,

γ −
k,j (x) = P

�(δ)(J f (τ−
0 ) = j, τ−

0 < τ+
b | Rb(0) = x, J (0) = k), k, j ∈ E,

γ −
k,(ij,l)(x) = P

�(δ)(J f (τ−
0 ) = (ij, l), τ−

0 < τ+
b | Rb(0) = x, J (0) = k), i, k, j ∈ E.

To find the above probabilities, we apply the multidimensional Wald martingale as follows.
Let |F (α)| be the determinant of F (α). Here |F (α)| is a polynomial of degree N = np +
nn + 2nσ + ∑n

i=1
∑n

j=1 mij . Assume that the equation |F (α)| = 0 has N different roots
α1, . . . , αN . Clearly, one of the roots, say α1, is 0. The eigenvalue of F (αi) is 0, i.e. κ(αi) = 0.
Let the hf (αi) be the corresponding right eigenvectors. We can choose hf (α1) = h(0) to be
equal to 1.

By Proposition 2.2, the process {eαk(R
f (t)h

f

J (t)(αk)} is a martingale. Let Rf (0) = x,

0 < x < b, and J f (0) = k.
Applying the optional sampling theorem for this martingale and for the stopping time

min{τ+f
b , τ

−f
0 }, we obtain, for k ∈ E,

eαrxh
f
k (αr) = eαrb

∑
j∈Eσ ∪Ep

γ +
kj (x)h

f
j (αr) +

∑
j∈Eσ ∪En

γ −
kj (x)h

f
j (αr)

+
n∑

j=1

n∑
l=1

mjl∑
o=1

γ −
k,(j l,o)(x)h

f

(j l,o)(αr). (4.4)

Remark 4.1. Note that γ −
k,(j l,o)(x) is the probability under P

�(δ) that, given R(0) = x,

J (0) = k, ruin occurs before reaching the dividend barrier by a j lth claim at phase o. Similarly,
γ −
kj (x) is the probability of ruin by diffusion before reaching the dividend barrier.

Define

Ai,k,j =
∫ b

0
ri(x)ν+

k,j (b − x) dx, i �= k,

Aci,k,j =
∫ b

0

∫ x

y=0
ri(y)gik(x − y) dyν+

k,j (b − x) dx, i �= k.

(4.5)

Assume that R(0) = b and J (0) = i. The quantities Ai,k,j and Aci,k,j are the discounted times
to reach level b when the modulated state is j , before ruin and after Ei , when the transition at
Ei is respectively without or with a claim arrival.
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4.1. The expected discounted dividends

The Vi(b, b) satisfy

Vi(b, b) = wi +
n∑

j=1

( n∑
k=1

Aci,k,jD1(i, k) +
∑
k �=i

Ai,k,jD0(i, k)

)
Vj (b, b). (4.6)

By (3.1), for u < b,
Vi(u, b) =

∑
j∈E

ν+
i,j (u)Vj (b, b).

4.2. The expected discounted penalty function

Equation (3.5) can be written as

ωi(u, b) =
∑
j∈E

Ei,u[e−δτ−
0 f (ξ−

0 ), τ−
0 < τ+

b , J (τ−
0 ) = j ]

+
∑
j∈E

Ei,u[e−δτ+
b , τ+

b < τ−
0 , J (τ+

b ) = j ]ωj (b, b). (4.7)

Applying the change-of-measure formula, we obtain

ν−
i,j (u, 0) = Ei,u[e−δτ−

0 , ξ−
0 = 0, τ−

0 < τ+
b , J (τ−

0 ) = j ]
= hi(�(δ))γ −

i,j (u)
1

hj (�(δ))
e�(δ)u, (4.8)

where γ −
i,j (u) is given by solving (4.4). Let

ν−
i,j (u, z) dz = Ei,u[e−δτ−

0 , ξ−
0 ∈ dz, τ−

0 < τ+
b , J (τ−

0 ) = j ]
= hi(�(δ))P

�(δ)
i,u (ξ−

0 ∈ dz, τ−
0 < τ+

b , J (τ−
0 ) = j)

1

hj (�(δ))
e�(δ)(u+z). (4.9)

Note that the deficit at ruin can be positive if and only if ruin is caused by a claim arrival in some
state k or with a state transition from state k to j . Let γ −

i,kj (u) be a row vector of dimension mkj ,
with γ −

i,kj (u) = (γ −
i,(kj,1)(u), . . . , γ −

i,(kj,mkj )(u)), where the γ −
i,(kj,l)(u) are obtained by solving

(4.4). Under the measure P
�(δ), the deficit at ruin is phase type, specifically,

P
�(δ)
i,u (ξ−

0 ∈ dz, τ−
0 < τ+

b , J (τ−
0 ) = j) =

∑
k∈E

γ −
i,kj (u) exp(T̃kj z)t̃kj dz.

Applying (4.9) yields

ν−
i,j (u, z) = hi(�(δ))

(∑
k∈E

γ −
i,kj (u) exp(T̃kj z)t̃kj

)
1

hj (�(δ))
e�(δ)(u+z). (4.10)

By (4.8) and (4.10), we find that the expected discounted penalty function when the initial
reserve is u, J (0) = i, and ruin occurs before reaching b is given by

ω0,i (u, b) =
∑
j∈E

Ei,u[e−δτ−
0 f (ξ−

0 ), τ−
0 < τ+

b , J (τ−
0 ) = j)]

=
∑
j∈E

ν−
i,j (u, 0)f (0) +

∑
j∈E

∫ ∞

z=0
ν−
i,j (u, z)f (z) dz. (4.11)
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Consider now ωi(b, b), the expected discounted penalty function when the initial reserve is
b and the initial modulating state is i. First consider the case where min(Ei , Tb,i) = Tb,i . In
this case ruin occurs by diffusion, and the expected discounted penalty function is given by

ω1,i (b) = f (0)

∫ ∞

0
dFTb,i

(t) exp(−(ηi + δ)t) = f (0)LTb,i
(ηi + δ), (4.12)

where LTb,i(θ) is obtained by substituting (2.1) or (2.2) into (2.3).
We now present the system of linear equations for ωi(b, b).

Proposition 4.1. We have

ωi(b, b) = ω1,i (b) +
∑
k∈E

D1(i, k)

∫ b

x=0

∫ ∞

z=0
ri(x)gik(b − x + z)f (z) dz dx (4.13)

+
∑
k∈E

D1(i, k)

∫ b

x=0

∫ x

y=0
ri(y)gik(x − y) dyω0,k(b − x, b) dx (4.14)

+
∑

k∈E,k �=i

D0(i, k)

∫ b

x=0
ri(x)ω0,k(b − x, b) dx (4.15)

+
∑
j∈E

∑
k∈E

D1(i, k)Aci,k,jωj (b, b) (4.16)

+
∑
j∈E

∑
k∈E

D0(i, k)Ai,k,jωj (b, b). (4.17)

Proof. The term ω1,i (b) is the discounted penalty function when ruin occurs due to a
diffusion when Tb,i < Ei . Assume that Ei < Tb,i . The second term in (4.13) is the discounted
penalty function when ruin occurs at time Ei due to a claim arrival. The terms in (4.14) and
(4.15) describe the expected penalty functions when ruin occurs after time Ei , before the surplus
reaches level b, where the state transition at Ei occurs with or without a claim arrival. The terms
in (4.16) and (4.17) are the discounted penalty functions when the level b is reached before ruin
after Ei , where the state transition at Ei occurs with or without a claim arrival.

For f (z) = 1, we obtain the Laplace transform of the time to ruin. For f (z) = e−θz, we
obtain the joint Laplace transform of the time to ruin and the deficit at ruin.

5. Markov additive risk process with positive and negative claims

In this section we extend the results to a Markov additive risk process with positive and nega-
tive claims, i.e. negative and positive jumps. When J (t) = i, positive claims arrive according to
a Poisson process at rate β−

i , and negative claims (upward jumps) arrive according to a Poisson
process at rate β+

i . The distribution of the positive claim is G−
ii and its density is g−

ii . The
distribution of the negative claim is G+

ii and its density g+
ii . A transition of the modulated state

from i to j is accompanied by a positive claim with probability p−
i,j , claim distribution G−

ij , and
density g−

ij . A transition of the modulated state from i to j is accompanied by a negative claim
with probability p+

i,j , claim distribution G+
ij , and density g+

ij . With probability 1 − p+
i,j − p−

i,j ,
there is no arrival upon a state transition. Denote by D0 the transition rate matrix without
arrivals; thus, D0(i, i) = 
(i, i) − β+

i − β−
i and D0(i, j) = 
(i, j)(1 − p+

i,j − p−
i,j ), i �= j .
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Similarly, let D±
1 (i, j) = 
(i, j)p±

i,j , i �= j , and D±
1 (i, i) = β±

i . In this case, for i �= j , the

(i, j)th element of D̂(α) is 
ijp
+
ij (Ĝ

+
ij (α) − 1) + 
ijp

−
ij (Ĝ

−
ij (−α) − 1).

The distribution functions G±
ij are phase type with representation (π±

ij , T ±
ij ), with m±

ij states,
where t±

ij is the transition rate vector to the absorbing state. Denote the phases of the positive
claims (downward jumps) by l−, and the phases of the negative claims (upward jumps) by l+.
Note that, when a positive jumps crosses the dividend barrier b, all the overflow above b is paid
as dividends. The (i, j)th element of etK(α) is Ei,0[eαR(t), J (t) = j ], where

K(α) = � + diag(ϕ1(α), . . . , ϕn(α)) + D̂(α)

and

ϕi(α) = ciα + 1
2σ 2

i α2 + (β+
i (Ĝ+

ii (α) − 1) + β−
i (Ĝ−

ii (−α) − 1)).

Let �(δ) and κ(α) be as described in Section 2.2. Under the probability measure P�(δ),
the process behaves as a MAP with parameters (P1)–(P7). Let k+

ij (θ) = (−θI − T +
ij )−1t+

ij

and k−
ij (θ) = (θI − T −

ij )−1t−
ij . Let �k±

ij (�(δ)) be a diagonal matrix with the components of

k±
ij (�(δ)) on the diagonal. The distribution functions G̃±

ij are phase type with representation

(π̃±
ij , T̃ ±

ij ) as described in Lemma 4.1.
Let ξ+

b be the overflow above b when the surplus hits the level b. We have ξ+
b > 0 if R(t)

hits b by a negative claim, and ξ+
b = 0 if R(t) hits b by diffusion. Similarly, let ξ−

0 be the deficit
at ruin. We have ξ−

0 > 0 if ruin occurs due to a positive claim, and ξ−
0 = 0 if ruin occurs due to

a diffusion. To obtain the expected discounted dividends and the expected discounted penalty
function, we need the following expectations:

ν+
i,j (u, z) dz = Ei,u[e−δτ+

b I (τ+
b < τ−

0 ), ξ+
b ∈ dz, J (τ+

b ) = j ],
ν+
i,j (u, 0) = Ei,u[e−δτ+

b I (τ+
b < τ−

0 ), ξ+
b = 0, J (τ+

b ) = j ],
ν−
i,j (u, z) dz = Ei,u[e−δτ−

0 I (τ−
0 < τ+

b ), ξ−
0 ∈ dz, J (τ−

0 ) = j ],
ν−
i,j (u, 0) = Ei,u[e−δτ−

0 I (τ−
0 < τ+

b ), ξ−
0 = 0, J (τ−

0 ) = j ].

Applying the change-of-measure formula as in (4.2), we obtain

ν+
i,j (u, z) dz = hi(�(δ))P

�(δ)
i,u (τ+

b < τ−
0 , J (τ+

b ) = j, ξ+
b ∈ dz)

× (hj (�(δ)))−1e−�(δ)(b−u+z), (5.1a)

ν+
i,j (u, 0) = hi(�(δ))P

�(δ)
i,u (τ+

b < τ−
0 , J (τ+

b ) = j, ξ+
b = 0)

× (hj (�(δ)))−1e−�(δ)(b−u), (5.1b)

ν−
i,j (u, z) dz = hi(�(δ))P

�(δ)
i,u (τ−

0 < τ+
b , J (τ−

0 ) = j, ξ−
0 ∈ dz)

× (hj (�(δ)))−1e�(δ)(u+z), (5.1c)

ν−
i,j (u, 0) = hi(�(δ))P

�(δ)
i,u (τ−

0 < τ+
b , J (τ−

0 ) = j, ξ−
0 = 0)

× (hj (�(δ)))−1eu�(δ). (5.1d)
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Thus, to obtain (5.1), we need to derive

γ +
i,j (u, z) dz = P

�(δ)
i,u (τ+

b < τ−
0 , J (τ+

b ) = j, ξ+
b ∈ dz), (5.2a)

γ +
i,j (u, 0) = P

�(δ)
i,u (τ+

b < τ−
0 , J (τ+

b ) = j, ξ+
b = 0), (5.2b)

γ −(u, z) dz = P
�(δ)
i,u (τ−

0 < τ+
b , J (τ−

0 ) = j, ξ−
0 ∈ dz), (5.2c)

γ −
i,j (u, 0) = P

�(δ)
i,u (τ−

0 < τ+
b , J (τ−

0 ) = j, ξ−
0 = 0). (5.2d)

To derive the terms in (5.2), we consider the fluid version of the model under P
�(δ). In this

model negative jumps are replaced by a line with slope −1 and positive jumps with a line
with slope 1. The fluid model is a MAP without jumps with state space E ∪ E− ∪ E+, where
E± = {(ij, l±), i, j, ∈ E}. Let Q be its transition rate matrix under P

�, defined by

Q(i, j) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩


̃(i, j)(1 − p̃+
ij − p̃−

ij ), i �= j, i, j ∈ E,


̃(i, i) − β̃+
i − β̃−

i , i = j, i ∈ E,

β̃+
i π̃+

ii (k
+), i ∈ E, j = (ii, k+),

β̃−
i π̃−

ii (k
−), i ∈ E, j = (ii, k−),


̃(i, k)p̃+
ikπ̃

+
ik (l

+), i, k ∈ E, j = (ik, l+),


̃(i, k)p̃−
ikπ̃

−
ik (l

−), i, k ∈ E, j = (ik, l−),

T̃ +
s,t (r

+, l+), i = (st, r+), j = (st, l+),

T̃ −
s,t (r

−, l−), i = (st, r−), j = (st, l−),

t̃+s,t (l+), i = (st, l+), j = t,

t̃−s,t (l−), i = (st, l−), j = t.

Let F (α) = Q+ diag(c1α + 1
2σ 2

1 α2, . . . , cnα + 1
2σ 2

n α2, α, . . . , α, −α, . . . , −α). Note that
we enumerate first the states in E, then the states of the negative claims (positive jumps), and then
the states corresponding to the positive claims (negative jumps). Given that R(0) = Rf (0) = u

and J (0) = J f (0) = i, then, under P
�(δ), γ +

i,j (u) = γ +
i,j (u, 0) is the probability that Rf hits b

before ruin at state j by diffusion, and γ +
i,(kj,l+)

(u) is the probability that the fluid process hits b

before ruin by a negative claim arriving with state transition from state k to state j at phase l+.
Similarly, γ −

i,j (u) = γ −
i,j (u, 0) is the probability that the fluid process hits 0 before reaching

b, and γ −
i,(kj,l−)

(u) is the probability that the process hits 0 before b by a claim arriving with
transition from state k to j at phase l−. Note that the hitting probabilities of the fluid process
are the same as for the original process (under P

�(δ)). Assume that the equation |F (α)| = 0
has N = np +nn +2nσ +∑n

i=1
∑n

k=1(m
+
ik + m−

ik) roots, α1, . . . , αN . Let hf (αi) be the right
eigenvector corresponding to the 0 eigenvalue of F (αi). Applying the multidimensional Wald
martingale we obtain the following equations for γ ±

i,j (u, 0) and γ ±
i,(kj,l)(u):

exp(αru)h
f
i (αr) =

∑
j∈E

γ +
i,j (u, 0) exp(αrb)h

f
j (αr)

+
∑
k∈E

∑
j∈E

m+
kj∑

l+=1

γ +
i,(kj,l+)

(u) exp(αrb)h
f

(kj,l+)
(αr)

+
∑
j∈E

γ −
i,j (u, 0)h

f
j (αr) +

∑
k∈E

∑
j∈E

m−
kj∑

l−=1

γ −
i,(kj,l−)

(u)h
f
j (αr). (5.3)
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For i, j ∈ E, let the γ ±
i,kj (u) be row vectors, where

γ +
i,kj (u) = (γ +

i,(kj,1+)
(u), . . . , γ +

i,(kj,m+
kj )

(u)),

γ −
i,kj (u) = (γ −

i,(kj,1−)
(u), . . . , γ −

i,(kj,m−
kj )

(u)).

Given that R(0) = u and J (0) = i, then, under P
�(δ), the distribution functions of the

overflow above b when hitting the level b before ruin, and the distribution function of the deficit
at ruin when ruin occurs before hitting b, are phase type with the following density functions:
for z > 0,

γ +
i,j (u, z) =

∑
k∈E

γ +
i,kj (u) exp(T̃ +

kj z)t̃+
kj , γ −

i,j (u, z) =
∑
k∈E

γ −
i,kj (u) exp(T̃ −

kj z)t̃−
kj .

By applying (5.1) we obtain

ν+
i,j (u, z) = hi(�(δ))γ +

i,j (u, z)(h
(�(δ))
j )−1e−�(δ)(b−u+z),

ν+
i,j (u, 0) = hi(�(δ))γ +

i,j (u, 0)(hj (�(δ)))−1e−�(δ)(b−u),

ν−
i,j (u, z) = hi(�(δ))γ −

i,j (u, z)(hj (�(δ)))−1e�(δ)(u+z),

ν−
i,j (u, 0) = hi(�(δ))γ +

i,j (u, 0)(hj (�(δ)))−1e�(δ)u.

Finally, for i, j ∈ E, let

ν+
i,j (u, ·) = Ei,u[e−δτ+

b , τ+
b < τ−

0 , J (τ+
b ) = j ] = ν+

i,j (u, 0) +
∫ ∞

0
ν+
i,j (u, z) dz,

ν−
i,j (u, ·) = Ei,u[e−δτ−

0 , τ−
0 < τ+

b , J (τ−
0 ) = j ] = ν−

i,j (u, 0) +
∫ ∞

0
ν−
i,j (u, z) dz.

5.1. The expected discounted dividends

Assume that Rb(0) = u and J (0) = i. Let the v1,i (u, b) be the expected discounted
dividends received when the dividend barrier is reached by a negative claim before ruin:

v1,i (u, b) =
∑
j

∫ ∞

0
zν+

i,j (u, z) dz.

Thus, for 0 < u < b,

Vi(u, b) = v1,i (u, b) +
∑
j∈E

ν+
i,j (u, ·)Vj (b, b).

Similarly to (4.5), let

Aic
p
i,j =

∫ b

0
ri(x)(1 − G+

ij (x)) dx,

Ai,k,j =
∫ b

0
ri(x)ν+

k,j (b − x, ·) dx, i �= k,

Acn
i,k,j =

∫ b

0

∫ x

y=0
ri(y)g−

ik(x − y) dyν+
k,j (b − x, ·) dx,

Ac
p
i,k,j =

∫ b

0

∫ b

y=x

ri(y)g+
ik(y − x) dyν+

k,j (b − x, ·) dx.
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The quantity Aic
p
i,j is the expected discounted time to reach level b when the modulated state

is j at time Ei due to a negative claim arrival. The quantities Ai,k,j , An
i,k,j , and A

p
i,k,j are

respectively the expected discounted time to reach b before ruin at state j (when at time Ei ,
there was a state transition from i to k without a claim), a transition from i to k with a positive
claim, and a transition with a negative claim.

Proposition 5.1. The expected discounted dividends Vi(b, b), i = 1, . . . , n, satisfy

Vi(b, b) = wi +
∑
k∈E

D+
1 (i, k)

∫ b

y=0
ri(y)

∫ ∞

z=0
zg+

ik(y + z) dz dy (5.4)

+
∑
k∈E

D+
1 (i, k)

∫ b

x=0

∫ x

y=0
ri(b − y)g+

ik(x − y) dyv1,k(x, b) dx (5.5)

+
∑
k∈E

D−
1 (i, k)

∫ b

x=0

∫ b

y=x

ri(b − y)g−
ik(y − x) dyv1,k(x, b) dx (5.6)

+
∑

k∈E, k �=i

D0(i, k)

∫ b

x=0
ri(b − x)v1,k(x) dx (5.7)

+
∑
j

D+
1 (i, j)Aic

p
i,jVj (b, b) (5.8)

+
∑
j∈E

∑
k∈E

D+
1 (i, k)Ac

p
i,k,jVj (b, b) (5.9)

+
∑
j∈E

∑
k∈E

D−
1 (i, k)Acn

i,k,jVj (b, b) (5.10)

+
∑
j∈E

∑
k∈E,k �=i

D0(i, k)Ai,k,jVj (b, b). (5.11)

Proof. The term wi is the expected discounted dividend up to time Tb ∧ Ei , given by (3.3)
or (3.4). The second expression in (5.4) is the expected discounted dividend paid at Ei due to a
negative claim. The terms in (5.5)–(5.7) are the expected discounted dividends paid, when the
surplus reaches b due to a positive jump (negative claim) before ruin, after state transition at
Ei with or without a claim. Similarly, (5.8)–(5.11) describe the expected discounted dividends
paid after Ei , when the process reaches b either at time Ei or after time Ei , where at this time
there was either a negative claim, a positive claim, or a state transition without a claim.

5.2. The distribution of the dividends for δ = 0

In this subsection we assume that δ = 0, and we will show that the amount of dividends
until ruin has a phase-type distribution. In this case γ +

i,j (u) and γ +
i,(kj,l+)

(u) obtained in (5.3)
are the probabilities (under the original measure) that the surplus in the fluid model and, hence,
the original surplus process hit the level b by diffusion when the modulating state is j or by a
kj th negative claim at phase l+.

Proposition 5.2. Assume that Rb(0) = b and J (0) = i. Then the amount of dividends paid
until Tb,i ∧ Ei is exponentially distributed with mean

1

µ̂i

= W(ηi)(b)

W(ηi)
′
(b)

, (5.12)

where ηi = −D0(i, i) + D+
1 (i, i) + D−

1 (i, i).
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Proof. Let Rb(0) = b and J (0) = i. Let D(t) be the amount of dividends paid up to time t ,
and let D−1(x) = inf{t : D(t) > x}; D(t) is the local time at 0 of the process b − Rb and D−1

is the inverse local time.
The process D−1 has independent stationary increments, i.e. D−1(x + y) − D−1(x) is

independent of D−1(x) and distributed as D−1(y) (see Bertoin (1996, p. 114)). Applying the
Markov property at D−1(x) and the memoryless property of the exponential distribution we
obtain, similarly to Bertoin (1996, Exercise IV.1, p. 123, or Exercise V.3, p. 144),

P(D(Tb,i ∧ Ei ) > x + y)

= P(Tb,i ∧ Ei > D−1(x + y))

= P(Tb,i > D−1(x + y))P(Ei > D−1(x + y))

= P(Tb,i > D−1(x))P(Tb,i > D−1(y))P(Ei > D−1(x))P(Ei > D−1(y))

= P(Tb,i ∧ Ei > D−1(x))P(Tb,i ∧ Ei > D−1(y))

= P(D(Tb,i ∧ Ei ) > x)P(D(Tb,i ∧ Ei ) > y).

The expected dividend up to time Tb,i ∧ Ei is given by (5.12).

Let i ∈ E and j̃ ∈ E ∪ E+, Rb(0) = b and J (0) = i ∈ E. Let �(i, j̃ ) be the probability
that the process reaches b after Ei and before ruin at state j̃ . We have

�(i, j̃ ) =
∑
k∈E

D+
1 (i, k)

∫ b

x=0

∫ b

y=b−x

ri(b − y)g+
ik(x − y) dyγ +

k,j̃
(x) dx

+
∑
k∈E

D−
1 (i, k)

∫ b

x=0

∫ x

y=0
ri(b − y)g−

ik(y − x) dyγ +
k,j̃

(x) dx

+
∑
j∈E

∑
k∈E, k �=i

D0(i, k)

∫ b

x=0
ri(b − x)γ +

k,j̃
(x) dx.

Given that Rb(0) = b and J (0) = i ∈ E, the amount of dividends paid until time Ei ∧ Tb,i

is exponentially distributed with parameter µ̂i . The process returns to b at state i with
probability �(i, i). Thus, the amount of dividend earned until the first time the process reaches
b at state j̃ �= i or until ruin is a geometric compound sum of i.i.d. exponentially distributed
random variables and, thus, exponentially distributed with parameter µi = (1 − �(i, i))µ̂i .
Upon exiting state i ∈ E the next state is j̃ �= i, where j̃ is either j ∈ E or j̃ = (lj, o+),
l, j ∈ E, with probability �(i, j̃ )/(1 − �(i, i)). Thus, when in phase i ∈ E, the amount
of dividend is exponentially distributed with parameter µi , and, when in phase (lj, o+), it
is exponentially distributed with rate −T +

lj (o+, o+). When in state (phase) i ∈ E, the
transition rate to state j̃ �= i is ϒ(i, j̃ ) = µi�(i, j̃ ). When in state (lj, o+), the transition
rate to state (lj, õ+) is ϒ((lj, o+), (lj, õ+)) = T +

lj (o+, õ+), and the transition rate to state j

is ϒ((lj, o+), j) = t+lj (o+). Thus, the transition rate matrix among the transient states is ϒ.
Assume that R(0) = u and that P(J (0) = i) = αi . Then the amount of dividends is phase type
with representation (ρ+, ϒ), with ρ+

j = ∑n
i=1 αiγ

+
i,j (u) and ρ+

(lj,o+)
= ∑n

i=1 αiγ
+
i,(lj,o+)

(u).
Note that this phase-type distribution has an atom at 0 equal to

1 −
∑

i

αi

∑
j̃

γ +
i,j̃

(u) =
∑

i

∑
j̃

αiγ
−
i,j̃

(u), (5.13)
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which is the probability of ruin occurring before reaching b. We conclude with the following
proposition.

Proposition 5.3. The amount of dividends paid until ruin is phase type. When R(0) = u and
P(J (0) = i) = αi, i ∈ E, it is phase type with representation (ρ+, ϒ), and the atom at 0 is
given by (5.13).

5.3. The expected discounted penalty function

We consider the expected discounted penalty function for the Markov additive risk process
with two-sided jumps. Similarly to (4.7), we express ωi(u, b), u < b, as a function of ωj (b, b),

j ∈ E.
Similarly to Proposition 4.1, we derive ωi(b, b) for the case with positive and negative

claims.

Proposition 5.4. The penalty functions ωi(b, b), i = 1, . . . , n, satisfy

ωi(b, b) = w1,i (b) +
∑
k∈E

D−
1 (i, k)

∫ b

x=0
ri(x)

∫ ∞

0
f (z)g−

ik(b − x + z) dz dx

+
∑
k∈E

D−
1 (i, k)

∫ b

x=0

∫ b−x

y=0
ri(y)g−

ik(b − x − y) dyω0,k(x, b) dx

+
∑
j∈E

∑
k∈E

D−
1 (i, k)Acn

i,k,jωj (b, b)

+
∑
k∈E

D+
1 (i, k)

∫ b

x=0

∫ b

y=b−x

ri(y)g+
ik(x + y − b) dyω0,k(x, b) dx

+
(∑

k∈E

D+
1 (i, k)Aic

p
i,k +

∑
j∈E

∑
k∈E

D+
1 (i, k)Ac

p
i,k,j

)
ωj (b, b)

+
∑

k∈E, k �=i

D0(i, k)

∫ b

0
ri(x)ω0,k(b − x, b) dx

+
∑
j∈E

∑
k∈E, k �=i

D0(i, k)Ai,k,jωj (b, b).

The proof is similar to that of Proposition 4.1 and is therefore omitted.

5.4. The distribution of the deficit at ruin for δ = 0

It is clear that the deficit at ruin is phase type with representation (�, T −), where T −
is a block matrix with matrices Tij on the diagonal, i.e. T − = diag(T −

ij ). Let γ +
i,p(u, ·) =

γ +
i,p(u, 0) + ∑

k∈E

∑m+
kp

l+=1 γ +
(i,(kp,l+))

(u). Denote by a−(i, (kj, l−))(u) and a−(i, 0)(u) the
probabilities that ruin occurs by the kj th claim at phase l− or by diffusion, given that R(0) = u

and J (0) = i:

a−(i, (kj, l−))(u) = γ −
i,(kj,l)(u) +

∑
p∈E

γ +
i,p(u, ·)a−(p, (kj, l))(b),

a−(i, 0)(u) =
∑
j∈E

γ −
i,j (u) +

∑
p∈E

γ +
i,p(u, ·)a−(p, 0)(b).
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Let 1i be a column vector with a 1 in the ith entry and 0s elsewhere. Next we find the
probabilities a−(i, (kj, l−))(b). We apply the same notation as in (4.5). We have

a−(i, (pq, l−))(b) = D−
1 (i, q)

∫ b

x=0
ri(b − x)π−

iq exp(T −
iq x)1l− dxI (p = i) (5.14)

+
∑
k∈E

D−
1 (i, k)

∫ b

x=0

∫ b−x

y=0
ri(y)g−

ik(b − x − y) dyγ −
k,(pq,l−)

(x) dx

(5.15)

+
∑
k∈E

∑
j∈E

D−
1 (i, k)Acn

i,k,j a
−(j, (pq, l−))(b) (5.16)

+
∑
k∈E

D+
1 (i, k)

∫ b

x=0

∫ b

y=b−x

ri(y)g+
ik(x + y − b) dyγ −

k,(pq,l−)
(x) dx

(5.17)

+
∑
k∈E

D+
1 (i, k)

∫ b

0
ri(y)(1 − G+

ik(y)) dya−(k, (pq, l−))(b) (5.18)

+
∑
j∈E

∑
k∈E

D+
1 (i, k)Ac

p
i,k,j a

−(j, (pq, l−))(b) (5.19)

+
∑

k∈E, k �=i

D0(i, k)

∫ b

0
ri(x)γ −

k,(pq,l−)
(b − x) dx (5.20)

+
∑
j∈E

∑
k∈E, k �=i

D0(i, k)Ai,k,j a
−(j, (pq, l−))(b). (5.21)

The term in (5.14) is the probability that at time Ei ruin occurs due to an iqth positive claim at
phase l−. The terms in (5.15), (5.17), and (5.20) are the probabilities that ruin occurs before
reaching b by a pqth claim hitting 0 at phase l−. The terms in (5.16), (5.18), (5.19), and (5.21)
are the probabilities that ruin occurs at state (pq, l−) when the process reaches b before ruin,
after Ei . Similarly, the a−(i, 0)(b), i = 1, . . . , n, satisfy

a−(i, 0)(b) = LTb
(ηi)

+
∑
k∈E

D−
1 (i, k)

∫ b

x=0

∫ b−x

y=0
ri(y)g−

ik(b − x − y) dy
∑
j∈E

γ −
k,j (x) dx

+
∑
k∈E

∑
j∈E

D−
1 (i, k)Acn

i,k,j a
−(j, 0)(b)

+
∑
k∈E

D+
1 (i, k)

∫ b

x=0

∫ b

y=b−x

ri(y)g+
ik(x + y − b) dy

∑
j∈E

γ −
k,j (x) dx

+
∑
k∈E

D+
1 (i, k)

∫ b

0
ri(y)(1 − G+

ik(y)) dya−(k, 0)(b)

+
∑
j∈E

∑
k∈E

D+
1 (i, k)Ac

p
i,k,j a

−(j, 0)(b)
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+
∑

k∈E, k �=i

D0(i, k)

∫ b

0
ri(x)

∑
j∈E

γ −
k,j (b − x) dx

+
∑
j∈E

∑
k∈E, k �=i

D0(i, k)Ai,k,j a
−(j, 0)(b).

The term LTb,i
(ηi) is the probability of ruin before Ei due to diffusion. Note that, when σi = 0,

this probability is 0. The other terms have a similar interpretation as before.
If P(J (0) = i) = αi and R(0) = u, then the deficit at ruin is phase type with representation

(�, T −), where
�(kj,l) =

∑
i∈E

αia
−(i, (kj, l))(u).

The atom at 0 is
∑

i∈E αia
−(i, 0)(u).

6. Example

In this section we present a methodological example. We consider a two-state Markov
additive risk process with δ = 0.04, β1 = 0.03, β2 = 0.14, σ2 = 0.1, σ1 = 0, c1 = c2 = 3,

� =
(−0.015 0.015

0.06 −0.06

)
, D1 =

(
0.03 0

0 0.14

)
,

and D0 =
(−0.045 0.015

0.06 −0.2

)
.

When in state 1, negative claims arrive according to a Poisson process at rate β1 = 0.03
and the claim amounts are exponentially distributed with µ1 = 0.5. When in state 2, positive
claims arrive according to a Poisson process at rate β2 = 0.14 and the positive claim amounts
are exponentially distributed with µ2 = 0.05. Thus, when in state 1, the process increases
linearly and has only positive jumps, while when in state 2, the process evolves as a Brownian
motion with drift 3 between negative jumps. The matrix K(α) is

K(α) = � +

⎛
⎜⎜⎝

3α + 0.03

(
0.5

0.5 − α
− 1

)
0

0 3α + 0.005α2 + 0.14

(
0.05

0.05 + α
− 1

)
⎞
⎟⎟⎠

=
⎛
⎜⎝−0.045 + 3α + 0.015

0.5 − α
0.015

0.06 −0.2 + 3α + 0.005α2 + 0.007

0.05 + α

⎞
⎟⎠ .

Next we find the value �(δ), which is the root of the equation det(K(α)−δI ) = 0 for which
δ is an eigenvalue with maximal real part. Such a root is �(δ) = 0.014 616. The corresponding
eigenvector is (

0.825 686
0.564 131

)
.

Next we define the MAP parameters under P
�(δ):

c̃1 = c1 = 3, c̃2 = c2 + σ 2
2 �(δ) = 3.000 146 16, σ̃2 = σ2,

�̃ = �−1
h(�(δ))

K(�(δ))�h(�(δ)) − δI =
(−0.0102 0.0102

0.0878 −0.0878

)
,
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β̃1 = β1
µ1

µ1 − �(δ)
= 0.030 903, and β̃2 = β2

µ2

µ2 + �(δ)
= 0.108 332.

The negative claim is exponentially distributed with rate µ̃1 = µ1 − �(δ) = 0.485 384, and
the positive claim is exponentially distributed with rate µ̃2 = µ2 + �(δ) = 0.064 616. The
transition rate matrix of the fluid model is

Q =

⎛
⎜⎜⎝


̃(1, 1) − β̃1 
̃(1, 2) β̃1 0

̃(2, 1) 
̃(2, 2) − β̃2 0 β̃2

µ̃1 0 −µ̃1 0
0 µ̃2 0 −µ̃2

⎞
⎟⎟⎠

=

⎛
⎜⎜⎝

−0.0412 0.0102 0.0309 0
0.0878 −0.1962 0 0.1083
0.4854 0 −0.4854 0

0 0.0646 0 −0.0646

⎞
⎟⎟⎠ .

The matrix F for our example is

F (α) = Q +

⎛
⎜⎜⎝

c̃1α 0 0 0
0 c̃2α + 1

2σ 2
2 0 0

0 0 α 0
0 0 0 −α

⎞
⎟⎟⎠

=

⎛
⎜⎜⎝

α − 0.04112 0.0102 0.0309 0
0.0878 3.0001α + 0.005α2 − 0.196 151 0 0.108 332
0.4854 0 α − 0.4854 0

0 0.0646 0 −α − 0.0646

⎞
⎟⎟⎠ .

The equation |F (α)| = 0 has the five solutions

α1 = 0,

α2 = 0.046 665,

α3 = 0.495 761,

α4 = −0.042 564,

α5 = −600.094 609,

whose corresponding eigenvectors are

h(α1) = (1, 1, 1, 1, 1)�,

h(α2) = (−0.066 294, 0.860 548, −0.073 345, 0.499 683)�,

h(α3) = (−0.021 375, 0.001 438, 0.999 770, 0.000 166)�,

h(α4) = (−0.023 559, −0.322 821, −0.021 659, −0.945 919)�,

h(α5) = (0.569 253 × 10−5, 1.000 000, 0.460 066 × 10−8, −0.000 108)�,

where ‘�’denotes the transpose. We can now obtain the 10 equations for γ ±
i,j (u) and γ ±

i,(kj,1)(u).
Note that in this example ruin cannot occur at state 1.
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Table 1.

u V1(u, 50) V2(u, 50)

5 35.440 18.136
10 38.270 21.003
25 47.9975 30.104
40 59.854 40.914
50 69.252 49.926

The scale functions are

W(η2+δ)(x) = 0.333 244 480 0e0.079 989 300 00x − 0.333 244 480 0e−600.079 989 3x,

W(η1+δ)(x) = 1
3 e0.028 333 333 33x,

r2(x) = 2500.334 419e−600.079 989 3x,

r1(0) = 1

η1 + δ
= 11.764 705 88,

and r1(x) = 0 for x > 0, and

w1 = c1

δ + η1
= 35.294 118, w2 = 12.501 672 10.

Ruin cannot occur up to time E1 (since σ1 = 0); thus, LTb,1(η1 + δ) = 0. Upon calculating all
the coefficients we obtain the following equations for Vi(b, b):

V1(b, b) = 36.000 000 00 + 0.352 941 176 4V1(b, b) + 0.176 470 588 2V2(b, b),

V2(b, b) = 12.557 660 86 + 0.344 661 060 0V1(b, b) + 0.270 391 526 7V2(b, b).

Solving these equations we obtain

V1(b, b) = 69.252, V2(b, b) = 49.926.

The discounted dividends paid for different initial conditions are given in Table 1.
The transition intensity matrix and the positive claim amount distribution is as in Cheung and

Laundriault (2009). We omitted claims with state transitions and added negative claims. Thus,
the discounted amount of dividends paid is greater than in Cheung and Laudriault’s example.

7. A barrier strategy dependent on the environmental state J

Following Cheung and Landriault (2009), who were motivated by Zhu and Yang (2008), we
assume that the dividend barrier is state dependent. The barrier strategy, effective when J is in
state i, is bi, i ∈ E. For the application of this strategy, see, e.g. Zhu and Yang (2008).

The method developed in this paper is based on the semiregenerative property of the process,
and the change of measure. These tools cannot be implemented directly for a state-dependent
barrier strategy with an arbitrary number of states. When there are only two states, 1 and 2,
we can still obtain solutions for the case where there are only positive claims or only negative
claims, but not both. Without loss of generality, we assume that 0 < b1 < b2. In the case of
two barriers we denote the process by Rb, with b = (b1, b2).

https://doi.org/10.1239/aap/1370870126 Published online by Cambridge University Press

https://doi.org/10.1239/aap/1370870126


474 E. FROSTIG

7.1. Positive claims

In this subsection we consider a risk process with negative jumps only.

7.1.1. Expected discounted dividends. Let Vi(u, b) be the expected discounted dividends paid
when J (0) = i and Rb(0) = u. Let β2 = D1(2, 2). On J = 2 the process behaves as a Lévy
process, X̃2, with exponent

ϕ2(α) = c2 + 1
2σ 2

2 α2 + β2(π22(αI − T22)
−1t22 − 1).

For J (0) = 2, let Ẽ2 be the transition time of the CTMC J to state 1. Clearly, Ẽ2 is exponentially
distributed with parameter λ21 = D1(2, 1) + D0(2, 1), independent of X̃2. Let W

(q)
2 be the

scale function for X̃2. The forms of W
(q)
2 (x), its derivative W

(q)′
2 (x), and the adjoint scale

function Z
(q)
2 (x) are given explicitly as polynomials in x, with coefficients that are functions

of the roots with negative real part of the equation ϕ2(α) = q; see Proposition 2.1 of Egami
and Yamazaki (2012). Let

τ̃+
b = inf{t : X̃2(t) ≥ b},

τ̃−
a = inf{t : X̃2(t) ≤ a}.

Define the following Laplace transforms for the exit times: for a < u < b,

ν̃
(a,b)+
22 (u, b) = E[e−δτ̃+

b I (τ̃−
a > τ̃+

b , τ̃+
b < Ẽ2) | X̃2(0) = u, J (0) = 2],

ν̃
(a,b)−
22 (u, a) = E[e−δτ̃−

a I (τ̃−
a < τ̃+

b , τ̃−
a < Ẽ2) | X̃2(0) = u, J (0) = 2].

Since Ẽ2 and X̃2 are independent,

ν̃
(a,b)+
22 (u, b) = E[e−(δ+λ21)τ̃

+
b I (τ̃−

a > τ̃+
b ) | X2(0) = u],

ν̃
(a,b)−
22 (u, a) = E[e−(δ+λ21)τ̃

−
a I (τ̃−

a < τ̃+
b ) | X2(0) = u].

By Proposition 2.1,

ν̃
(a,b)+
22 (u, b) = W

(δ+λ21)
2 (u − a)

W
(δ+λ21)
2 (b − a)

,

ν̃
(a,b)−
22 (u, a) = Z

(δ+λ21)
2 (u − a) − W

(δ+λ21)
2 (u − a)

Z
(δ+λ21)
2 (u − a)

W
(δ+λ21)
2 (b − a)

.

For a < x, y < b, let

λ21ũ
(a,b)
21 (x, y) dy = E[e−δẼ2I (Ẽ2 < τ̃−

a ∧ τ̃+
b , X̃2(Ẽ2) ∈ dy) | X̃2(0) = x].

To obtain ũ
(a,b)
21 (x, y), we apply Theorem 8.7 of Kyprianou (2006):

ũ
(a,b)
21 (x, y) = W

(δ+λ21)
2 (x − a)W

(δ+λ21)
2 (b − y)

W
(δ+λ21)
2 (b − a)

− W
(δ+λ21)
2 (x − y).

Throughout this section, we denote by w
(a)
i , i = 1, 2, a > 0, the expected discounted

dividends until Ei ∧Ta , as given by (3.3) or (3.4) with a replacing b. Similarly, r(a)
i is as defined

above Proposition 3.1, where b is as defined in (2.3)–(2.5). Let M̃2(t) = sup0≤s≤t (X̃2(s)), and
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let Ỹ2(t) = M̃2(t) − X̃2(t) be the reflected process at the maximum. Let T̃b2 be the time until
the reflected process Ỹ2 hits b2. On J = 2 the process b2 − Rb behaves as Ỹ2. Let w̃2 be the
expected discounted dividends paid until T̃b2 ∧ Ẽ2. By Theorem 2.1 of Avram et al. (2004),

w̃2 = E

[∫ T̃b2 ∧Ẽ2

0
e−δs dM̃2(s)

]
= W

(δ+λ21)
2 (b2)

W
(δ+λ21)′
2 (b2)

.

For b > 0, let

λ21r̃
(b)
2 (y) dy = P(b − Rb(Ẽ2) ∈ dy, Ẽ2 < T̃b2 | Rb(0) = b, J (0) = 2).

By Theorem 1(ii) of Pistorius (2004),

r̃
(b)
2 (y) =

(
W

(δ+λ21)
2 (b)

W
(δ+λ21)

′
2 (y)

W
(δ+λ21)′
2 (b)

− W
(δ+λ21)
2 (y)

)
.

Let ν+
i,j (u, b1) be the same as ν+

i,j (u) defined in (4.1), where b is replaced by b1. For b1 ≤ u < b2
and J (0) = 2, we define

v11(u) =
∫ b2

x=b1

∫ x

y=b1

ũ
(0,b2)
21 (u, x)g21(x − y)(y − b1) dy dx, (7.1a)

v10(u) =
∫ b2

x=b1

ũ
(0,b2)
21 (u, x)(x − b1) dx, (7.1b)

Ã1,d,i (u) =
∫ b1

x=0

∫ b2

y=x

ũ
(0,b2)
21 (u, y)g21(y − x)ν+

1,i (x, b1) dy dx, i = 1, 2, (7.1c)

Ã1,u,1(u) =
∫ b2

x=b1

∫ x

y=b1

ũ
(0,b2)
21 (u, x)g21(x − y) dy dx, (7.1d)

Ã0,d,i (u) =
∫ b1

0
ũ

(0,b2)
21 (u, x)ν+

1,i (x, b1) dx, i = 1, 2, (7.1e)

Ã0,u,1(u) =
∫ b2

x=b1

ũ
(0,b2)
21 (u, x) dx. (7.1f)

Given that Rb(0) = u and J (0) = 2, v11(u) and v10(u) are the expected discounted dividends
paid at time Ẽ2, when a transition to state 1, with or, respectively, without a claim occurs before
ruin, and the surplus after that transition is above b1 and then drops to b1. The quantities
Ã1,d,i (u) and Ã0,d,i (u) are the expected discounted times until the reserve reaches b1 from
below at state i, i = 1, 2, where, after the first transition to state 1 that occurs with or without
a claim arrival, the reserve is below b1. Similarly, Ã1,u,1(u) and Ã0,u,1(u) are the expected
discounted times until the reserve reaches b1 from above at state 1, where, after the transition,
the reserve is between b1 and b2.

Similarly, to obtain V2(b2, b), we define

v21 =
∫ b2−b1

x=0

∫ x

y=0
r̃
(b2)
2 (y)g21(x − y) dy(b2 − b1 − x) dx, (7.2a)

v20 =
∫ b2−b1

x=0
r̃
(b2)
2 (x)(b2 − b1 − x) dx, (7.2b)
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B1,d,i =
∫ b2

x=b2−b1

∫ x

y=0
r̃
(b2)
2 (y)g21(x − y) dyν+

1,i (b2 − x, b1) dx, i = 1, 2, (7.2c)

B0,d,i =
∫ b2

x=b2−b1

r̃
(b2)
2 (x)ν+

1,i (b2 − x, b1) dx, i = 1, 2, (7.2d)

B1,u,1 =
∫ b2−b1

x=0

∫ x

y=0
r̃
(b2)
2 (y)g21(x − y) dy dx, (7.2e)

B0,u,1 =
∫ b2−b1

x=0
r̃
(b2)
2 (x) dx. (7.2f)

Given that Rb(0) = b2 and J (0) = 2, v21 and v20 are the expected discounted dividends
paid when the first transition to state 1 occurs at time Ẽ2, with or without a claim arrival. The
quantities B1,d,i and B0,d,i are the expected discounted times to reach level b1, where, after
the first transition to state 1 that occurs with or without a claim arrival at time Ẽ2, the surplus
is below b1. Similarly, B1,u,i and B0,u,i are the expected discounted times to reach b1 when
the first transition to state 1 with or without a claim arrival occurs when the surplus is above b1
(and then drops to b1).

Theorem 7.1. We have

V1(b1, b) = w
(b1)
1 +

2∑
j=1

( 2∑
k=1

Ac1,k,jD1(1, k) + A1,2,jD0(1, k)

)
Vj (b1, b), (7.3)

where the coefficients are as defined by (4.5) with b1 replacing b. For b1 ≤ u < b2,

V2(u, b) = D1(2, 1)v11 + D0(2, 1)v10 + ν̃+
22(u, b2)V2(b2, b)

+ (D1(2, 1)(Ã1,d,1(u) + Ã1,u,1(u))

+ D0(2, 1)(Ã0,d,1(u) + Ã0,u,1(u)))V1(b1, b)

+ (D1(2, 1)Ã1,d,2(u) + D0(2, 1)Ã0,d,2(u))V2(b1, b), (7.4)

V2(b2, b) = w̃2 + D1(2, 1)v21 + D0(2, 1)v20

+ (D1(2, 1)(B1,d,1 + B1,u,1) + D0(2, 1)(B0,d,1 + B0,u,1))V1(b1, b)

+ (D1(2, 1)B1,d,2 + D0(2, 1)B0,d,2))V2(b1, b). (7.5)

Substituting u = b1 in (7.4) yields V2(b1, b).

Proof. Equation (7.3) for V1(b1, b) is the same as (4.6) for i = 1, where b is replaced by b1.
Equations (7.4) and (7.5) follow straightforwardly from the definitions of the coefficients defined
in (7.1) and (7.2), respectively.

Remark 7.1. For 0 < u ≤ b1,

Vi(u, b) =
2∑

j=1

ν+
i,j (u, b1)Vj (b1, b), i = 1, 2.

For b1 < u

V1(u, b) = u − b1 + V1(b1, b).

For b1 ≤ u < b2, V2(u, b) is given by (7.4). For u > b2,

V2(u, b) = u − b2 + V2(b2, b).
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7.1.2. The expected discounted penalty function. Let ωj (u, b) be the expected discounted
penalty function when Rb(0) = u and J (0) = j, j = 1, 2. For 0 ≤ u ≤ b1, let ν−

ij (u, 0, b1),
ν−
ij (u, z, b1), ω0,i (u, b1), and ω1,1(b1) be the same as ν−

ij (u, 0), ν−
ij (u, z), ω0,i (u, b), and ω1,1(b)

in (4.8), (4.9), (4.11), and (4.12), where b is replaced by b1. Let

ν̃
(0,b2)−
22 (u, 0) = E2,u[e−δτ−

0 I (τ−
0 < τ+

b2
, τ−

0 < Ẽ2), ξ−
0 = 0],

ν̃
(0,b2)−
22 (u, z) dz = E2,u[e−δτ−

0 I (τ−
0 < τ+

b2
, τ−

0 < Ẽ2), ξ−
0 ∈ dz].

We will obtain ν̃−
22(u, 0) and ν̃−

22(u, z) later. Similarly to (4.11), define

ω̃0,2(u, b2) = E2,u[e−δτ̃−
0 f (ξ−

0 )I (τ̃−
0 < τ̃+

b2
, τ̃−

0 < Ẽ2)]
= ν̃

(0,b2)−
22 (u, 0)f (0) +

∫ ∞

z=0
f (z)ν̃

(0,b2)−
22 (u, z) dz,

ω̃1,2(b2) = f (0)

∫ ∞

0
dFTb2

(t) exp(−(η2 + δ)t) = f (0)LTb2
(η2 + δ),

where ω̃0,2(u, b2) is the expected discounted penalty due to ruin occurrence before reaching b2
and before state transition, given that J (0) = 2, and ω̃1,2(b2) is the expected penalty function
when ruin occurs due to diffusion before a state transition or claim arrival, and is defined
similarly to (4.12) with b2 replacing b. For b1 ≤ u < b2, let

P2,1,c,0(u) =
∫ b2

x=0
ũ

(0,b2)
21 (u, x)

∫ ∞

z=0
g21(x + z)f (z) dz,

P2,1,c(u) =
∫ b1

x=0

∫ b2

y=x

ũ
(0,b2)
21 (u, y)g21(y − x) dyω0,1(x, b1) dx,

P2,1,0(u) =
∫ b1

0
ũ

(0,b2)
21 (u, x)ω0,1(x, b1),

where

• P2,1,c,0(u) is the expected discounted penalty when ruin occurs due to a claim arrival
with a transition from state 2 to 1,

• P2,1,c(u) and P2,1,0(u) are the expected discounted penalties when a transition to state 1,
with or, respectively, without a claim arrival, occurs before ruin, and the surplus after
that transition is less than b1, with ruin then occurring before reaching b1.

For Rb(0) = b2 and J (0) = 2, we will apply the following expressions for the expected
discounted penalty when ruin occurs before paying dividends:

P1,k =
∫ b2

0
r
(b2)
2 (x)g2k(b2 − x + z)f (z) dz, k = 1, 2,

P2,k =
∫ b2

x=b2−b1

∫ x

y=0
r
(b2)
2 (y)g2,k(x − y) dyω0,k(b2 − x, b1) dx, k = 1, 2,

P3 =
∫ b2

x=b2−b1

r
(b2)
2 (x)ω0,1(b2 − x, b1) dx,
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P4 =
∫ b2−b1

x=0

∫ x

y=0
r
(b2)
2 (y)g22(x − y) dyω̃0,2(b2 − x, b2) dx,

P5 =
∫ b2−b1

x=0

∫ x

y=0
r
(b2)
2 (y)g22(x − y) dy

×
∫ b1

v=0
D0(2, 1)ũ

(0,b2)
21 (b2 − x, v)ω0,1(v, b1) dv dx,

P6 =
∫ b2−b1

x=0

∫ x

y=0
r
(b2)
2 (y)g22(x − y) dy

×
∫ b1

v=0
D1(2, 1)ũ

(0,b2)
21 (b2 − x, v)

∫ ∞

z=0
g21(v + z)f (z) dz dv dx, (7.6)

P7 =
∫ b2−b1

x=0

∫ x

y=0
r
(b2)
2 (y)g22(x − y) dy

×
∫ b1

v=0
D1(2, 1)ũ

(0,b2)
21 (b2 − x, v)

∫ v

z=0
g21(z)ω0,1(v − z, b1) dz dv dx.

(7.7)

Here

• P1,k, k = 1, 2, are the discounted penalties when ruin occurs due to a claim arrival with
a state transition,

• P2,k, k = 1, 2, and P3 are the expected discounted penalties when a state transition, with
or, respectively, without a claim arrival, occurs at time E2 before ruin, and the surplus
process after the state transition is between 0 and b1, with ruin then occurring before
reaching the level b1,

• P4 is the expected discounted penalty when an arrival at state 2 occurs before ruin at
time E2, and the surplus after the arrival is between b1 and b2, with ruin then occurring
before reaching the level b2 and before a transition to state 1,

• Pi, i = 5, 6, 7, are the expected discounted penalties when an arrival at state 2 occurs
before ruin at time E2, and the surplus after the arrival is between b1 and b2, then a
transition to state 1 without (P5) or with (P6, P7) an arrival occurs before reaching b2
and before ruin, when the process level is less than b1. In (7.6) the arrival causes an
immediate ruin. In (7.7) ruin occurs after that arrival and before the process reaches b1.

Finally, we consider the following discounted exit times (Rb(0) = b2 and J (0) = 2):

d1,k,j =
∫ b2

x=b2−b1

∫ x

y=0
r
(b2)
2 (y)g2,k(x − y) dyν+

kj (b2 − x, b1) dx, k, j = 1, 2,

d2,j =
∫ b2

x=b2−b1

r
(b2)
2 (x)ν+

1j (b2 − x, b1) dx, j = 1, 2,

d3 =
∫ b2−b1

x=0

∫ x

y=0
r
(b2)
2 (y)g22(x − y)ν̃

(0,b2)+
22 (b2 − x, b2) dy dx,

d4 =
∫ b2−b1

x=0

∫ x

y=0
r
(b2)
2 (y)g21(x − y) dy dx,
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d5 =
∫ b2−b1

x=0
r
(b2)
2 (x) dx,

d6,j = D0(2, 1)

∫ b2−b1

x=0

∫ x

y=0
r
(b2)
2 (y)g22(x − y) dy

×
∫ b1

v=0
ũ

(0,b2)
21 (b2 − x, v) dxν+

1j (v, b1) dv, j = 1, 2,

d7,j = D1(2, 1)

∫ b2−b1

x=0

∫ x

y=0
r
(b2)
2 (y)g22(x − y) dy

×
∫ b1

v=0

∫ b2

z=v

ũ
(0,b2)
21 (b2 − x, z) dxg21(z − v) dzν+

1j (v, b1) dv, j = 1, 2,

d8 = D0(2, 1)

∫ b2−b1

x=0

∫ x

y=0
r2(y)g22(x − y) dy

∫ b2

v=b1

ũ
(0,b2)
21 (b2 − x, v) dv dx,

d9 = D1(2, 1)

∫ b2−b1

x=0

∫ x

y=0
r
(b2)
2 (y)g22(x − y) dy

×
∫ b2

v=b1

∫ b2

z=v

ũ
(0,b2)
21 (b2 − x, z)g21(z − v) dz dv dx.

Here

• d1,k,j and d2,j are the discounted times to reach level b1 when the modulated state is j ,
when a transition to state k occurs at time E2 before ruin, with or, respectively, without
a claim arrival, and the surplus after the transition is less than b1,

• when the first transition at time E2 is a claim arrival in state 2, and the surplus after the
arrival is between b1 and b2, d3 is the discounted time to reach b2 before ruin and before
transition to state 1,

• d4 and d5 are the discounted times of the first transition to state 1 at time E2, with or,
respectively, without a claim arrival, and the surplus after the transition is between b1
and b2 and drops to b1,

• d6,j , d7,j , j = 1, 2, d8, and d9 are the discounted times to reach b1 before ruin, where
the first transition at time E2 is a claim at state 2 and the surplus after that transition is
between b1 and b2.

In d6,j and d7,j , j = 1, 2, the process level after the transition is below b1, and so we
consider the discounted time to reach b1, while in d8 and d9 the process reaches state 1 when
it is above b1, and then drops to b1.

We present now the linear equations for ωi(bj , b).

Proposition 7.1. Similarly to (4.13)–(4.17) we have

ω1(b1, b) = ω1,1(b1) +
2∑

k=1

D1(1, k)

∫ b1

x=0

∫ ∞

z=0
r
(b1)
1 (x)g1k(b1 − x + z)f (z) dz dx

+
2∑

k=1

D1(1, k)

∫ b1

x=0

∫ x

y=0
r
(b1)
1 (y)g1k(x − y) dyω0,k(b1 − x, b1) dx
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+ D0(1, 2)

∫ b1

x=0
r
(b1)
1 (x)ω0,2(b1 − x, b1) dx

+
2∑

j=1

2∑
k=1

D1(1, k)Ac1,k,jωj (b1, b) +
2∑

j=1

2∑
k=1

D0(i, k)A1,k,jωj (b1, b),

where the coefficients are as defined in (4.5) with b1 replacing b.
For b1 ≤ u < b2,

ω2(u, b) = D1(2, 1)(P2,1,c,0(u) + P2,1,c(u)) + D0(2, 1)P2,1,0(u)

+ ν̃
(0,b2)+
22 (u, b2)ω2(b2, b) + (D1(2, 1)(Ã1,d,1(u) + Ã1,u,1(u))

+ D0(2, 1)(Ã0,d,1(u) + Ã0,u,1(u)))ω1(b1, b)

+ (D1(2, 1)Ã1,d,2(u) + D0(2, 1)Ã0,d,2(u))ω2(b1, b), (7.8)

ω2(b2, b) = ω̃1,2(b2) +
2∑

k=1

D1(2, k)(P1,k + P2,k) + D0(2, 1)P3

+ D1(2, 2)(P4 + P5 + P6 + P7)

+
[ 2∑

k=1

D1(2, k)d1,k,1 + D0(2, 1)d2,1 + D1(2, 1)d4 + D0(2, 1)d5

+ D1(2, 2)(d6,1 + d7,1 + d8 + d9)

]
ω1(b1, b)

+
[ 2∑

k=1

D1(2, k)d1,k,2 + D0(2, 1)d2,2 + D1(2, 2)(d6,2 + d7)

]
ω2(b1, b)

+ D1(2, 2)d3ω2(b2, b). (7.9)

By substituting u = b1 in (7.8) we obtain the equations for ω2(b1, b).

Proof. The proof straightforwardly follows from the definitions of the coefficients.

It remains to derive ν̃−
22(u, 0) and ν̃−

22(u, z) for 0 < u < b2. Let �2(δ + λ21) be the largest
solution of ϕ2(α) = δ + λ21. Applying the change-of-measure formula for the process X̃2,
yields

ν̃
(0,b2)−
22 (u, z) dz = e�2(δ+λ21)(u+z)

P
�(δ+λ21)(τ̃−

0 < τ̃+
b2

, −X̃2(τ̃
−
0 ) ∈ dz | X̃2 = u),

ν̃
(0,b2)−
22 (u, 0) = e�2(δ+λ21)uP

�(δ+λ21)(τ̃−
0 < τ̃+

b2
, X̃2(τ̃

−
0 ) = 0 | X̃2 = u).

Under P
�(δ+λ21), X̃2 is a Lévy process with negative phase-type jumps with representation

(π̃22, T̃22), and Lévy exponent

ϕ̃2(α) = c̃2α + σ 2α2

2
+ β̃2((αI + T̃22)

−1 t̃22 − 1),

where π̃22, T̃22, and t̃22 are as given in Lemma 4.1, and c̃2 is as given in (P1). Let X̃
f
2 be

the fluid version of X̃2 under P
�(δ+λ21). The process X̃

f
2 is a MAP with m22 + 1 states and

modulating process J̃
f
2 . When in state 0, X̃

f
2 evolves as a Brownian motion with drift c̃2, and,
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when in state k, k = 1, . . . , m22 + 1, it is a linear line with slope −1. State k corresponds to
phase k of the claim. Let π̃22, T̃22, and t̃22 be as defined in (4.3). Similarly to the definition of
F in Section 5, the cumulant matrix for X̃

f
2 under P

�(δ+λ21) is F2(α), where

F2(α) =
(−β̃2 π̃22

t̃22 T̃22

)
+ diag(ϕ̃2(α), −α, . . . , −α).

Define

γ̃ +(u) = P
�(δ+λ21)(τ̃

f +
b2

< τ̃
f −
0 | X̃

f
2 (0) = u),

γ̃ −
k (u) = P

�(δ+λ21(τ̃
f −
0 < τ̃

f +
b2

, J f (τ̃
f −
0 ) = k | X̃

f
2 (0) = u),

where τ̃
f +
b2

and τ̃
f −
0 are first times that X̃

f
2 hits b2 and 0, respectively. To find the probabilities

γ̃ −
k (u), we apply the same technique as described in (4.4). Assume that |F2(α)| = 0 has

m22 + 2 different roots αr, r = 1, . . . , m22 + 2, and let h2f (αr) be the corresponding right
eigenvectors. Then the following equations hold for γ̃ −

k (u), k = 0, . . . , m22, γ̃
+(u):

eαruh
2f
0 (αr) = eαrb2 γ̃ +(u) +

m22∑
j=0

γ̃ −
k (u)h

2f
j (αr), r = 1, . . . , m22 + 2.

Let γ̃ −(u) = (γ −
1 (u), . . . , γ̃ −

m22
(u)). Then

P
�(δ+λ21)(τ̃−

0 < τ̃+
b2

, −X̃2(τ̃
−
0 ) ∈ dz | X̃2(0) = u) = γ̃ −(u)eT̃22z t̃22 dz,

P
�(δ+λ21)(τ̃−

0 < τ̃+
b2

, −X̃2(τ̃
−
0 ) = 0 | X̃2(0) = u) = γ̃ −

0 (u).

Applying the change of measure we obtain

ν̃
(0,b2)−
22 (u, z) = e�(δ+λ21)(u+z)γ̃ −(u)eT̃22z t̃22, ν̃

(0,b2)−
22 (u, 0) = e�(δ+λ21)uγ̃ −

0 (u).

7.2. A barrier strategy dependent on the environmental state of the dual model

In the dual model there are only negative claims, i.e. positive jumps. Given that J (0) = 2
and Rb(0) = u, b1 < u < b2, then until time Ẽ2 the process behaves as a Lévy process X+

2 (t)

with positive jumps, i.e.
X+

2 (t) = u + σ2B(t) + S2(t),

where S2 is a compound Poisson process with arrival rate β2, i.i.d. phase-type jumps with
representation (π+

22, T
+
22), and Lévy exponent

ϕ2(α) = c2α + σ 2
2 α2

2
+ β2((−αI − T +

22)
−1 − 1).

Let �2(α + λ21) be the largest solution of ϕ2(α) = λ21 + δ. Let

τ̃+
a = inf{t : X+

2 (t) ≥ a}, τ̃−
a = inf{t : X+

2 (t) ≤ a}.
For x < u < y, define

ν̃
(x,y)+
22 (u, z) dz = E(e−δτ̃+

y I (τ̃+
y < τ̃−

x , τ̃+
y < Ẽ2, X+

2 (τ̃+
y ) ∈ y + dz) | X+

2 (0) = u),

ν̃
(x,y)+
22 (u, 0) = E(e−δτ̃+

y I (τ̃+
y < τ̃−

x , τ̃+
y < Ẽ2, X+

2 (τ̃+
y ) = y) | X+

2 (0) = u),

ν̃
(x,y)−
22 (u, x) = E(e−δτ̃−

x I (τ̃−
x < τ̃+

y , τ̃−
x < Ẽ2, X+

2 (τ̃−
x ) = x) | X+

2 (0) = u).
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Applying the change-of-measure formula we obtain

ν̃
(x,y)+
22 (u, z) dz = e�(δ+λ21)(u−y−z)γ̃

(x,y)+
22 (u, z) dz,

ν̃
(x,y)+
22 (u, 0) = e�(δ+λ21)(u−y)γ̃

(x,y)+
22 (u, 0),

ν̃
(x,y)−
22 (u) = e�(δ+λ21)(u−x)γ̃

(x,y)−
22 (u, x),

where

γ̃
(x,y)+
22 (u, z) dz = P

�(δ+λ21)(τ̃+
y < τ̃−

x , X+
2 (τ̃+

y ) ∈ y + dz | X+
2 (0) = u), (7.10)

γ̃
(x,y)+
0 (u, y) = P

�(δ+λ21)(τ̃+
y < τ̃−

x , X+
2 (τ̃+

y ) = y | X+
2 (0) = u), (7.11)

γ̃
(x,y)−
22 (u, x) = P

�(δ+λ21)(τ̃−
x < τ̃+

y , X+
2 (τ̃−

x ) = x | X+
2 (0) = u). (7.12)

Let

ν̃
(x,y)+
22 (u, ·) = ν̃

(x,y)+
22 (u, 0) +

∫ ∞

0
ν̃

(x,y)+
22 (u, z) dz.

Let π̃+
22, T̃ +

22, and t̃+
22 be the parameters of the phase-type distribution for the claim amount under

P
�(δ+λ21), as defined in (4.3), and let ϕ̃2(α) be the Lévy exponent of X+

2 under P
�(δ+λ21). To

obtain (7.10)–(7.12), we resort to the fluid model of X+
2 , where upward jumps are replaced by

lines with slope 1. The generator for the fluid MAP (under P
�(δ+λ21)) is

Q+
22 =

(−β̃2 β̃2π̃
+
22

t̃+
22 T̃ +

22

)
.

Let F+
22(α) = Q+

22 + diag(ϕ̃2(α), α, . . . , α). Assume that the equation |F+
22(α))| = 0 has

m22 + 2 different roots αi, i = 1, . . . , m22 + 2. Let hf (αr) be the eigenvector of F+
22(αr).

Consider the fluid model of the process under P
�(δ+λ21). Let γ̃

(x,y)−
0 (u) be the probability that

the process hits x before y (by diffusion), let γ̃
(x,y)+
0 (u) be the probability that it hits y before

x by diffusion, and let γ̃
(x,y)+
i (u), i = 1, . . . , m22, be the probabilities that the process hits y

by a claim at phase i (before x). These probabilities are the solutions to the equations

eαruh
f
0 (αr) = eαry

m22∑
i=0

h
f
i (αr)γ̃

(x,y)+
i (u) + eαrx γ̃

(x,y)−
0 (u).

Let γ̃ (x,y)+(u) = (γ̃
(x,y)+
1 (u), . . . , γ̃

(x,y)+
m22 (u)). Then

γ̃
(x,y)+
22 (u, z) = γ̃ (x,y)+(u)eT̃ +

22z t̃+
22.

Let

λ21ũ
(a,b)+
21 (x, y) dy = E[e−δẼ2I (Ẽ2 < τ̃−

a ∧ τ̃+
b , X+

2 (Ẽ2) ∈ dy) | X+
2 (0) = x].

Let W̃ be the scale function of −X+
2 . By Theorem 8.7 of Kyprianou (2006) (adapted to processes

with positive jumps),

ũ
(a,b)+
21 (x, y) = W̃

(δ+λ21)
2 (y − a)W̃

(δ+λ21)
2 (b − x)

W̃
(δ+λ21)
2 (b − a)

− W̃
(δ+λ21)
2 (y − x).
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For b1 < u < b2 and J (0) = 2, let

�1(u) =
∫ ∞

x=b1

∫ x∧b2

y=b1

D1(2, 1)ũ
(b1,b2)+
21 (u, y)g+

21(x − y) dy(x − b1) dx,

�2(u) = D0(2, 1)

∫ b2

x=b1

ũ
(b1,b2)+
21 (u, x)(x − b1) dx,

�3(u) =
∫ ∞

z=0
ν̃

(b1,b2)+
22 (u, z)z dz.

Let
�(u) = �1(u) + �2(u) + �3(u),

where �1 and �2 describe the expected discounted dividends before the process drops to b1
due to a transition to state 1 that occurs when the surplus is above b1, and �3 is the expected
discounted dividends when the process reaches b2 before b1 and before a transition to state 1.
Let

L(u) = λ21

∫ b2

y=b1

ũ
(b1,b2)+
21 (u, y) dy

be the expected discounted time to transition to state 1 before reaching b1 or b2. Define
ν+
ij (u, z, b1) similarly to ν+

i,j (u, z) in (5.1a). For 0 < u < b1, we define the following possible
dividend payments and exit times:

d+
1 (u) =

∫ ∞

z=0
g+

11(b1 − u + z)z dz,

d+
2 (u) =

∫ ∞

z=b2−b1

g+
12(b1 − u + z)(z − b2 + b1) dz,

d+
3 (u) =

∫ b2−b1

z=0
g+

12(b1 − u + z)�(b1 + z) dz, i = 1, 2,

d+
4,i (u) =

∫ ∞

z=0
ν+
i1(u, z, b1)z dz, i = 1, 2,

d+
5,i (u) =

∫ ∞

z=b2−b1

ν+
i2(u, z, b1)(z − b2 + b1) dz, i = 1, 2,

d+
6,i (u) =

∫ b2−b1

z=0
ν+
i2(u, z, b1)�(b1 + z) dz.

For 0 < u < b1, we now define the following discounted exit times:

χ2,i (u) =
∫ ∞

z=b2−b1

ν+
i,2(u, z, b1) dz, i = 1, 2,

χ3,i (u) =
∫ b2−b1

z=0
ν+
i,2(u, z, b1)ν̃

(b1,b2)+
22 (b1 + z, ·) dz,

χ4,i (u) =
∫ b2−b1

z=0
ν+
i,2(u, z, b1)L(b1 + z) dz, i = 1, 2,

χ5,i (u) =
∫ b2−b1

z=0
ν+
i,2(u, z, b1)ν̃

(b1,b2)−
22 (b1 + z) dz + ν+

i,2(u, 0, b1), i = 1, 2.
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For Rb(0) = b1 and J (0) = 1, we define the following dividends payed due to negative claims
(positive jumps), before hitting one of the barriers:

ϑ+
1 =

∫ b1

x=0
r
(b1)
1 (x)d+

1 (b1 − x) dx,

ϑ+
2 =

∫ b1

x=0
r
(b1)
1 (x)d+

2 (b1 − x) dx,

ϑ+
3 =

∫ b1

x=0
r
(b1)
1 (x)d+

3 (b1 − x) dx,

ϑ+
4,i =

∫ b1

x=0

∫ x

y=0
r
(b1)
1 (b1 − y)g+

1i (x − y) dyd+
4,i (x) dx, i = 1, 2,

ϑ+
5 =

∫ b1

x=0
r
(b1)
1 (b1 − x)d+

42(x) dx,

ϑ+
6,i =

∫ b1

x=0

∫ x

y=0
r
(b1)
1 (b1 − y)g+

1,i (x − y) dyd+
5i (x) dx, i = 1, 2,

ϑ+
7 =

∫ b1

x=0
r
(b1)
1 (b1 − x)d+

52(x) dx, i = 1, 2,

ϑ+
8,i =

∫ b1

x=0

∫ x

y=0
r
(b1)
1 (b1 − y)g+

1,i (x − y) dyd+
6i (x) dx, i = 1, 2,

ϑ+
9 =

∫ b1

x=0
r
(b1)
1 (b1 − x)d+

62(x) dx, i = 1, 2.

In Table 2 we consider all the cases corresponding to ϑ+
k , k = 1, . . . , 9, according to the state

transition or claim arrival at time E1, the surplus and state after that transition, and the surplus
and state after dividend payment.

Table 2.

Claim arrival State transition
After a claim After a dividend

Surplus State Surplus State

ϑ+
1 11 Above b1 1 b1 1

ϑ+
2 12 Above b2 2 b2 2

ϑ+
3 12 Between b1 and b2 2 b2 2

or b1 1
ϑ+

4 1i, i = 1, 2 Below b1 i b1 1
ϑ+

5 To 2 Below b1 2 b1 1
ϑ+

6 1i, i = 1, 2 Below b1 i b2 2
ϑ+

7 To 2 Below b1 2 b2 2

ϑ+
8 1i, i = 1, 2 Below b1 i

b2 2
or b1 1

ϑ+
9 To 2 Below b1 2 b2 2

or b1 1
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For Rb(0) = b1 and J (0) = 1, define the following expected discounted times to reach one
of the barriers after E1:

ρ1 =
∫ b1

x=0
r
(b1)
1 (x)(1 − G+

11(x)) dx,

ρ2 =
∫ b1

x=0
r
(b1)
1 (x)(1 − G+

12(x + b2 − b1)) dx,

ρ3 =
∫ b1

x=0
r
(b1)
1 (x)

∫ b2−b1

z=0
g+

12(x + z)L(b1 + z) dz dx,

ρ4 =
∫ b1

x=0
r
(b1)
1 (x)

∫ b2−b1

z=0
g+

12(x + z)ν̃
(b1,b2)+
22 (b1 + z, ·) dz dx,

ρ5 =
∫ b1

x=0
r
(b1)
1 (x)

∫ b2−b1

z=0
g+

12(x + z)ν̃
(b1,b2)−
22 (b1 + z) dz dx,

ρ6,i =
∫ b1

x=0

∫ x

y=0
r
(b1)
1 (b1 − y)g+

1i (x − y) dyν+
i1(x, ·, b1) dx, i = 1, 2,

ρ7 =
∫ b1

x=0
r
(b1)
1 (b1 − x)ν+

21(x, ·, b1) dx,

ρ8,i =
∫ b1

x=0

∫ x

y=0
r
b1)
1 (b1 − y)g+

1i (x − y) dy

∫ ∞

z=b2−b1

ν+
i2(x, z, b1) dz dx, i = 1, 2,

ρ9 =
∫ b1

x=0
r
(b1)
1 (b1 − x)

∫ ∞

z=b2−b1

ν+
22(x, z, b1) dz dx, i = 1, 2,

ρ10,i =
∫ b1

x=0

∫ x

y=0
r
(b1)
1 (b1 − y)g+

1i (x − y) dy

×
∫ b2−b1

z=0
ν+
i2(x, z, b1)L(b1 + z) dz dx, i = 1, 2,

ρ11 =
∫ b1

x=0
r
(b1)
1 (b1 − x)

∫ b2−b1

z=0
ν+

22(x, z, b1)L(b1 + z) dz dx,

ρ12,i =
∫ b1

x=0

∫ x

y=0
r
(b1)
1 (b1 − y)g+

1i (x − y) dy

×
∫ b2−b1

z=0
ν+
i2(x, z, b1)ν̃

(b1,b2)+
22 (b1 + z, ·) dz dx, i = 1, 2,

ρ13 =
∫ b1

x=0
r
(b1)
1 (b1 − x)

∫ b2−b1

z=0
ν+

22(x, z, b1)ν̃
(b1,b2)+
22 (b1 + z, ·) dz dx, i = 1, 2,

ρ14,i =
∫ b1

x=0

∫ x

y=0
r
(b1)
1 (b1 − y)g+

1i (x − y) dy

×
(∫ b2−b1

z=0
ν+
i2(x, z, b1)ν̃

(b1,b2)−
22 (b1 + z) dz + ν+

i2(x, 0, b1)

)
dx, i = 1, 2,

ρ15 =
∫ b1

x=0
r
(b1)
1 (b1 − x)

×
(∫ b2−b1

z=0
ν+

22(x, z, b1)ν̃
(b1,b2)−
22 (b1 + z) dz + ν+

22(x, 0, b1)

)
dx, i = 1, 2.
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Table 3.

Claim arrival State transition
After a claim Dividend

Surplus State Barrier State

ρ1 11 Above b1 1 b1 1
ρ2 12 Above b2 2 b2 2
ρ3 12 Between b1 and b2 2 b1 1
ρ4 12 Between b1 and b2 2 b2 2
ρ5 12 Between b1 and b2 2 b1 2
ρ6,i 1i, i = 1, 2 Below b1 i b1 1
ρ7 To 2 Below b1 2 b1 1
ρ8,i 1i, i = 1, 2 Below b1 i b2 2
ρ9 To 2 Below b1 2 b2 2

ρ10,i 1i, i = 1, 2 Below b1 i b1 1
ρ11 To 2 Below b1 2 b1 1
ρ12,i 1i, i = 1, 2 Below b1 i b2 2
ρ13 To 2 Below b1 2 b2 2
ρ14,i 1i, i = 1, 2 Below b1 i b1 2
ρ15 To 2 Below b1 2 b1 2

In Table 3 we consider all the cases corresponding to ρk, k = 1, . . . , 15, according to the
state transition or claim arrival at time E2, the surplus and state after that transition, the dividend
barrier reached, and the state when the dividend barrier is reached.

For Rb(0) = b1 and J (0) = 2, define the following expected discounted dividend payments:

υ1 =
∫ b1

x=0

∫ x

y=0
ũ

(0,b2)+
21 (b1, y)g+

21(x − y) dy(d+
4,1(x) + d+

5,1(x) + d+
6,1(x)) dx,

υ2 =
∫ b1

x=0
ũ

(0,b2)+
21 (b1, x)(d+

4,1(x) + d+
5,1(x) + d+

6,1(x)) dx,

υ3 =
∫ ∞

x=b1

∫ x∧b2

y=0
ũ

(0,b2)+
21 (b1, y)g+

21(x − y) dy(x − b1) dx,

υ4 =
∫ b2

x=b1

ũ
(0,b2)+
21 (b1, x)(x − b1) dx,

where υ1 and υ2 describe the discounted dividends when a state change occurs at E2 when
the reserve is below b1, and υ3 and υ4 describe the discounted dividends when a state change
occurs when the reserve is above b1.

Now consider the following discounted exit times:

C1 =
∫ b1

x=0

∫ x

y=0
ũ

(0,b2)+
21 (b1, y)g+

21(x − y) dyν+
1,1(x, ·, b1) dx,

C2 =
∫ b1

x=0
ũ

(0,b2)+
21 (b1, x)ν+

1,1(x, ·, b1) dx,

C3 =
∫ ∞

x=b1

∫ x∧b2

y=0
ũ

(0,b2)+
21 (b1, y)g+

21(x − y) dy dx,

C4 =
∫ b2

x=b1

ũ
(0,b2)+
21 (b1, x) dx,

https://doi.org/10.1239/aap/1370870126 Published online by Cambridge University Press

https://doi.org/10.1239/aap/1370870126


A Markov additive risk process with a dividend barrier 487

Table 4.

Surplus after transition to 1
Dividend

Barrier State

C1, C2 Below b1 b1 1
C3, C4 Above b1 b1 1
C5, C6 Below b1 b2 2
C7, C8 Below b1 b2 2
C9, C10 Below b1 b1 1
C11, C12 Below b1 b1 2

C5 =
∫ b1

x=0

∫ x

y=0
ũ

(0,b2)+
21 (b1, y)g+

21(x − y) dyχ2,1(x) dx,

C6 =
∫ b1

x=0
ũ

(0,b2)+
21 (b1, x) χ2,1(x) dx,

C7 =
∫ b1

x=0

∫ x

y=0
ũ

(0,b2)+
21 (b1, y)g+

21(x − y) dyχ3,1(x) dx,

C8 =
∫ b1

x=0
ũ

(0,b2)+
21 (b1, x)χ3,1(x) dx,

C9 =
∫ b1

x=0

∫ x

y=0
ũ

(0,b2)+
21 (b1, y)g+

21(x − y) dyχ4,1(x) dx,

C10 =
∫ b1

x=0
ũ

(0,b2)+
21 (b1, x)χ4,1(x) dx,

C11 =
∫ b1

x=0

∫ x

y=0
ũ

(0,b2)+
21 (b1, y)g+

21(x − y) dyχ5,1(x) dx,

C12 =
∫ b1

x=0
ũ

(0,b2)+
21 (b1, x)χ5,1(x) dx.

In Table 4 we summarize the process level after a transition to state 1, the dividend barrier
reached, and the state when the dividend barrier is reached.

Assume that Rb(0) = b2 and that J (0) = 2. In this case we consider the process until it
reaches one of the barriers bi , i = 1, 2. Define now the expected discounted dividends paid
until the process reaches one of the barriers:

�1 =
∫ b2−b1

x=0
r
(b2−b1)
2 (x)

∫ ∞

z=0
g+

22(x + z)z dz dx,

�2 =
∫ ∞

x=b1

∫ x∧b2

y=b1

r
(b2−b1)
2 (b2 − y)g+

21(x − y)(x − b1) dy dx,

�3 =
∫ b2

x=b1

r
(b2−b1)
2 (b2 − x)(x − b1) dx,

�4 =
∫ b2

x=b1

∫ x

y=b1

r
(b2−b1)
2 (b2 − y)g+

22(x − y)�(x) dy dx.
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Here �2 and �3 are the expected discounted dividends when at E2 there is a transition to state 1,
and �1 and �4 are the expected discounted dividends when at E2 there is a type-22 claim. Define
the following expected discounted times to reach one of the barriers after E2:

U1 =
∫ b2−b1

x=0
r
(b2−b1)
2 (x)(1 − G+

22(x)) dx,

U2 =
∫ b2−b1

x=0
r
(b2−b1)
2 (x) dx,

U3 =
∫ b2

x=b1

∫ x

y=b1

r
(b2−b1)
2 (b2 − y)g+

22(x − y)L(x) dy dx,

U4 =
∫ b2

x=b1

∫ x

y=b1

r
(b2−b1)
2 (b2 − y)g+

22(x − y)ν̃
(b1,b2)+
22 (x, ·) dy dx,

U5 =
∫ b2

x=b1

∫ x

y=b1

r
(b2−b1)
2 (b2 − y)g+

22(x − y)ν̃
(b1,b2)−
22 (x) dy dx.

Here U1 and U4 are related to the expected discounted time to reach level b2 when the modulated
state is 2, U2 and U3 are related to the expected discounted time to reach level b1 when the
modulated state is 1, while U5 is related to the expected discounted time to reach level b1 when
the modulated state is 2.

Let w
(b2−b1)
2 be the expected discounted dividends paid until E2 ∧ Tb2−b1,2. It is obtained

similarly to w2 in (3.3) or (3.4) with b2 − b1 replacing b. We are now able to derive linear
equations for V1(b1, b), V2(b1, b), and V2(b2, b).

Proposition 7.2. We have

V1(b1, b) = w
(b1)
1 + D1(1, 1)(ϑ+

1 + ϑ+
4,1 + ϑ+

6,1 + ϑ+
8,1)

+ D1(1, 2)(ϑ+
2 + ϑ+

3 + ϑ+
4,2 + ϑ+

6,2 + ϑ+
8,2)

+ D0(1, 2)(ϑ+
5 + ϑ+

7 + ϑ+
9 )

+ (D1(1, 1)(ρ1 + ρ6,1 + ρ10,1)

+ D1(1, 2)(ρ3 + ρ6,2 + ρ10,2) + D0(1, 2)(ρ7 + ρ11))V1(b1, b)

+ (D1(1, 2)(ρ5 + ρ14,2) + D0(1, 2)ρ15 + D1(1, 1)ρ14,2)V2(b1, b)

+ (D1(1, 1)(ρ8,1 + ρ12,1) + D1(1, 2)(ρ8,2 + ρ12,2 + ρ4 + ρ2)

+ D0(1, 2)(ρ9 + ρ13))V2(b2, b),

V2(b1, b) = D1(2, 1)(υ1 + υ3) + D0(2, 1)(υ2 + υ4)

+ (D1(2, 1)(C1 + C3 + C9) + D0(1, 2)(C2 + C4 + C10))V1(b1, b)

+ (D1(1, 2)(C5 + C7) + D0(1, 2)(C6 + C8))V2(b2, b)

+ (D1(1, 2)C11 + D0(1, 2)C12)V2(b1, b),

V2(b2, b) = w
(b2−b1)
2 + D1(2, 2)(�1 + �4) + D1(2, 1)�2 + D0(2, 1)�3

+ (D0(2, 1)U2 + D1(2, 2)U3)V1(b1, b)

+ D1(2, 2)U5V2(b1, b) + D1(2, 2)(U1 + U4)V2(b2, b).

The proof of the proposition straightforwardly follows from the definitions of the coefficients.
For 0 < u < b1, i = 1, 2,

Vi(u, b) = d+
4,i (u) + d+

5,i (u) + d+
6,i (u) + (ν+

i,1(u, ·, b1) + χ4,i (u))V1(b1, b)

+ (χ2,i + χ3,i )V2(b2, b) + χ5,i (u)V2(b1, b).

https://doi.org/10.1239/aap/1370870126 Published online by Cambridge University Press

https://doi.org/10.1239/aap/1370870126


A Markov additive risk process with a dividend barrier 489

For b1 < u < b2,

V2(u, b) = �(u) + L(u)V1(b1, b) + ν̃
(b1,b2)−
22 (u)V2(b1, b) + ν̃

(b1,b2)−
22 (u, ·)V2(b2, b).

Clearly, for u > bi ,
Vi(u, b) = u − bi + Vi(bi, b).

In the case of positive jumps the deficit at ruin is 0. For the expected discounted time to
ruin, we obtain similar equations, although easier since we do not consider overflows.
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