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Abstract

We study a risk process with dividend barrier b where the claims arrive according to

a Markovian additive process (MAP). For spectrally negative MAPs, we present linear

equations for the expected discounted dividends and the expected discounted penalty

function. We apply results for the first exit times of spectrally negative Lévy processes

and change-of-measure techniques. Explicitexpressions are given when there are positive

and negative claims, with phase-type distribution.
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1. Introduction

Risk models evolving in a Markovian environment have received considerable attention
in recent years. In these models the environmental state is a continuous-time Markov chain
(CTMC) with a finite state space. When the environment state is i, the process behaves as a
compound Poisson risk model, where the claim amount distribution, the premium rate, and the
claim arrival intensity depend on i. The process can be perturbed by a Brownian motion with
state-dependent volatility. In addition, a claim arrival can occur with a transition of the random
environment states. Such models are called Markov additive risk processes. In this paper we
study a Markov additive risk process with a dividend barrier, where all the surplus above a
given barrier is paid as dividends to the shareholders.

Ahn and Badescu (2007) considered a Markov additive risk process without the Brownian
motion component. They applied the fluid version of the model, and the matrix-analytic
approach for the first passage times. For the same model, Li and Lu (2007), (2008), and Lu and
Li (2009) derived integrodifferential equations for the moments of the discounted dividends and
the penalty function. Lu and Tsai (2007) considered a similar model with a Brownian motion
component and obtained an integrodifferential equation for the expected discounted penalty
function. More recently, Cheung and Landriault (2009) considered a model discussed in this
paper. They derived integrodifferential equations for the quantities of interest and solved them
using Laplace transforms. The Laplace transforms can be easily converted when the claim
amounts have rational transforms.

Our method is different. We consider a Markov additive risk process with phase-type claim
amount. We use the semiregenerative points in the process to obtain linear equations for the
expected discounted dividends and the expected discounted penalty function. Then we apply
the change of measure and the fluid version of the process to solve these equations explicitly.
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Our penalty function is less general than in Cheung and Landriault (2009) since it is only
a function of the time to ruin and the deficit at ruin, but not of the surplus before ruin as
in Cheung and Landriault. We obtain the expected discounted dividends while Cheung and
Landriault obtained higher moments of the discounted dividends. However, applying the
methods presented in this paper, we obtain some significant generalizations of the results of
Cheung and Landriault (2009). Cheung and Landriault assumed that at each environmental
state the risk process is perturbed by a Brownian motion, i.e. the volatility coefficient is positive
for all the environmental states, and the premium rate is positive for all states. Using the method
presented in this paper, we obtain results for risk processes with positive or negative premium
rate, and positive or zero volatility coefficient (depending on the random environment).

The main advantage of our method is that it can be applied to both negative and positive
claims. Positive claims are usually considered as losses or claim payments, while negative
claims (or positive jumps) are lump gains. Avanzi et al. (2007) and Avanzi and Gerber (2008)
studied risk models with negative claims only, referring to them as dual models, which are a
special case of ours. In recent years there has been a growing interest in models with two-sided
jumps. Recently, Cheung (2011) obtained differential equations for a very general risk model
with two-sided jumps.

Note that Cheung and Landriault’s results apply to general claim amount distributions, and
their results have a simple form when the claim amounts have rational transforms. Our results
are applicable to phase-type claim amounts. However, the phase-type distribution is dense in
the class of distributions of nonnegative random variables; thus, we can apply our results to
general distributions. It seems that Cheung and Landriault’s results are more applicable when
the premium rates and the volatility coefficients are positive for all states and there are only
negative jumps.

Cheung and Landriault (2009) also considered a Markov additive risk process, where the
barrier strategy depends on the environmental state, i.e. there are dividend payments at state i
only if the surplus is above b;. They obtained the moments of the discounted dividends for the
two-state case and described how to generalize it for an arbitrary number of states. We apply
our methods to analyzing the two-state case for positive claims (only) and for the dual model,
i.e. negative claims (only). We obtain linear equations for the expected discounted dividends
and the expected discounted penalty function. These equations are very easily solved—their
coefficients are the solutions of a system of linear equations.

The rest of the paper is organized as follows. In Section 2 we introduce some properties of
Lévy processes, and review basic properties of Markov additive processes (MAPs) that are used
later. In Section 3 we explain the general idea of our method, and how to obtain the expected
discounted dividends and the expected discounted time to ruin. In Section 4 we present explicit
results for positive claims with phase-type distribution. In Section 5 we extend the results to
the case where there are both positive and negative claims. We prove that the dividends paid
until ruin have phase-type distribution and find its parameters. A numerical example is given
in Section 6. Finally, in Section 7 we consider the state-dependent barrier strategy, where the
claims are either positive or negative.

2. Preliminaries

2.1. Lévy process

In this paper we consider only the Lévy risk process X (¢) which is the sum of two independent
processes. The first is a Brownian motion with drift and the second is a compound Poisson
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process:
N(1)

X(t)y=pt =Y Zj+0oB@). o > 0.
Jj=1
Here N(¢) is a Poisson process with rate A, and the Z; are independent, identically
distributed (i.i.d.) random variables with distribution G and moment generating function G (s) =
f fooo e** dG(x). Note that in the classical risk process the Z ; are nonnegative random variables,
i.e. positive claims. The Lévy exponent ¢(6) for this process is given by

0(©) = 1ogE[e’X V) = 0 + L0207 — (1 — G(=6)).

An important tool to analyze a Lévy risk process is the Wald martingale (see Asmussen
(2003, Remark 8.9, p. 104)). Let

L6, 1) = exp(0X(t) — p(O)1).

Let ¥; denote the natural filtration for X (¢), let 1 (A) denote the indicator of the event A, and
let P(A) denote the probability of event A. Define

P¢(A) = E[L(c, I (A)];
IP€ is a probability measure. Under P¢, X (¢) is a Lévy process with Lévy exponent

@c(0) = 9 + ) — p(c).

In our case,

292 . G(—=(6 +¢))
-(0) =0 20+ 2% 60— (1—A—>.
0e®) =0 +0%c) + — (—0) 5o

Thus, under the change of measure, X (¢) is the sum of a Brownian motion with drift u + co?,
and a compound Poisson process with arrival rate AG(—c) and jump distribution G, where

dG(x) = e_cjd—G(x).
G(—c)

For more details on the change of measure, we refer the reader to Chapter XIII.3 of Asmussen
(2003). A Lévy process without positive jumps is known as a spectrally negative Lévy process.
Let ®(g) be the largest root of the equation ¢ (6) = ¢, which exists (by convexity of ¢(6)) with
®(g) = 0. Let sz =inf{r > 0: X(¢r) > b}and 7, =inf{r > 0: X(t) < a}.

Definition 2.1. Let X () be a spectrally negative Lévy process. Forg > 0, there exists a unique

continuous function W@ : [0, co] — [0, oo], called the g-scale function, such that

o
/ e YWD (x)dx = 0> d(q).
0

90 —q’
Another function related to the g-scale function is the adjoint g-scale function Z(),

Definition 2.2. For g > 0,

X
ZWx) =1 +q/ W@ (s)ds.
0
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The importance of the functions W@ (x) and Z@ is due to the following proposition.

Proposition 2.1. Ler X (t) be a spectrally negative Lévy process. Then, for 0 < x < b and

q=0, @
ot L W@
Ex[e™% I(r) < 19)] = W@ b)’
) ZD (p)
0% (1t > 1) = Z@D (x) — W@
Ex[e™ I(z,” > 1)1 = Z"(x) = W (x) W@ p)’

The scale function of a Brownian motion with drift u and coefficient of variation o > 0 is
2
WD (x) = —— o g—ix/o sinh<12,/2qa2 + ,ﬂ). 2.1
V2qo? + u? o

The scale function for the case 0 = 0 is
1
WD (x) = —el*/H, (2.2)
"

For more details on the scale function and the first passage time of Lévy processes, see Chapter 8
of Kyprianou (2006) and the references therein. In the sequel we will also consider the reflected
Lévy process. Consider a spectrally negative Lévy process X (¢), X (0) = 0. Let

M(t) = sup(s < 1: X(s)),
and let
Y(t) = M(1) — X(1);
Y (¢) is the reflected process at its maximum. Let 7, = inf{¢: Y () > b} be the first time that
Y (¢) reaches b. The Laplace transform of T} is given by Proposition 2 of Pistorius (2004):
q(W@ (b))*
W@’ (b)

Denote by &, an independent, exponentially distributed random variable with parameter g.
Let§ > 0, and let

L1,(q) = Eole™4T0] = 2D (b) — (2.3)

qrqe(x)dx = ]E[e_’sg‘ll(&q < Tp, Y(&) € dx)]. 2.4)
Then, by Theorem 1 of Pistorius (2004),

G’ (y)

W
rg(y) = WAt p) 7 — WOy, y£0,

G+a) (b)
W@ (0)

— wat+o 2
@ =W p

(2.5)

Letx A y = min(x, y).
Theorem 2.1. It holds that
TynE, W(q+8) b
E/ e dM(r) = —()
0 W@t (b)

The proof of Theorem 2.1 for the case where the upper limit of the integral is 7}, is the same
as that of Theorem 1 of Avram et al. (2004), and uses excursion theory. The proof for the case
where the limit is as in the theorem is straightforward.
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2.2. Markov additive arrival process

A barrier free Markov additive risk process {R(¢), t > 0} is defined in terms of the
background CTMP J (¢) on a finite state space E with n states, and transition intensity matrix A.
When J(t) = i, the risk process behaves as a compound Poisson process perturbed by a
Brownian motion. Thus, claims arrive according to a Poisson process N;(t), at rate §;, and
are i.i.d. with distribution G;;, density function g;;, and moment generating function (MGF)
Gii(0) = E[e?Z]. Denote the premium rate by ¢;. The process might be perturbed by a
Brownian motion B(¢), with volatility coefficient o;. Thus, when J(¢) = i, the risk process
behaves as a Lévy process with Lévy exponent

@i (@) = log E[e"® V] = ¢;a + Lo — Bi(1 — Gii (—a)).

Note that, when o; = 0, the process increases or decreases linearly between jumps.

Additional claim arrivals might occur upon transition of J (¢) from i to j: with probability p;;,
a claim arrival occurs upon transition from state i to state j. This claim has distribution G;;,
density function g;;, and MGF Gij ) = ffooo efx Gij(dx), i # j. Inthe classical risk process
the claims are positive; thus, only negative jumps are considered. Later in the paper we consider
both positive and negative jumps. We decompose the transition rate matrix A as

A = Dy + Dy,

where Dy is the transition rate matrix without arrivals and D is the transition rate matrix with
claim arrivals:

Di(, j) = AG, j)pij, T # ], Di(i,i) = Bi.
Note that o; can be also 0. As in Breuer (2008), (2010), we exclude the case in which ¢; =

o; = 0. In our model ¢; can be either positive or negative. As in Breuer (2008), (2010), we
decompose the state space E as E = E, U E, U E;, where

E,={i€ekE, ¢ >0,0 =0}
E,={i€eE, ¢ <0, g, =0},
E;, ={i € E, 0; > 0}

Let |A| be the number of elements in a finite set A, and let n, = |E,|,n, = |E,|, and
neg = |€a|- R

Let D(«) be amatrix with (7, j)thelement, i # j, equal to A;; p;j(G;j(—a) — 1) and (i, i)th
element equal to 0. Define the cumulant generating function matrix of R(#) as

K(a) = A + diag(g1(@), . . ., gn(@)) + D(@).

Proposition 2.2 of Asmussen (2003, Chapter XI) states that E[e*®®; J(r) = j | J(0) = i]
is the (i, j)th element of the matrix eX(®?. The matrix K () has a real eigenvalue « (o) with
maximal real part. Let the column vector k(x) be its right eigenvector. Its components may
be chosen to be positive. When o = 0, the components of £(0) are equal and can be chosen to
be 1. The eigenvalue « («) is convex in . The derivative of k («) at 0 determines the asymptotic
behavior of R(¢) at co. Denote by ®(g) the right inverse of « («):

®(q) = supf{a > 0: k(@) =q}.
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The properties of « imply that ®(g) > 0forg > 0. We have ®(0) > 0if and only if «/(0) < 0;
otherwise, ®(0) = 0. For more details, see Chapter XI of Asmussen (2003). In the sequel we
will apply the Wald martingale for the process R(¢).

2.2.1. Wald martingale and change of measure.

Proposition 2.2. (Asmussen (2003, Chapter X1).) It holds that
L(t) — eC(R([)—K(Ot)ZhJ(t) ((X)
is a martingale.

Let ¥ be the natural filtration, and let P be the probability measure defined by the MAP R(¢).
Let A € ¥;. Define the probability measure by P*(A) = E[L(¢)I(A)]. By Theorem 8.2
of Asmussen (2003, Chapter XIII), the probability P“ defines a MAP with the following
parameters. The transition rate matrix A% is given by

A% = h(a)K(a)Ah(a) —Kk(a)l,

where Aj () is a diagonal matrix with /; (o) on the diagonal, and I is an n x n identity matrix.
The (i, j)th element of A% is

hj()
hi(cr)

The probability for a claim triggered by a transition from i to j is

ASGL ) =

+plj(Gl/( a) — D], i #

Pijéij(_a)
1+ pij(Gij(—a) — 1)

a
Pij =

The distribution of the claim arriving at state i or upon transition from state i to j is

e Y G;;(d
G?j (dx) = +m
Gij(—a)
The drift parameteris ¢’ = ¢; + o; 2, while 0® = ;. The claim arrival intensity when J (1) = i

is B = Bi Gii(—a). Note that K"‘(G) Ay K@+ 0)Ap@e) —x(@)].
Throughout the paper, we denote by E; , and IP; , the conditional expectation and probability
given that R,(0) = u and J(0) = i.

2.2.2. Exit times for MAPs. Let rb+ =inf{t > 0: R(¢) > b} and 7, =inf{r > 0: R(?) < a}.
Similarly to Proposition 2.1 for spectrally negative Lévy processes, Kyprianou and Palmowski
(2008) proved the following theorem for the spectrally negative MAP. We cite only the parts of
this theorem relevant to our paper.

Theorem 2.2. Foreach g > 0, there exist n X n matrix functions WD () and ZD () such that
the following statements hold (for convenience, we will write W(© = W),

(i) Forx < b, the (i, j)th element of
WD x)yw @ p)~! (2.6)

Eile 0% I(1) < 19): (1} = j)l.

https://doi.org/10.1239/aap/1370870126 Published online by Cambridge University Press


https://doi.org/10.1239/aap/1370870126

A Markov additive risk process with a dividend barrier 457

(1) The (i, j)th element of
Z(Q)(x) _ W(q)(x)W(q)(b)_ll(q)(b) 2.7)

Ei le 9 I(zy <7,);J(rg = )]

3. The general spectrally negative Markov additive risk process

3.1. The expected discounted dividends

In this section we consider a Markov additive risk process R(¢) with only negative jumps
(positive claims) and a dividend barrier b. Denote by Ry () = R(t) — D(t), where D(t) is the
amount of dividends paid until time ¢. Let V; (u, b) be the expected discounted dividends paid
until ruin when the initial modulating state is i, the initial reserve is u, u < b, and the discount
factor is 4:

+ —_ .
Vi(u, b) = Z]E,-,u[e—“b LT <1y, J() = DIV, b). (3.1
jeE

Given that J(0) = i, let & be the time until a claim arrival or change of the modulating state.
Here &; is an exponentially distributed random variable with parameter n; = B; — A(, i),
and is independent of the risk process. Given that R,(0) = b, then up to time &; the process
b — Ry (t) behaves as a process Y;, which is the reflection at the maximum of the Lévy process
Xi(t) = cit + 0; B(t). Let T}, ; be the time until the reflected process Y; reaches the level b.
The Laplace transform of 7} ; follows by substituting the scale function of X; in (2.3). We
calculate V; (b, b) in two steps.

1. Calculate w;, the expected discounted dividends up to time & A Tp ;.
2. Calculate the expected discounted dividends from time &; A Tp ; until ruin.

Let r;(x) = ry, (x) be as defined in (2.4) and (2.5) with g replaced by 5;, and where the scale
function in (2.5) is the scale function for X;(¢), given by (2.1) or (2.2).

Proposition 3.1. Ler V;(b, b) be the expected discounted dividends given that J(0) = i and
Ry (0) = b. Then, fori =1,...,n,

Vih, b) = w
n n b X
F 0ok [ [ ne- G

j=1 k=1 0 Jo

x Erpile ™, 1 <15, J(5;0) = j1dxV;(b, b)
m b
+ — .

+ 200600 [ Bl 5 < T = 14V b, ),

j=1 ki
(3.2)

The proof is straightforward from the definition of r; and the fact that the process is
semiregenerative: semiregenerative points are when the process reaches b. Note that

() Eipx[e™® t,n <1y, J(z)) = jlis the (i, j)th element of W® (b — x)W® (p)~!
given in Theorem 2.2,
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(i1) wj; is the expected discounted dividends up to time &; A T}, ;, given that R, (0) = b. Let
M;(t) = sup (c;s + o;B(s)).

0<s<t

Following Avram et al. (2004), and applying Theorem 2.1 and (2.1), we obtain, for

o; >0,
EinTh.i W i) (p) —¢i  a b -1
i = E eramy = V0 _‘+_lcoth<_)) (33
i /() l( ) W(WH“S) (b) < o_i2 01'2 Uizai ( )
where

a; = \/ci + 20?()»,' + Bi +6).
For 0; = 0 and ¢; > 0, we obtain
j— Ci
S+
The main difficulty lies in deriving W@ (x)W@ (b)~!. In the next section we will show
how to obtain an explicit solution when the claim amount is phase type.

34)

wj

3.2. The expected discounted time to ruin

Let 75 be the time to ruin, i.e. the first time that R, (¢) drops below 0, and let &, be the
deficit at ruin. Let f be a function called the penalty function, and let w; (u#, b) be its expected
discounted value:

w;(u, b) = Eiule™ f (€)1, 3.3)
In this subsection we present similar equations to (3.2) for the Laplace transform of the time to
ruin, i.e. for w; (u, b) for the special case where f(-) = 1. Thus, our goal in this section is to

obtain
w;i(, b) = By ;[e 7).

For0O <u < b,
_ N B _
wi(u,b) =F;y[e70, 15 < 1714+ Y Eiule™™, 1) <15, J(1;)) = jlw;b, b).
JjeE

We can form a system of linear equations for w; (b, b):

n b
i (b, b) =E[e ™ 1(Ty; < &)1+ Y Di(i, k) / ri(@)(1 = Gig(b — x)) dx (3.6)
k=1 0
>yoan [ [
+2oi [ [ ne-»Guta
j=1k=1 0 Jo (3.7)
x By p_x[e %0, T, < rb+, J(ty) = jldx

n n b B
+ ZZDO(i’k)/O ri(x)IEk,b_x[e_‘STO , Ty < r;, J(ry) = jldx 3.8)

j=1k=1

n n b X
+3°% Db /0 /O i = MGi(dy)

j=1k=1 (3.9)

x Brp—ile ™ | 1 <15, J (1)) = jldxw; (b, b)
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+Y ) Dol k)

J=lk#i (3.10)
b
x/o ri(x)Ek,h_x[e*‘W, T <1y, J(r)) = jldxw;(b, b).

The first term in (3.6) is the expected time to ruin occurring by diffusion before &;. The
second term in (3.6) describes the expected discounted time to ruin, when ruin occurs at time &;
due to a claim arrival with a state transition. The terms in (3.7) and (3.8) are the expected
discounted times to ruin when ruin occurs after & and before reaching b. The terms in (3.9)
and (3.10) describe the expected discounted ruin times, where ruin occurs after &; and after the
surplus reaches b. Note that E; [e~%0 ‘L’_p_ < r;, J(ry ) = jlis the (k, j)th element of
the matrix in (2.7) atb — x, while B¢ ,_,[e % , 7,7 < 7,7, J(t;}) = jlis the (k, j)th element
of the matrix in (2.6).

In the next section we assume that the claim amounts are phase type, allowing us to obtain

explicit w; (u, b).

4. Spectrally negative risk process with phase-type claim amount

In this section we assume that the claim size distributions G;; are phase type with
representation (7;;, T;;). Thus, G;; is the distribution of the time until absorption of a CTMC
with m;; transient states and one absorbing state. Let T;; be its intensity transition matrix
among the transient states, let 7r;; be the vector of the initial probabilities, and let ¢;; = —T;;1
be the intensity rate vector to absorption from each state, where 1 is a column vector of 1s with
the appropriate dimension. We have

1-— Gij(x) = Tij exp(T,-jx)l, x> 0.

The density function is g;; (x) = m;; exp(T;;x)t;;.

To derive (3.2) for the expected discounted dividends, and (3.7)—(3.8) for the expected
discounted penalty function, we need to find expressions for the expected discounted time to
reach the level b before ruin, and the expected discounted time to reach 0 before b. Let

+ —_ .
v,ij(x) =Ep,[e %%, T <1y, J(Th) = jl. 4.1)

Let ®(5) > 0 be a number such that the eigenvalue with the maximal real part of K (®(8)) is 6,
and let 2(®(8)) be the right eigenvector for k (P («)). Applying the change-of-measure formula
given in Equation (17) of Kyprianou and Palmowski (2008) or Asmussen (2003, p. 377), we
obtain

_stT — .
V/ij(x) = Er.x[e 87, s le_ <T, J(T;_) =Jl

1
= h (@ENPL Y (7 <7, J(5)) = )—rree PO00 (42)
k k, b 0 b h i (®(8))

Thus, the problem is reduced to finding the probability of hitting b before 0 under the
measure P®®)_ Under the measure P®©®) | the process R(r) is a MAP. We denote its parameters
with atilde. Asmussen (2003, Chapter XIII.8) obtained the following parameters for the process
under P®®,

(P1) Premium rate ¢; = ¢; + dD((S)oiz.

(P2) The volatility, 57 = o?.
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(P3) The claim arrival rate when J (1) = i is fi = B: Gii (—®(9)).
(P4) The transition rates

oo hi(®E) . A
A, j) = m/\(l, DI+ pij(Gij(=2(8)) — D].

(P5) The probability of claim at transition from state i to state j,
i = pijéij(_q>(5))
iy — N .
I+ pij(Gij(—=P(©) — 1)

(P6) The claim distribution at transition from state i to j,

effb(é)x

Gij(dx) = =—G;;(dx).
g Gij(—®©)
(P7) K(@) = K(®(8) + o) Apasy — 1.

Let

h(q>(5))

kij(0) = (=61 — T;)) "'y,
and let Ag;; () be a diagonal matrix with the components of k;;(¢) on the diagonal. We will
need the following result obtained by Asmussen (1989).

Lemma 4.1. The claim distribution G,- ; is phase type with representation (7;;, f‘l i), where

1
T = Ay o) Tii Ay —oe) — PO, (4.32)
#ij = Mij Ay q><s>>/é(—<l>(8)), (4.3b)
z 1
lij = Akl]( q>(5)) (4.3¢)

To obtain v+(x) in (4.2), we need to derive y;L(x) cI)(5)(1:17 <71, J(rlj') = j). To find
yl+ (x), we con51der the fluid model of the process R(¢), under the measure P®®  1n the fluid
model a downwards jump of size v is replaced by a linear line with slope —1 for v time units.
Thus, when in state i € E, the process evolves as a Brownian motion with drift ¢;, or linearly
with slope ¢;, and in states (i, /) linearly with slope —1. We augment the state space E of J
by E_ ={(ij, k), i,j € E, k=1,...,m;;}, where (ik, j) denotes the ikth claim at phase j.

The fluid model behaves as a MAP without jumps, and state space £ U E_ =
E,UE,UE;UE_. The transition rate matrix Q for the fluid model under the measure P®®
is

A(l ])(l_pl]) l#]? iajeEy
A(z i) — ,Bl, i=j, i€k,
o Bittii k), i€k, j=(>ik),
Q(17 J) - Y s ~ ~ . . .
AG, B)pumic), i,keE, j=(k,]I),
Ty (1, 1), i=(st,r), j=(st, 1),
ts (1), i=(st,]), j=t.

Let (RS (1), J/ (1)) be the MAP that describes the risk fluid model, where R/ is the fluid
level and J/ is the modulated state. Then

E*O e’ O jl¢)=j | RF0)=0, 7/ (0)=i], i jeEUE_,
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F(a)t

is the (f, f)th element of e , Where

F(a) = Q + diag(p1 (@), ..., ¢p(a), —a, ..., —a)

and ¢; (@) = ¢ja + 0] 202 /2 is the cumulant matrix for the fluid model. Let 7, +/ and Ty ~/ be the
hitting times for the ﬂu1d model at levels b and 0, respectively, i.e. rlf t = = min{t: R/ (1) = b}
and rof =min{z: RY(t) = 0}. It is not difficult to see that the probability that R hits b
before it hits 0 is the same as the probability of the same event for the original process (under
the measure P®©®):

PP <ol u@ty = =Pt 0@t < I = ).

Consider now the fluid model under the probability measure P®® Fori, j € E, let yl Ny, (x)
be the probability of hitting b before hlttmg 0 with J/ (rb H= Jlety, (x) be the probablhty
of hitting 0 before hitting b with J- ; (‘L'O ")=j € E, and let Yikj i, l)(x) be the probability of
hitting 0 before hitting b with J/ (g )=(kj,D,k,j€eE. Thus,

vl =P*OU ) =, 1 <t | RyO)=x, JO)=k), kj€E,
v, @ =P ) =) g <7 | RO =x, JO)=k), kj€E,
Veiijy @ =P*OU () = @,D, 7y <7 | RO =x, JO)=h), ik, jeE.
To find the above probabilities, we apply the multidimensional Wald martingale as follows.

Let |F ()| be the determinant of F(«). Here |F(a)| is a polynomial of degree N = n), +
My +2ng + 31y D mij. Assume that the equation |F ()| = 0 has N different roots

ap, ...,ay. Clearly, one of the roots, say a1, is 0. The eigenvalue of F(¢;) is 0, i.e. x (o;) = 0.
Let the ' (a;) be the corresponding right eigenvectors. We can choose h' (o)) = h(0) to be
equal to 1.

By Proposition 2.2, the process {e“k(R (t)hf (ak)} is a martingale. Let R (0) =
0<x<b, ande(O)—k

Applying the optional sampling theorem for this martingale and for the stopping time
min{z, ’, 7, ° }, we obtain, for k € E,

el )=t N yEmnlen+ Y vl @)
JEESUE), JjEE;UE,

n mji

+ Z Z Z yk (jl,0) (x)h (i, o)(ar) (4'4)

j=11=1 o=1

Remark 4.1. Note that yk_(j 1.0) (x) is the probability under P®®) that, given R(0) = ux,
J (0) = k, ruin occurs before reaching the dividend barrier by a jl/th claim at phase 0. Similarly,
yk; (x) is the probability of ruin by diffusion before reaching the dividend barrier.

Define

b
Aik,j =/ ri(x)v,jj(b — x)dx, i #k,
Ob X (45)
Acikj = /o / ri(¥)gik(x — y)dyv,ij(b — x)dx, i #k.

Assume that R(0) = b and J(0) = i. The quantities A; x ; and Ac; , ; are the discounted times
to reach level b when the modulated state is j, before ruin and after &;, when the transition at
&; is respectively without or with a claim arrival.
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4.1. The expected discounted dividends
The V; (b, b) satisfy

Vi(b, b) = w; +Z<2Ac,k D1, k)+ZA,k/D0(z k))v,(b b). (4.6)

Jj=1 k#i
By (3.1), foru < b,
Vi@, b) = ) v Vi, b).
jeE
4.2. The expected discounted penalty function
Equation (3.5) can be written as
o, b) =Y B e f(&), 19 <7, J(rg) = ]
JjeEE
+ Y Eiule ™ 5 <15, J(@)) = jlwj (b, b). @.7)
JjeE
Applying the change-of-measure formula, we obtain
v @, 0) = [e7’, & =0, 55 <7, J(r5) = j]
1
= hi(D(8))y;, () ———e®®n, 4.8
(@O W e @.8)
where yl._j (u) is given by solving (4.4). Let

v, 2)dz =B e, &5 edz, 15 <7, J(r5) = j]

1
= n@OPPD (& e dz 1y <1, J(5y) = ) e® DI (49)
" 0 0 =T = @)

Note that the deficit at ruin can be positive if and only if ruin is caused by a claim arrival in some
state k or with a state transition from state k to j. Let y; ; (u) be arow vector of dimension m;,
with yl,kj (u) = (yz,(k],l)(u)’ R l’(k]’mk )(u)) where the Vi j 1)(”) are obtained by solving
(4.4). Under the measure P®® the deficit at ruin is phase type, specifically,
@(5)(&_0 edz, vy <7, J(ry)=j) = Z Yik ) exp(Ty;j2) i dz.
keE
Applying (4.9) yields

_ _ = bd 1 u+z
v, 2) = hi(D(3)) (1;; Vi ) exp(Tka)tkj> We‘l’“)( +2), (4.10)

By (4.8) and (4.10), we find that the expected discounted penalty function when the initial
reserve is u, J(0) = i, and ruin occurs before reaching b is given by

wo,i(u,b) =Y Biu[e™™ f(&), 15 <75, J(xg) =]

JjeE
=Y v O)f(0)+Z/ w2 () dz. @.11)
JjeE JjeE
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Consider now w; (b, b), the expected discounted penalty function when the initial reserve is
b and the initial modulating state is i. First consider the case where min(&;, 7p;) = Tp,;. In
this case ruin occurs by diffusion, and the expected discounted penalty function is given by

wyi(b) = f(O)/0 dFr, (1) exp(—=(n;i + 8)t) = f(0)Lr,,; (i + 6), (4.12)

where L7, ; (0) is obtained by substituting (2.1) or (2.2) into (2.3).
We now present the system of linear equations for w; (b, b).

Proposition 4.1. We have

b o0
oitb )=o)+ D100 [ [ WG -xtaf@dd @)
x=0Jz=0

keE

b X
+ Z Dy (i, k)/ 0/ . ri(¥)gix(x — y) dywo x (b — x, b) dx (4.14)
= y=

keE

b
+ Y Do(i,k)/ ri()wo k(b — x, b) dx (4.15)
keE ki x=0

+ ) Dl k) Acik jw;(b, b) (4.16)

JEE keE

+ 3> Doli k) Ai g jwj(b. b). (4.17)

jeE keE

Proof. The term w; ;(b) is the discounted penalty function when ruin occurs due to a
diffusion when 7, ; < &;. Assume that & < Tj ;. The second term in (4.13) is the discounted
penalty function when ruin occurs at time &; due to a claim arrival. The terms in (4.14) and
(4.15) describe the expected penalty functions when ruin occurs after time &;, before the surplus
reaches level b, where the state transition at §; occurs with or without a claim arrival. The terms
in (4.16) and (4.17) are the discounted penalty functions when the level b is reached before ruin
after &;, where the state transition at &; occurs with or without a claim arrival.

For f(z) = 1, we obtain the Laplace transform of the time to ruin. For f(z) = e "%, we
obtain the joint Laplace transform of the time to ruin and the deficit at ruin.

5. Markov additive risk process with positive and negative claims

In this section we extend the results to a Markov additive risk process with positive and nega-
tive claims, i.e. negative and positive jumps. When J () = i, positive claims arrive according to
a Poisson process atrate §;”, and negative claims (upward jumps) arrive according to a Poisson
process at rate ﬂfr . The distribution of the positive claim is G;; and its density is g;;. The
distribution of the negative claim is G:lf and its density g;r A transition of the modulated state
from i to j is accompanied by a positive claim with probability p;- i claim distribution G and
density g;.. A transition of the modulated state from i to j is accompanied by a negative claim
with probability p;';, claim distribution G 7, and density g;. With probability 1 — p;*; — p; .
there is no arrival upon a state transition. Denote by Dy the transition rate matrix without
arrivals; thus, Do(i, i) = A(i, i) — /3;” — B, and Do(i, j) = AG, jH(1 — p;”/ —pi )i F
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Similarly, let D" (i, j) = AG, j)p;;, i # j,and Di(i, i) = B;". Tn this case, for i # j, the
(i, j)th element of D(a) is Aij p(Gfi(@) — 1)+ Aijp; (G (—a) — 1.

The distribution functions Gl?; are phase type with representation (ni}—%, T;), with mlj]E states,
where tl.ﬂ/.E is the transition rate vector to the absorbing state. Denote the phases of the positive
claims (downward jumps) by [~, and the phases of the negative claims (upward jumps) by [ ™.
Note that, when a positive jumps crosses the dividend barrier b, all the overflow above b is paid
as dividends. The (i, j)th element of e/ K@ is E; o[e*R® J(¢) = j], where

K(a) = A + diag(g1(@), - . ., gn(@)) + D(@)

and

i (@) = cia + sofa? + (BT (G (@) — D) + B (G}, (—a) — 1)).

Let ®(5) and « (o) be as described in Section 2.2. Under the probability measure pe®,
the process behaves as a MAP with parameters (P1)—(P7). Let k:} ©0) = (—61I — Ti}')_lt;
and kl.; @) =(©OI — Ti;)’ltl.;. Let Ay g5 be a diagonal matrix with the components of

ij

kl.j;(@(S)) on the diagonal. The distribution functions G?; are phase type with representation
+
i’
Let & ,:r be the overflow above b when the surplus hits the level b. We have ég’ > 0if R(¢)
hits b by a negative claim, and "§b+ = 0if R(¢) hits b by diffusion. Similarly, let&, be the deficit
atruin. We have &, > 0 if ruin occurs due to a positive claim, and &, = 0 if ruin occurs due to
a diffusion. To obtain the expected discounted dividends and the expected discounted penalty
function, we need the following expectations:

(T Tj) as described in Lemma 4.1.

v, ) dz =B [e W 15 < 1), & e dz, J(@) = I,
o, 0) = Erale ™ 1 (@ < 19). &7 =0. () = j.
v .2 dz = Eiule ™0 I(zy < 5, & edz, J(55) = j].
v @, 0) =B [e7’0 I(zy < 7)), & =0, J(r5) = j].

Applying the change-of-measure formula as in (4.2), we obtain

v, 2) dz = hi(@O)PLD (7 < 17, J(5)) = j. & € dz)

X (hj(¢(8)))_le_¢(5)(b—u+z)’ (5.1a)
v, 0) = ki (@ENPEY (o) < 15, J(5)) = j. & =0)
x (hj(®(8))) e @O0 (5.1b)
v (u, 7)dz = hi(@@)PYO (7 < 7f J(tg) = j. & €d2)
x (hj(®(8))) 'e®® W), (5.1¢)
v, 0) = hi(®(5))[@?’£8)(f(; <t J@y) =j, & =0)
x (hj(®(8))) e ®®, (5.1d)
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Thus, to obtain (5.1), we need to derive

v, 2 dz =PE0 (o) <15, J(g)) =), & e da), (5.22)
v, 0) =P () <15, I =j. & =0), (5.2b)
Yy (u,z)dz = <1>(5>(ro <l J@y) =, & €da), (5.2¢)
v w0 =P (g < of, T = j, & =0). (5.2d)

To derive the terms in (5.2), we consider the fluid version of the model under P®©® . In this
model negative jumps are replaced by a line with slope —1 and positive jumps with a line
with slope 1. The fluid model is a MAP without jumps with state space E U E_ U E, where
Ex = {(ij,1%), i, j, € E}. Let Q be its transition rate matrix under P®, defined by

AG, H(A = pl = ﬁ,}), i#j. i, j€eE,
AG,i)— B - B i=j i€k,
Brat k"), i€ E,j=(ik"),
B 7 (k) i€E, j=(ik),

06, j) = AG, k) phata™, i,k € E, j = (ik,I"),
AG, k) prg A7), i,k € E, j=(ik, 1),
Tt 1), i=(st,rt), j =(st,I1),
T, 07, 1), i=(st,r7), j=(st,17),
i, (), i=(st,Ih), j=t,
1.7, i=(st,17), j=t.

Let F (o) = Q +diag(ci + %01201 , s+ 5 02a2 o, ,o, —a, ..., —a). Note that

we enumerate first the states in £, then the states of the negative clalms (positive jumps), and then
the states corresponding to the positive claims (negative jumps). Given that R(0) = R/ (0) = u
and J(0) = J/(0) = i, then, under IP"D(‘S) Vi J(u) = yl (u, 0) is the probability that R/ hits b
before ruin at state j by diffusion, and y *j1%) (u) is the probability that the fluid process hits b
before ruin by a negative claim arriving W1th state transition from state k to state j at phase [ .

Similarly, y; i )=y j :(u, 0) is the probability that the fluid process hits 0 before reaching
b, and Vi,_(kj, l,)(u) is the probability that the process hits 0 before b by a claim arriving with
transition from state k to j at phase [~. Note that the hitting probabilities of the fluid process
are the same as for the original process (under P®®). Assume that the equation |F(a)| =0
has N = n,+n,+2ne +Y 0 S5 (m}k +m;) roots, a1, ..., an. Let b/ (a;) be the right
eigenvector corresponding to the 0 eigenvalue of F (a,) Applylng the multidimensional Wald
martingale we obtain the following equations for Yi, (u 0) and y ki) (u):

exp(eru)hi () = Y vt (u, 0) expleb)h (o)
JjeE
m;
+2.0.0 Vifr(kj,ﬁ)(”)eXp(“’b)hkflcj,l+)(ar)
keE jeE |+=1
my;
+ Y v @O @)+ DS v @h @), (53)

j€E keE jeE [-=1
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Fori, j € E, let the yﬁ y (u) be row vectors, where
+ — (7t +
y[’kj (u) - (yi’(kj’]+)(u)7 ] yt,(kj,m]:})(u)),

Vi (0 = ) oy 0 ¥~ ().

1,(kj,m,:j)

Given that R(0) = u and J(0) = i, then, under P®® the distribution functions of the
overflow above b when hitting the level b before ruin, and the distribution function of the deficit
at ruin when ruin occurs before hitting b, are phase type with the following density functions:
forz > 0,

700 = )yl ee@aih. v =) v, e
keE keE

By applying (5.1) we obtain
V,Tj (u,7) = hi@@)))fﬁ}(u, Z)(h;CD(lS)))flef@(rS)(bfquZ)7
v, 0) = hi(@@)y;! w, 0)(hj (@) '™ *@C=),
v, 2) = hi(@(8)y, , ) (hj((8))) '@,
v, 0) = hi(@@)y;; (, 0)(hj(@(8) e,
Finally, for i, j € E, let

o0
+ — .
v, ) =Eiule™, o) <15, J(3) = jl= l)fj(lt,O)Jr/O v, 2)dz,

o0

v () = [e %%, <t J(Ty) =jl= V,fj(u,O)Jr/O v; ;(u, z)dz.

5.1. The expected discounted dividends

Assume that R,(0) = u and J(0) = i. Let the vy ;(u, b) be the expected discounted
dividends received when the dividend barrier is reached by a negative claim before ruin:

o0
v1i(u, b) = Zf v}t (u, 2) dz.
- JO
J

Thus, for0 < u < b,

Vi(u, by = vii(u, b) + Y v, ) Vb, b).
JjeE

Similarly to (4.5), let

b

Aic]; =/O ri(0)(1 = G (x)) dx,
b

Ak :/ ri(x)v,jj(b—x,-)dx, i #k,
0
b px

Ay =f0 f )80 = D A0 =

y=

b b
Acf?k,j 2/0 f ri(gH —x)dyv,ij(b —x,)dx.
y=x
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The quantity AlC 1s the expected discounted time to reach level b when the modulated state
is j at time &; due to a negative claim arrival. The quantities A; y ;, Az,k,]’ and Al’ k.
respectively the expected discounted time to reach b before ruin at state j (when at time 8,~,
there was a state transition from i to k without a claim), a transition from i to k with a positive
claim, and a transition with a negative claim.

Proposition 5.1. The expected discounted dividends V;(b, b), i = 1, ..., n, satisfy

Vi(b,b) =w; + Y _ D{ G, k)/ r,(y)/ 28 (v +2)dzdy (5.4)
keE
+3 DG, k)/ / =Yg =) d b 69
keE y=
b
+Y Dy, k)/ / ri(b — y)gi(y — ) dyvi i (x, bydx  (5.6)
keE =X
+ > Do, k)/ ri(b — x)vyx(x) dx (5.7)
keE, ki
+ Y DG, pAicl Vb, b) (5.8)
j
+> > Dfd. kYAl Vb, b) (5.9)
jEE keE
+ ) Dy kA, Vb, b) (5.10)
JjEE keE
+Y Y Dol k)Aik Vb, b). (5.11)
JEE keE k#i

Proof. The term w; is the expected discounted dividend up to time T, A &;, given by (3.3)
or (3.4). The second expression in (5.4) is the expected discounted dividend paid at &; due to a
negative claim. The terms in (5.5)—(5.7) are the expected discounted dividends paid, when the
surplus reaches b due to a positive jump (negative claim) before ruin, after state transition at
&; with or without a claim. Similarly, (5.8)—(5.11) describe the expected discounted dividends
paid after &;, when the process reaches b either at time &; or after time &;, where at this time
there was either a negative claim, a positive claim, or a state transition without a claim.

5.2. The distribution of the dividends for § = 0

In this subsection we assume that § = 0, and we will show that the amount of dividends
until ruin has a phase-type distribution. In this case y; i * (u) and y k) (u) obtained in (5.3)
are the probabilities (under the original measure) that the surplus in the ﬂuld model and, hence,
the original surplus process hit the level b by diffusion when the modulating state is j or by a
kjth negative claim at phase /™.

Proposition 5.2. Assume that R,(0) = b and J(0) = i. Then the amount of dividends paid
until Ty, ; N &; is exponentially distributed with mean

1 Wi (p)
pi o WO'(b)'
where n; = —Dy(i, 1) + Dfr(i, i)+ Dy (0, Q).

(5.12)
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Proof. Let Ry(0) = b and J(0) =i. Let D(¢) be the amount of dividends paid up to time ¢,
andlet D~ (x) = inf{r: D(t) > x}; D(t) is the local time at O of the process b — R, and D!
is the inverse local time.

The process D! has independent stationary increments, i.e. D 'x+y) — D '(x) is
independent of D~'(x) and distributed as D~ (y) (see Bertoin (1996, p. 114)). Applying the
Markov property at D~!(x) and the memoryless property of the exponential distribution we
obtain, similarly to Bertoin (1996, Exercise IV.1, p. 123, or Exercise V.3, p. 144),

P(D(Tp; N &) >x+y)
=P(Tpi A& > D~ (x +y))
=P(Tp; > D~ (x + y)P(& > D~ (x + y)
=P(Ty; > D™ )BTy > D™ (P& > D' ()PE > D~'(»))
=P(Tpi A& > DT ()P(Tpi A& > D™ ()
=P(D(Tp,i N &) > X)P(D(Tpi A &) > y).

The expected dividend up to time T, ; A &; is given by (5.12).

Leti € E and j e EUEL, Rp(0) =band J(O) =i € E. Let II(i, f) be the probability
that the process reaches b after §; and before ruin at state j. We have

_ b b
MG, j) =y DfG.k) / . / b =g = y) dyyf dx

keE

£y o [ s =0y

keE
+Y° ) Dot k)/ rl(b—x)y+ (x) dx.
JEE keE, k#i

Given that R;(0) = b and J(0) = i € E, the amount of dividends paid until time & A Tj ;
is exponentially distributed with parameter ;. The process returns to b at state i with
probability I1(i, ). Thus, the amount of dividend earned until the first time the process reaches
b at state j # i or until ruin is a geometric compound sum of i.i.d. exponentially distributed
random variables and, thus, exponentially distributed with parameter u; = (1 — I1(, D).
Upon exiting state i € E the next state is j # i, where j is either j € E or j = (Ij, 0T),
l, j € E, with probability T1(i, ])/(1 — I1(i,i)). Thus, when in phase i € E, the amount
of dividend is exponentially distributed with parameter u;, and, when in phase (Ij, o™), it
is exponentially distributed with rate —T+(o+ +) When in state (phase) i € E, the
transition rate to state ] #1iis T, ]) = w;T1(, ]) When in state (Ij, 0T), the transition
rate to state (Ij, 67) is Y((Ij,0"), (Ij,0T)) = TJr(o+ 07), and the transition rate to state j
is Y((j,oM), j) = 4 (o). Thus, the transition rate matrix among the transient states is Y.
Assume that R(0) = u and that P(J (0) = i) = «;. Then the amount of dividends is phase type
with representation (o7, Y), with p}" =y0 y;} (u) and p&’jyoﬂ =y Vi-,‘_(lj,qu)(”)'
Note that this phase-type distribution has an atom at 0 equal to

L OBAIOEDBPILLAIO (5.13)
! J b
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which is the probability of ruin occurring before reaching b. We conclude with the following
proposition.

Proposition 5.3. The amount of dividends paid until ruin is phase type. When R(0) = u and
P(J(0) =i) = «a;, i € E, it is phase type with representation (p™, Y), and the atom at 0 is
given by (5.13).

5.3. The expected discounted penalty function

We consider the expected discounted penalty function for the Markov additive risk process
with two-sided jumps. Similarly to (4.7), we express w; (u, b), u < b,asafunctionof w; (b, b),
JjEEL.

Similarly to Proposition 4.1, we derive w; (b, b) for the case with positive and negative
claims.

Proposition 5.4. The penalty functions w; (b, b), i =1, ..., n, satisfy

b 0
wi(b,b) = wl,i(b)+ZDf(i,k)/ ri(X)/ ()8 (b —x +z)dzdx
x=0 0

keE

b b—x
#3007 [ [ b —x =) dyonstr, by ds

keE
+ )Y Dy kA, (b, b)

JjeE keE

b b

+ 0t [ [ gy - b dvonutr by

keE x=0Jy=b—x
+ (Z DfG. kyaicl, +> "> Dfd. k)Acfkvj)a)j (b, b)

keE JEE keE

b
+ > Do(i,k)/ ri(x)wo k(b — x, b) dx
0

keE, ki

+3° )" Doli.k)Aix jw;(b. b).

JEE keE, k#i

The proof is similar to that of Proposition 4.1 and is therefore omitted.

5.4. The distribution of the deficit at ruin for § = 0
It is clear that the deficit at ruin is phase type with representation (o, T~), where T~
is a block matrix with matrices T;; on the diagonal, i.e. T~ = diag(Ti]T). Let yi'; (u,) =

m
Vi@, 0) + e S, y(lf’(kp’ y+yy (). Denote by a” (i, (kj,17))(u) and a” (i, 0)(u) the
probabilities that ruin occurs by the lg jth claim at phase [~ or by diffusion, given that R(0) = u

and J(0) =1i:
a” (i, (kj, )W) = v,y 0 + Y v, ya™ (p, kj, D)D),
peE
a (i, 00w) =Yy )+ Yy ya (p,0)b).
JjeEE peE
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Let 1; be a column vector with a 1 in the ith entry and Os elsewhere. Next we find the
probabilities a™ (i, (kj, 7)) (b). We apply the same notation as in (4.5). We have

b
a= (i, (pg, 1)) = Dy (i, q) / il =g exp(Ty O Al (p = ) (5.14)
i} b b—x
F X076 [ [ gl == 0y, 0
keE x=0Jy=0
(5.15)
+ 33 Dy kA, a ( (pg. 1) (b) (5.16)
keE jeE
b b
+ X 0HaD [ [ neIgha ey = vy, 0
keE x=0Jy=b—x
(5.17)

b
+ Z Dy G, k)[o ri((1 =G () dya™ (k, (pg, I7)k)  (5.18)

keE

+ 33" DG AL, ja (. (pg, 17)(b) (5.19)

JjeE keE

b
+ Y Dotk / iy (b — ¥ dx (5.20)
KeE, ki 0

+Y > Dol k)Aikja (j. (pg. 17))(b). (5.21)

JEE keE, ki

The term in (5.14) is the probability that at time &; ruin occurs due to an igth positive claim at
phase [~. The terms in (5.15), (5.17), and (5.20) are the probabilities that ruin occurs before
reaching b by a pgth claim hitting O at phase [~. The terms in (5.16), (5.18), (5.19), and (5.21)
are the probabilities that ruin occurs at state (pg, /™) when the process reaches b before ruin,
after &;. Similarly, thea™ (i, 0)(b), i = 1, ..., n, satisfy

a=(i,0)(b) = Lg,(ni)
b b—x
+ X000 [ [ negpe - - nay Yy e ds
keE x=0 Jy=0 jeE
+3 > Dyl kA, ja (. 0)(b)

keE jeE

b b
sy otan [ | Oy = by Yy (nde
X y: —X

keE =0 jeE

b
+Y_Df G, k) /0 ri() (1 = G () dya~ (k, 0)(b)

keE

+ YY) DFG AL, ja”(j, 0)(b)

JjeE keE
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b
+ X Do) [ nn Y- dx

keE, k#i JEE
+Y > Dol k)Aix ja” (j,0)(b).
JEE keE, k#i

The term L7, , (1;) is the probability of ruin before &; due to diffusion. Note that, when o; = 0,
this probability is 0. The other terms have a similar interpretation as before.
IfP(J(0) =i) = «; and R(0) = u, then the deficit at ruin is phase type with representation

(0, T™), where
0wy = Y eia~ (i, (kj. D) ().
icE
The atom at 0is ) ;. aja™ (i, 0) ().
6. Example

In this section we present a methodological example. We consider a two-state Markov
additive risk process with § = 0.04, 81 = 0.03, 8> =0.14,02, =0.1,01 =0,¢c1 =2 = 3,

—0.015  0.015 003 0
A:( 0.06 —0.06)’ Dl:( 0 0.14)’

—0.045 0.015
and Do = < 0.06 —0.2) '
When in state 1, negative claims arrive according to a Poisson process at rate 1 = 0.03

and the claim amounts are exponentially distributed with ;1 = 0.5. When in state 2, positive
claims arrive according to a Poisson process at rate 8, = 0.14 and the positive claim amounts
are exponentially distributed with > = 0.05. Thus, when in state 1, the process increases
linearly and has only positive jumps, while when in state 2, the process evolves as a Brownian
motion with drift 3 between negative jumps. The matrix K («) is

0.5
3a+0.03<05 - 1) 0
K(e)=A+ o ) 0.05
0 30 4 0.00502 + 0.14( ——— 1
@+ 000 (0.05 Iy )
0.015
—0.045 + 3 + 0.015
= 05—« 0.007
0.06 —0.2 4 3a + 0.0050> + ————
0.05 + «

Next we find the value @ (§), which is the root of the equation det(K (o) —§1) = 0 for which
4 is an eigenvalue with maximal real part. Such arootis ®(§) = 0.014 616. The corresponding

eigenvector is
0.825 686
0.564131)°

Next we define the MAP parameters under P®®):
¢ =c =3, & = ¢y + o5 d(8) = 3.000 146 16, G2 = 09,

. _(=0.0102  0.0102
A= Ao K(®O)Anewp) 0T = ( 0.0878 —0.0878> ’
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and B = fo—F2 _ —0.108332.

= 0.030903, —_—
u2 + P (3)

5 1

Br=B——c

ur — @)

The negative claim is exponentially distributed with rate ji; = pu; — ®(8) = 0.485 384, and

the positive claim is exponentially distributed with rate fi, = wy + ©(8) = 0.064616. The
transition rate matrix of the fluid model is

AL =g ALY B0
_ A2, 1) AR2,2)—p2 O B2
0= . _
“1 0 - 0
0 2 0 -
—0.0412 0.0102 0.0309 0
| 0.0878 —0.1962 0 0.1083
| 0.4854 0 —0.4854 0
0 0.0646 0 —0.0646
The matrix F for our example is
clo 0 0O O
_ 0 &Ha+3of 0 0
F=0+1, 0 « 0
0 0 0 —«o
o —0.04112 0.0102 0.0309 0
. 0.0878 3.0001c + 0.005¢2 — 0.196 151 0 0.108 332
- 0.4854 0 o — 0.4854 0
0 0.0646 0 —a — 0.0646

The equation |F («)| = 0 has the five solutions

a1 =0,
ap = 0.046 665,
a3z = 0.495761,

asy = —0.042 564,
as = —600.094 609,

whose corresponding eigenvectors are

h(ep) =(1,1,1,1, D)7,

h(az) = (—0.066 294, 0.860 548, —0.073 345, 0.499 683) T,

h(az) = (—0.021375,0.001 438, 0.999 770, 0.000 166) T,

h(ay) = (—0.023559, —0.322 821, —0.021 659, —0.945919) ",

h(as) = (0.569253 x 1075, 1.000 000, 0.460 066 x 10~%, —0.000108) T,

where ‘T’ denotes the transpose. We can now obtain the 10 equations for yiij (u)and yii(k i (u).
Note that in this example ruin cannot occur at state 1.
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TABLE 1.
u Vi(u,50) Vs (u,50)
5 35.440 18.136

10 38.270 21.003
25  47.9975 30.104
40  59.854 40.914
50  69.252 49.926

The scale functions are

WP (x) = 0.333244 480 07070989 30000F _ 333244 480 0e 0000799893
w(m +6) x) = 1,0.02833333333x
=1 ,

ra(x) = 2500.334 419¢ 0000799893

ri(0) =

1
=11.764705 88,
n+39

and ri(x) = 0 for x > 0, and

1
w] =
S+ m

= 35.294 118, wy = 12.501 672 10.

Ruin cannot occur up to time &; (since o1 = 0); thus, L7, , (11 + §) = 0. Upon calculating all
the coefficients we obtain the following equations for V; (b, b):

Vi(b, b) = 36.000 000 00 + 0.352 941 1764V (b, b) + 0.176 470 588 2V» (b, b),
Va(b, b) = 12.557 66086 + 0.344 661 060 0V; (b, b) + 0.270391 526 7V5 (b, b).

Solving these equations we obtain
Vi(b, b) = 69.252, Va(b, b) = 49.926.

The discounted dividends paid for different initial conditions are given in Table 1.

The transition intensity matrix and the positive claim amount distribution is as in Cheung and
Laundriault (2009). We omitted claims with state transitions and added negative claims. Thus,
the discounted amount of dividends paid is greater than in Cheung and Laudriault’s example.

7. A barrier strategy dependent on the environmental state J

Following Cheung and Landriault (2009), who were motivated by Zhu and Yang (2008), we
assume that the dividend barrier is state dependent. The barrier strategy, effective when J is in
state i, is b;, i € E. For the application of this strategy, see, e.g. Zhu and Yang (2008).

The method developed in this paper is based on the semiregenerative property of the process,
and the change of measure. These tools cannot be implemented directly for a state-dependent
barrier strategy with an arbitrary number of states. When there are only two states, 1 and 2,
we can still obtain solutions for the case where there are only positive claims or only negative
claims, but not both. Without loss of generality, we assume that 0 < b; < by. In the case of
two barriers we denote the process by Ry, with b = (by, by).
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7.1. Positive claims

In this subsection we consider a risk process with negative jumps only.

7.1.1. Expected discounted dividends. Let V;(u, b) be the expected discounted dividends paid
when J(()~) =i and Rp(0) = u. Let B = D1(2,2). On J = 2 the process behaves as a Lévy
process, X», with exponent

@2 (@) = 2 + So3a? + Pr(mar(ad — Too) 't — D).

For J (0) = 2, let &, be the transition time of the CTMC J to state 1. Clearly, &y is exponentlally
distributed with parameter Ay| = D1(2,1) + Dy(2, 1), 1ndependent of X5. Let W2 ) be the
scale functlon for X5. The forms of Wz(q)(x) its derivative WZ(q) (x), and the adjoint scale
function Z, @) (x) are given explicitly as polynomials in x, with coefficients that are functions
of the roots with negative real part of the equation ¢;(«) = ¢q; see Proposition 2.1 of Egami
and Yamazaki (2012). Let

=inf{r: Xo(t) > b},
=inf{t: X2(t) < a).

Define the following Laplace transforms for the exit times: fora < u < b,

B w, b) = Ele ™% 1G5 > 5, 5 < &) | X2(0) = u, J(0) =21,
ﬁé‘é D) =BleT N I(@; < T 7 < &) | Xa0) =, J(0) = 2],
Since E:“z and X 2 are independent,
~(a b)+(u b) = E[ef(6+)»2])fb+1(raf - f}j‘) | X2(0) = u],
~(u D=(u,a) = Ble" 0% (77 < T0) | X2(0) = ul.
By Proposition 2.1,

W2(5+)LZ] ) (14 )

~(a b)+
( b) (5+)»2I)(b ) ’

Zéﬁ—i—kzl)(u —a)

~(a b)— (5+A21) (84+221)
(ll a) ZZ 2 (M - a) - W2 u (l/l — a)m
2

Fora < x,y < b, let
hord$? (x, y)dy = Ble 0 1(6 < 17 AT, X2(62) € dy) | X2(0) = x].

To obtain u u21 )(x y), we apply Theorem 8.7 of Kyprianou (2006):

W2(6+)»21)(x _ a)W2(8+)\21)(b _ y)
W((SJF)»ZI)(b —a)
(@)

~(a,b
asy? (x, y) =

S+A
— Wy (- y).

Throughout this section, we denote by w;””, i =1,2, a > 0, the expected discounted
dividends until &; A T, as given by (3.3) or (3 4) with a replacing b. Similarly, r; @ is as defined
above Proposition 3.1, where b is as defined in (2.3)—(2.5). Let Ms(1) = supo<v<,(X 2(s)), and
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let 172(1‘) = ]\712(t) — )gz(t) be the reflected process at the maximum. Let Tb2~be the time until
the reflected process Y> hits b. On J = 2~ the process by — Ry behaves as Y,. Let w, be the
expected discounted dividends paid until 7}, A &. By Theorem 2.1 of Avram et al. (2004),

iy = E[/TbZAéz e % dth(s)} = M.
0 W32 (by)
For b > 0, let
22173 (v)dy = P(b — Ry(&) € dy. & < Tj, | Ry(0) = b, J(0) =2).
By Theorem 1(ii) of Pistorius (2004),

(5+)~21) (y)

W,
EROE (W‘““”( )

(8+A21)
— =W (y))-
W((S"F)LZI) (b) 2

Let v (u b1) be the same as v (u) definedin (4.1), where bisreplaced by by. Forb; < u < by
and J (0) = 2, we define

br X 0w
o1 () =f / A g (6= )~ b dy ds, (7.12)
y=01
by
vio(u) = / Sy (u, x)(x — by) dx, (7.1b)

by
Avai(u) = / / u21 52 (u, y)ga1 (y — x)v1 ;(x, by)dydx, i=12 (7.1c¢)
x=0Jy=x

b2 e

At (u) = f f 2 (u, x) g1 (x — y)dy dx, (7.1d)

=b

Ao.a,i(u) = / a0 u, v (e, b dx, i = 1,2, (7.1e)
A :

- by

Aoua(u) = / Sy (u, x) dx. (7.1f)
x=by

Given that Rp(0) = u and J(0) = 2, v11(u) and vio(u) are the expected discounted dividends
paid at time éz, when a transition to state 1, with or, respectively, without a claim occurs before
ruin, and the surplus after that transition is above b; and then drops to ;. The quantities
Al,d, ;i (1) and Ao,d, i (u) are the expected discounted times until the reserve reaches b; from
below at state i, = 1, 2, where, after the first transition to state 1 that occurs with or without
a claim arrival, the reserve is below b;. Similarly, Al’uyl(u) and Ao,u,l(u) are the expected
discounted times until the reserve reaches b; from above at state 1, where, after the transition,
the reserve is between by and b,.
Similarly, to obtain V»(b>, b), we define

by—b X (by)
vy = / / Py 2 (v)g21(x — y)dy(by — by — x)dx, (7.2a)
— y=0

by—b b
Voo = / 7P () (by — by — x)dx, (7.2b)
x=0
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by X

Bai=[ [ #PGene - nant te-xbodx i=120 (20
x=by—b1 Jy=0
by

Bo.a.i =f PP vl by — x b dx,  i=1,2, (7.2d)
x=br—b
by—b X b

By = f / 7 (y)gan (x — y) dy dx, (7.20)
x=0 y=|
by—by

Bou1 = f 7P (x) dx. (7.2f)
x=0

Given that Ry(0) = by and J(0) = 2, vy and vy are the expected discounted dividends
paid when the first transition to state 1 occurs at time éz, with or without a claim arrival. The
quantities By 4; and By 4 ; are the expected discounted times to reach level by, where, after
the first transition to state 1 that occurs with or without a claim arrival at time éz, the surplus
is below b;. Similarly, B ,; and By, ; are the expected discounted times to reach b1 when
the first transition to state 1 with or without a claim arrival occurs when the surplus is above b
(and then drops to by).

Theorem 7.1. We have

2 2
Vi(br. b) = wi™ + Z(Z Acyk.jDi(1. k) + A1z, Do(l, k)) Vi(b1.b),  (1.3)
j=1 k=1

where the coefficients are as defined by (4.5) with by replacing b. For by < u < by,
Va(u, b) = D1(2, vy + Do(2, Dvig + Dy, (u, b2) Va (b2, b)
+ (D12, (A1 @) + Ay 1 ()
+ Do (2, 1)(A.a,1(u) + Ao 1 ())) Vi (b1, b)
+ (D12, DA1a2w) + Do2, DAg.a2)Va(bi, b), 74
Va(ba, b) = wy + D1(2, a1 + Do(2, vao
+ (D12, )(B1,a,1 + Biu,1) + Do(2,1)(Bo.a,1 + Bo.u.1))Vi(b1, b)
+ (D12, )B1.a.2 + Do(2, 1)Bo.a,2)) V2(b1, ). (7.5)
Substituting u = by in (7.4) yields V(by, b).

Proof. Equation (7.3) for V{(by, b) is the same as (4.6) fori = 1, where b is replaced by b .
Equations (7.4) and (7.5) follow straightforwardly from the definitions of the coefficients defined
in (7.1) and (7.2), respectively.

Remark 7.1. For0 < u < by,

2
Vi(u,b) = Zv;jj(u, b1)V;(b1, b), i=1,2.
j=1

Forb| <u

For by < u < by, Va(u, b) is given by (7.4). For u > by,
Vo(u,b) =u — by + Va(ba, b).
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7.1.2. The expected discounted penalty function. Let w;(u, b) be the expected discounted
penalty function when Rp(0) = u and J(0) = j, j = 1,2. For 0 < u < by, letv;;(u, 0, by),
v](u Z,b1),w0,i(u, b1),and wq, 1(b1)bethesameasv (u,0),v l](u 2), wo,i (u, b),and w11 (b)
in (4.8), (4.9), (4.11), and (4.12), where b is replaced by bi. Let

59577, 0) = Bpule ™™ I(ry < 10, 15 < &), & =0,

99" (u, 2) dz = Bnule ™™ I (15 < b1y < ). & €dzl.
We will obtain v, (u, 0) and v,, (u, z) later. Similarly to (4.11), define

@02, by) =B [e° fENI(E < T0. T < &)

= 5057 (4, 0) £ (0) + / FOTCP (2 dz,

w12(b2) = f(O)f0 dFr,, (1) exp(=(n2 + 8)1) = f(0)Lr, (2 +9),

where @ 2 (u, b2) is the expected discounted penalty due to ruin occurrence before reaching b,
and before state transition, given that J(0) = 2, and @1 2(b7) is the expected penalty function
when ruin occurs due to diffusion before a state transition or claim arrival, and is defined
similarly to (4.12) with b, replacing b. For by < u < by, let

by
Pr1 o) = f a0 (u, x)/ o1+ 2 £(2) dz,
by
Prto(u) = / 0/ 707 (4, y)ga1 (v — x) dywo.1 (x. by) dx.,

PZ,I,O(M)Z/O a5 u, x)wo.1 (x, by),

where

e P> 1. 0(u) is the expected discounted penalty when ruin occurs due to a claim arrival
with a transition from state 2 to 1,

e P> .(u)and Py 1 o(u) are the expected discounted penalties when a transition to state 1,
with or, respectively, without a claim arrival, occurs before ruin, and the surplus after
that transition is less than b1, with ruin then occurring before reaching b .

For Ry(0) = by and J(0) = 2, we will apply the following expressions for the expected
discounted penalty when ruin occurs before paying dividends:
by b
P= [P Wby -3+ f @ k=12,
0

by X
Py = / , / OrébZ)(y)gz,k(x —y)dywo (b2 — x, by) dx, k=12,
x 1 Jy=l

by b
Py = f 8D (10,1 (b2 — x, by) dx,
x=br—b
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by—b b ) _
= / / > (y)g22(x — y)dydo,2(by — x, by) dx,
by—b b )
= / f Y (y)g22(x — y)dy
x / Do(2, )" (by — x, v)wo 1 (v, by) dv dx,
by—b )
Pe = / f P (3)gr(x — y) dy
x/ D12, DA™ by — x, v)/ @1 +2) f(z)dzdvdx,  (7.6)

by—b
P = f / () gnx — y)dy

by v
« / D12, D by — x, v) / 21 (D01 (v — 2, b1) dz dv dx.
v=0 z=0
1.7
Here

e Py, k=1,2, are the discounted penalties when ruin occurs due to a claim arrival with
a state transition,

e Py, k=1,2,and P; are the expected discounted penalties when a state transition, with
or, respectively, without a claim arrival, occurs at time &, before ruin, and the surplus
process after the state transition is between 0 and b1, with ruin then occurring before
reaching the level by,

e P, is the expected discounted penalty when an arrival at state 2 occurs before ruin at
time &, and the surplus after the arrival is between b; and by, with ruin then occurring
before reaching the level b, and before a transition to state 1,

e P, i =5,6,7, are the expected discounted penalties when an arrival at state 2 occurs
before ruin at time &, and the surplus after the arrival is between b; and b, then a
transition to state 1 without (Ps) or with (Pg, P7) an arrival occurs before reaching b,
and before ruin, when the process level is less than by. In (7.6) the arrival causes an
immediate ruin. In (7.7) ruin occurs after that arrival and before the process reaches b;.

Finally, we consider the following discounted exit times (Rp(0) = b> and J(0) = 2):

by X

b .

dik,j =/ / P (Mgalx — y)dyvl(by —x, brydx, k. j=1.2,
x=by—b1 Jy=0

by
da, j —/ ””(x)vl (by — x, by) dx, ji=1,2,
x=by—

d3

br— b]
f f P2 (1) g (x — )" by — x, by) dy dx,

br—b
/ / " (y)ga1 (x — y) dy dx,
=0 y=0

dy
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by—by b
ds = / r$ (x) dx,
x=0

by—b X b
de.j = Do(2. 1) / f P (1) (x — y)dy
x=0 y=0
by
x/ i by — x, v) dxvl i, by dv,  j =12,
v=0
by—b X b
dr; = Di2. 1) / / 5 (3)gan(x — y) dy
x=0 y=0
by by (0.0
X / f iy (by — x,2) dxgai(z — v) dzvfrj(v,bl)dv, Jj=12,
v=0 Jz=v

b

bszl X 2
dg = Do(2,1) / / ra(3)gn(x — y)dy / i3 by — x, v) dv dx,
x=0 y:() v=b

by—b X (b)
dy = Di(2, 1)/ / ry 2 (¥)ga(x — y)dy
x=0 =0

b b2 o4
x f / iS5y (by — x, 2)21(z — v) dzdv dx.
v=by Jz=v

Here

o di,j and dy ; are the discounted times to reach level b1 when the modulated state is j,
when a transition to state k occurs at time &, before ruin, with or, respectively, without
a claim arrival, and the surplus after the transition is less than by,

e when the first transition at time &; is a claim arrival in state 2, and the surplus after the
arrival is between by and by, dj is the discounted time to reach b, before ruin and before
transition to state 1,

e d, and ds are the discounted times of the first transition to state 1 at time &, with or,
respectively, without a claim arrival, and the surplus after the transition is between b;
and b, and drops to by,

o dsj,d7j, j =1,2,ds, and dy are the discounted times to reach by before ruin, where
the first transition at time & is a claim at state 2 and the surplus after that transition is
between by and b;.

In ds j and dy j, j = 1,2, the process level after the transition is below b;, and so we
consider the discounted time to reach b1, while in dg and dy the process reaches state 1 when

it is above b1, and then drops to b;.
We present now the linear equations for w; (b;, b).

Proposition 7.1. Similarly to (4.13)—(4.17) we have

2 by [ee)
w1 (b1, b) =w1,1(b1)+201(1,k>f / rP g1y — x +2) f(2) dzdx
k=1 x=0 Jz=0

k=1
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by
+ Do(l, 2)/ F® (w2 (b1 — x, br) d
x=0

2 2

2 2
+Y ) Dil, k) Acik jojbi,b) + YY" Doli, k) Ak jw; (b1, b),

j=1k=1 j=1k=1

where the coefficients are as defined in (4.5) with by replacing b.
Forby <u < by,
w2(u, b) = D1(2, 1)(P2,1,c,0) + P2,1,c()) + Do(2, 1) P21,0(w)
+ 0557 (. by)wn (b2, b) + (D12 1)(A1a,1 () + A1 ()
+ Do(2, 1)(Ag.a,1(u) + Agu,1 )i (b1, b)

+ (D12, DA} a2(u) + Do(2, 1)Ag a2()) w2 (b1, b), (7.8)
2
w2(b2, b) = @12(b2) + Z D12, k)(Prk + Pag) + Do(2, 1) P3
k=1

+ D1(2,2)(P4+ Ps + Ps + P7)
2
+ [Z Dy (2, k)d1 k.1 + Do(2, Dda1 + Di(2, D)da + Do(2, 1)ds
k=1

+ Di(2,2)(ds,1 +d7,1 +ds + d9)]w1 (b1, b)

2
+ [Z Dy (2, k)di k2 + Do(2, a2 + D1(2,2)(ds2 + dﬂ}oz(b] . b)
k=1

+ D12, 2)d3w2 (b2, b). (7.9)
By substituting u = by in (7.8) we obtain the equations for wy(by, b).
Proof. The proof straightforwardly follows from the definitions of the coefficients.

It remains to derive v, (u, 0) and vy, (u, z) for 0 < u < by. Let ®2(8 + A21) be the largest
solution of ¢y () = § + Az1. Applying the change-of-measure formula for the process X»,
yields

5007, z) dz = P2 TR WHIPPGH) (7 < o5, —X2(f) e dz | X2 =w),
~(0 by)— (u,0) = ®2(8+A21)MP¢(8+A21)(.EO— < flj;’ )}2(50—) =0 | )}2 =u).

Under PPO+A2) X, isa Lévy process with negative phase-type jumps with representation
(22, T»2), and Lévy exponent

- - oa? . - -
@2(a) = 2 + — F Ba((al + Ta2)” t2 — 1),

where 772, ng, and t22 are as given in Lemma 4.1, and ¢; is as given in (P1). Let X3 X/ be
the fluid version of X% under P®@+221) The process Xzf is a MAP with moy + 1 states and
modulating process J; . When in state 0, X 2f evolves as a Brownian motion with drift ¢;, and,
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when in state k, k = 1,...,my + 1, it is a linear line with slope —1. State k corresponds to
phase k of the claim. Let T2, T 2, and t22 be as defined in (4.3). Similarly to the definition of
F in Section 5, the cumulant matrix for X X/ under P®(¢+421) i F>(x), where

Fr(a) = (;22 ’;jz) + diag(@2 (@), —a, . . ., —a).

Define
)7+(M) — P¢(5+)~2])(fb};+ < ‘E()j_ | 5(2)‘ ) = u),
) = POl < #F @) =k | X 0) = w),
i+ f

where fb and 7y  are first times that X X/ hits by and 0, respectively. To find the probabilities
V¢ (1), we apply the same technique as descrlbed in (4.4). Assume that |F>(«a)| = O has

may + 2 different roots oy, r = 1, ..., ma + 2, and let A%/ («,) be the corresponding right
eigenvectors. Then the following equatlons hold for v, (u), k =0, ..., ma, 7 (u):
e hy (@) = P + Y F h @), r=1mp 2.
Jj=0

Lety~(u) = (y; W), ..., Vy,,@)). Then
PPOTRI(ES < §F 0 —Xp(Fy) €dz | X2(0) =u) =7 ~we™, dz,
PPOTRIES < £F —Xa(55) =0 | X2(0) = u) = 75 ().
Applying the change of measure we obtain

~(0,b2)— ~— Thr23 0,b ~—
V§2 2) (l/l, Z) — ed>(6+k21)(u+z)y (u)eTzzztzz’ véz n)— (l/l, 0) — e¢(5+)u21)uy0 (u)

7.2. A barrier strategy dependent on the environmental state of the dual model

In the dual model there are only negative claims, i.e. positive jumps. Given that J(0) = 2
and Rp(0) = u, by < u < by, then until time & the process behaves as a Lévy process X (1)
with positive jumps, i.e.

X3 (1) =u+02B(t) + S2(0),

where S, is a compound Poisson process with arrival rate 8, i.i.d. phase-type jumps with
representation (nz‘z, T 2"2’), and Lévy exponent

20!2

p2(a) = cra + + Bo((—ad — T,5) "' = 1).
Let ®5 (o 4 A1) be the largest solution of ¢y (o) = Ao1 + 8. Let
=inf{t: X3 (t) > a}, T, =inf{t: XS (1) <a}.

a

For x < u < y, define
P w2 dz = BV IGE < 7. T < & XTGED €y + do) | X5(0) = w),
BT W, 0) = BT I G < 7, & < &, XTED =) | XF0) = w),
<&, X3 () =x) | X5(0) = u).

055 x) = BT 15T < 7, T
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Applying the change-of-measure formula we obtain
vg y)+(u’ )dz = eq>(a+x2])<u7y7z));2(§c,y)+(u’ 2 dz,
f)g,y)Jr(u’ 0) = ed>(8+kzl)<ufy)372(;’”+(u’ 0),

f)%’y)_(u) _ ed>(5+)\21)(u—x)372(;,y)—(14’ x),

where
7 2 dz = POOTRIE <77, XS (F) €y + dz | X3(0) = u), (7.10)
~(x y)+(u y) = P¢(5+A21)(f;r <77, X;(,;r) =y | X;r(o) =u), (7.11)
);gw (u, x) = PP+ (F- < -E;‘, X3 @E) =x | X5(0) =u). (7.12)
Let

557 )—v(””(u,0)+/ POV, ) dz.

Let ftzJE, T;g, and 172+2 be the parameters of the phase-type distribution for the claim amount under
PP@+21) a5 defined in (4.3), and let ¢ (er) be the Lévy exponent of X5 under P®©¢+*21) To
obtain (7.10)—(7.12), we resort to the fluid model of X3, where upward jumps are replaced by
lines with slope 1. The generator for the fluid MAP (under P®@+*20) jg

Q+ _ <_B2 ﬁ2ﬁ£>
22 — 7+ 7+ .
t22 T22

Let F 2(oz) Q;’z + diag(@z(a),a .,a). Assume that the equation |F. 2(oz))l =0 has
may + 2 different roots «;, i = 1,...,ma + 2. Let b/ (o)) be the eigenvector of Fzz(a,)
Consider the fluid model of the process s under PO@+2) Let y(x Y7 (4) be the probability that
the process hits x before (v (by diffusion), let y(x Y +(u) be the probability that it hits y before
x by diffusion, and let y (u) i =1,...,mm, be the probabilities that the process hits y
by a claim at phase i (before x). These probabilities are the solutions to the equations

mj3
e (o) = € Y @7 ) + e 7 W),
i=0
Let 79 w) = 757 ), ..., 7T (). Then
w2 = PO e .
Let

Ay (x, y)dy = Ele 21 (& < T AT, XS (€2) € dy) | X5 (0) = x].

Let W be the scale function of —X ;’ . By Theorem 8.7 of Kyprianou (2006) (adapted to processes
with positive jumps),

W2(5+)~21)(y _ a)Wz((S"r)Ql)(b _ X)
W2(5+)Lzl)(b —a)

~(a, b)+(x ) =

FCEDN
il _ Wz( + 21)(y —X).
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For b1 <u < by and J(0) = 2, let

xXAb
) = / / " D12 DA, y)gh (x — y) dy(x — by dx,
_b|

€ (u) = Do(2, 1) / APt x)(x — by) dx,
x=b

o0
£3(u) = f PPt (4 2z dz.
z=0

Let

Cu) = €1(u) + La(u) + €3(u),
where £1 and ¢» describe the expected discounted dividends before the process drops to by
due to a transition to state 1 that occurs when the surplus is above bj, and ¢3 is the expected
discounted dividends when the process reaches by before b; and before a transition to state 1.
Let

by
b1,b
L(u>=m/ AP, yy dy
y=01

be the expected discounted time to transition to state 1 before reaching by or by. Define
(u z, by) similarly to v (u z) in (5.1a). For 0 < u < by, we define the following possible
d1v1dend payments and ex1t times:

o
dfr(u)=/ g (b1 —u+2)zdz,
Z

o0
dy (u) =/ ghb1 —u+2)(z — by + by)dz,
Z:bz—bl

br—b
di (u) = f g (b1 —u+2)0(by +2)dz, i=1,2,
Z

o0
dii(u) =/ v;[(u,z,bl)zdz, i=12,
z

)
d;_i(u)zf V,'-E(M,Z,bﬂ(z—bz-l-bl)dz, i=1,2,
’ z=br—b

by—by
&= | bz bt ) dz
7=l

For 0 < u < by, we now define the following discounted exit times:

[e.e]
XZ,I(M)Z/ V?Q(“? Zsbl)dzs i = 13 2a
Z:bz—bl ’

b2hn (br.b)+
X3, (1) :f Vi, 2, b))y, T (by + 2, ) dz,
z=0

br—b;
Xa.i(u) = / v, z, by L(by +2) dz, i=12,
z

br—b
Xs.i (1) =/ v, 2. BB T (by + 2 dz+ v, 0.by),  i=1.2.
Z
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For Rp(0) = by and J(0) = 1, we define the following dividends payed due to negative claims
(positive jumps), before hitting one of the barriers:

by b
o =/ r"(x)df (b — x) dx,
x=0

by b
o = f r" (@)dj (b1 — x) dx,
x=0

by
0 = /
x=0

by X
9, = / / rV (b — Mg — yydyd);(ndx,  i=1.2,
x=0Jy=0

r"(0ydf (b — x) dx,

(98]

by
05+=f Orl(bl)(bl — x)d5(x) dx,
x=l

by X
g = / / r b1 — gl - ydydd(ndx,  i=1,2,
x=0Jy=0

by ’
=/ " (b — x)d (x) dx, i=1,2,

X

=0
by X ®1)

ﬁgi =/ f riV (b1 — y)gi; (x — y) dydg; (x) dx, i=1,2,
x=0Jy=0

by
ﬁ+=/ Orl(”“(bl—x)dgz(x)dx, i=1,2.
x=

In Table 2 we consider all the cases corresponding to ﬁlj , k=1,...,9,according to the state
transition or claim arrival at time &1, the surplus and state after that transition, and the surplus
and state after dividend payment.

TABLE 2.
. . o After a claim After a dividend
Claim arrival ~ State transition
Surplus State  Surplus  State
o 11 Above by 1 b 1
9 12 Above by 2 by 2
ﬁ;’ 12 Between b and bp 2 by 2
or by 1
9 lii=1,2 Below b, i by 1
0 To 2 Below b 2 bi 1
P li,i=1,2 Below b i by 2
o To 2 Below b 2 by 2
. . b 2
+ _ 2
g li,i=1,2 Below b i or by |
by 2
Oy To 2 Below b 2
9 ° clow ol or by 1
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For Ry (0) = by and J(0) = 1, define the following expected discounted times to reach one
of the barriers after &;:

P ey
o =/ AW = G ds,
x=

by
02 =f r" @) (1 — G, (x + by — by)) dx,
X

by b br—b;
03 =f rl l)(x)/ gh(x + 2L(by +2)dzdx,
x=0 z=0
by by—b
P4 = / ’fb')(x)/ gh(x + z)ﬂé? P by + 2, ) dzdx,
x=0 z=0
b ba=br b1b
05 = / rl( l)(x)/ gh(x + Z)17§21 27 (b + z) dzdx,
x=0 z=0
by X 1)
06.i =/ / V(b1 — y)gfi(x — y)dyvi(x, -, br) dx, i=12,
x=0Jy=0
P
07 =/ rY (b1 — x)vy (x, -, by) dx,
x=0
by X bD) 00
P8 = / / (b1 - g (x — y)dy/ iz bdzdr,  i=1,2,
x=0Jy=0 z=by—by

e ¢]

by
09 —f (b])(bl x) v3h(x, z, by) dz dx, i=1.2
z=by—b

£10.i —/ / by — g — y)dy
x=0
x/ vh(x,z,b1)L(by +z)dzdx, i=1,2,
z=0
by b by—b
o= [ o0 [ ez o+ 9 s,
x=0 z=0
by x 1)
P12,i =/ / (b — gl (x — y)dy
x=0Jy=0
b= b1,b
X/ vhx, z, bl)V( LY by 4 2, ) dz dx, i=12,
z=0

b by—b ,
P13 —/ ( 1)(b1 X)/ vzz(x z, bl)f}ézl 2)-%-(171 42, dzdx, =12

bl
p14z—// ®D by — y)gt(x — y)dy
x=0
—b

1
x (/ v, z, b) BT (b1 + 2) dz + v (x, 0, bl)) dv, i=1,2,
z=0

P e
,015=f r V(b — x)
x=0

br—b
x (/ v (8, 2, b7 (b1 + 2) dz + v (x, 0, b1)> i=1,2.
z=0
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TABLE 3.
After a claim Dividend
Claim arrival ~ State transition
Surplus State  Barrier =~ State
P1 11 Above b 1 by 1
02 12 Above by 2 by 2
03 12 Between by and by 2 by 1
04 12 Between b and by 2 by 2
05 12 Between by and by 2 b1 2
06.i li,i=1,2 Below by i by 1
07 To 2 Below b 2 by 1
08, li,i =1,2 Below by i by 2
09 To 2 Below by 2 by 2
010, li,i=1,2 Below b i by 1
P11 To 2 Below by 2 by 1
P12.i 1i,i=1,2 Below by i by 2
013 To 2 Below b 2 by 2
014, li,i=1,2 Below by i b1 2
P15 To 2 Below by 2 by 2
In Table 3 we consider all the cases corresponding to px, k = 1, ..., 15, according to the

state transition or claim arrival at time &5, the surplus and state after that transition, the dividend
barrier reached, and the state when the dividend barrier is reached.
For Rp(0) = by and J (0) = 2, define the following expected discounted dividend payments:

by px
=] 0/ T 018 (= ) Ay () + iy () + i () d
X=
v = / iyt (b1, X)(df (%) +d5 (x) +dg (x)) dx,
- / / g}bZH(bl’y)g;] (x —y)dy(x — by)dx,

2
U4_/ Sy % by, x)(x — by) dx,
x=by

where vy and v, describe the discounted dividends when a state change occurs at & when
the reserve is below b1, and v3 and vs describe the discounted dividends when a state change
occurs when the reserve is above b;.

Now consider the following discounted exit times:

by X
Ci :/ 0/ sy "t (b1, y)gd (o — y) dyvi (x, -, br) dx,
0 Jye
&) Z/ gy b2)+(bl,x)v1 L (x, -, by dx,
= / / iy " (b1 )8 (x = y) dydx,

b2 a0
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TABLE 4.

. Dividend
Surplus after transitionto ] ————————
Barrier ~ State

Ci1,Cy Below b by 1
C3,Cy Above b b1 1
Cs, Cq Below by by 2
C7,Cg Below b by 2
Co,Cro Below by b1 1
C11,C12 Below b by 2

by X

Cs = f / AP by, yygh (v — y) dyxa1 (x) dx,
x=0Jy=0
b (O by)+

Co =f i0P2T by, x) o1 (x) dx,

Cr = / f aSrPT by, y)ed (v — y) dyxsa (x) dx,
x=0Jy=0

Cs = / i F by, x) 3.1 (x) dx,
; 0+

=/ ﬁzl T (by, y)gd (x — y) dyxan(x) dx,

X =

Cio = f u&‘i’””(bl,x>><4,1(x>dx,
b_ 0,b2)+

Cu 2/ 0/ iy T (b1, y) g3 (x — y) dyxs.1(x) dx,
x=0Jy=

Cio = / G0 (b x) 5.1 (x) dx.
x=0

In Table 4 we summarize the process level after a transition to state 1, the dividend barrier
reached, and the state when the dividend barrier is reached.

Assume that Rp(0) = by and that J(0) = 2. In this case we consider the process until it
reaches one of the barriers b;, i = 1,2. Define now the expected discounted dividends paid
until the process reaches one of the barriers:

by—
01 :/ (bz bl)(x)/ g22(x+z)zdzdx
o

o0 XA
02 = f / . ébz—hl)(bz — y)gi"l(x —y)(x — by)dydx,
1

/ r70 by _ ) (x — by) d,

= f / (bz—bl)(bZ - y)g;é(x — y)g(x) dy dx.
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Here o> and o3 are the expected discounted dividends when at &, there is a transition to state 1,
and o1 and g4 are the expected discounted dividends when at &, there is a type-22 claim. Define
the following expected discounted times to reach one of the barriers after &,:

by—by bo—b
U, = / 07 (01— G () d,

—b
(bZ_bl)(x) dx

&
I

o
/ / ) (bz—bl)(b2 _ y)giz(x — y)L(_X) dy dx,
y 1

=
I

bz f
by—b by,b
f ( 2 l)(b y)gzz(x _ )V( 1, 2)+()C, ) dy dx,
)7

bz
/ / 7B 5y et (x — P8 (1) dy dx.

Here Uy and Uy, are related to the expected discounted time to reach level b, when the modulated
state is 2, U, and Uj are related to the expected discounted time to reach level b1 when the
modulated state is 1, while Us is related to the expected discounted time to reach level b; when
the modulated state is 2.

Let wébz_bl) be the expected discounted dividends paid until & A Tp,—p, 2. It is obtained
similarly to w; in (3.3) or (3.4) with by — b replacing b. We are now able to derive linear
equations for Vi (b1, b), Vo(by, b), and V,(by, b).

Proposition 7.2. We have

Vi(b1,b) = wi + Dy (1, D] + 9+ 04 +98)
+ Di(1, )@ + 05 + 9, + 9, +95)
+ Do(1,2)(®5 + 97 4+ 95)
+ (D1(1, D(p1 + p6,1 + p10,1)

+ D1(1,2)(03 + ps,2 + p10,2) + Do(1, 2) (07 + p11)) Vi (b1, b)
+ (D1(1, 2)(ps + p1a2) + Do(1, 2)p15s + Di(1, 1)p14.2) Va(b1, b)
+ (D1(1, D(ps,1 + p12,1) + Di(1, 2)(ps 2 + p12,2 + pa + p2)
+ Do(1, 2)(p9 + p13)) Va(b2, b),

Va(by, b) = D1(2, 1)(v1 4+ v3) + Do(2, 1)(v2 + v4)
+ (D12, D(Cy + C3 + C9) + Do(1,2)(C2 + C4 + C19)) Vi (b1, b)
+ (D1(1,2)(C5 + C7) + Do(1, 2)(Ce + Cg)) Va(b2, b)
+ (D1(1,2)C11 + Do(1,2)C12) Va (b1, b),

Va(ba. b) = wy? " + Dy(2,2)(01 + 04) + D1 (2. D2 + Do(2. 1es
+ (Do (2, YUz + D1(2,2)U3) Vi (b1, b)
+ D1(2,2)UsVa (b1, b) + D1(2,2)(Uy + Us) Va (b2, b).

The proof of the proposition straightforwardly follows from the definitions of the coefficients.
ForO<u <by,i=1,2,
Vi(u, b) = d,(u) + d;i(u) + dgfi(u) + (vifl(u, b1) + xa,i@))Vi(b1, b)
+ (x2.i + x3,0)Va(b2, b) + x5,i(u) Va(by, b).
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Forb; <u < by,

Va(u, b) = () + L) Vi(by, b) + 957~ ) Va(by, b) + 055072 (u, ) Va (b2, b).

Clearly, for u > b;,
Vi(u,b) = u — b; + Vi(bi, b).

In the case of positive jumps the deficit at ruin is 0. For the expected discounted time to
ruin, we obtain similar equations, although easier since we do not consider overflows.
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