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LINEAR FUNCTIONALS ON SOME WEIGHTED BERGMAN SPACES
MAHER M.H. MARZUQ

The weighted Bergman space A%, 0 < p < 1, a > -1 of analytic functions on
the unit disc A in C is an F-space. We determine the dual of AP*® explicitly.
INTRODUCTION
Let A be the unit disc in C. For a function analytic in A, we write
1 27 ., P 1/?
My(r, f) = (5;/ |£(re')| d()) , 0<p<oo
0

Meo(r, f) = jmax_ | £ (re'®)]|.

It is well known that Mp(r, f) (OA < p € 00) is an increasing function of r (0 < r <1).
The Hardy space HP (0 < p < oo) is the class of analytic functions f in A and

Ifll, = sup My(r, f) < co.
05r<1
The weighted Bergman space A”»®, p > 0, a > -1, is the class of analytic
functions in A for which

1/p

Jfa-eriserdas) <o

FAN

a+l
T

1fllp,e =

AP* 1 £ p< oo, a > —1 is known to be a Banach space and a Fréchet space with
the metric

a+l

1910 = 222 [[ @ - 1a)" 1£2)P doty
a

for 0 <p < 1. Although A»*, 0 <p <1, a > -1 is not locally convex, it nevertheless

has enough continuous linear functionals to separate points (8. It is clear that AP* =

AP where AP is the usual Bergman space; also HP C AP(*+2)e [g],
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Duren, Romberg and Shields [2, Theorem 1] have studied linear functionals on
H? over the unit disc A for 0 < p < 1. Shapiro computed the dual space AP'<
(0 <p <1, a>—1) by determining the Mackey topology of AP** [8]. Motivated by
their work we shall prove a main theorem in Section 3 which gives the explicit dual of
AP® gpaces with 0 <p <1 and a > -1.

In Section 4 we prove a theorem which says that (AP'*)" is topologically equivalent
to a certain Banach space AT2(AT"2).

Throughout this paper C denotes a positive constant, not necessarily the same at
each occurrence.

2. PRELIMINARIES

Let F(z) be analytic in A. Then F(z) is said to belong to the Lipschitz space Ag
if
sup |F(e*) — F(e")| = O(r®) (0<B<1).
jt—s|<h

A continuous function F(z) is said to belong to the class A, if
|F(t + h) — 2F(t) + F(t — k)| = O(h)

o0

uniformly in ¢. If 8 > 0 and f(z) = Y, a,2z™ is analyticin A, the fractional derivative
n=0

of order 8 is

) =3 Mn_}tﬁ)%zn
n=0 :

the fractional integral of order § is
fia() = m

n=0

and fl8, fig) are analytic in A [2].

Let A(A) denote the class of analytic functions in A and continuous on A. For
analytic functions f(z) we write f € Ag(A,) to indicate that f € A and the boundary
f(e*) isin Ag(AL).

We need the following theorems:

THEOREM A. (2]. Let f be analyticin A. Then f € Ag (0 < < 1) if and only
1
! =0 ———— 1.
) ((1 —r)"’)
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THEOREM B. [2]. Let f be analytic in A. Then f € A, if and only if

f'(z)=0 (1 L) .

THEOREM C. Let f€ A»*,0<p<g<oo. Then

1
/ (1 - p)(**N/P 2 M3(p, f)dp < 0.
[/}

The proof is a consequence of the following inequality

Clifllp,e

(21) OIS L -
(1 ~ Izl’)( +2)/

which holds for f € AP = [8].
By using Theorem C and (2.1) we have the following theorem:

THEOREM D. Let f€ A»*,0<p<g<oco. Then

1
| a=p =715, fydp < oo,
0
where J(p, f) = [} MZ(r, f)dr.
THEOREM E. [4]. Let f be analyticin A and 0 < ¢ < 1. Then
1 (s 7)< C [ (L= 9700, Nd.

THEOREM F. Let f € A?*, 0<p<¢g<1and0<f < (a+2)/p. Then
fig) € A? where g = 2p/((a +2) - Bp).

The proof follows from Theorems E and D.
THEOREM G. [2]. If f is analyticin A and f'(z) = O(1/(1 — 7)), then

(1/2(,) = 1
e 0((1 )"’)

THEOREM H. [9]. Suppose a > -1 and y > 1+ a; thenfor 0<r, p<1,

THEOREM I. (10, p.128]. Let f(z) = Z Gnz" € AP, 0<p<1anda>-l.
Then |a,| < Cnllat2)/p-1,
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3. REPRESENTATION OF BOUNDED LINEAR FUNCTIONALS
Let T be a linear bounded functional on A”** (0 <p<1l,a>-1). Then T €
(A?=)* if and only if
ITl= sup [T(f)| < oo

pa
It follows that
1T < ITH NS, o
for all f € AP'®. Here (AP*®)" is a Banach space.
Theorem 1 gives a representation for bounded linear functionals T on AP'®
(0<p<l,a>-1).

THEOREM 1. Let T € (A”*)", 0 < p < 1. Then there is a unique function
g € A such that

1
(3.1) T(f) = 57 [[ Fo(z)dedy.
If(a+2)/(m+1l)<p<(a+2)/m, m=23,...,then
9" € Maray/p—m

Conversely, for any g with g(m-2) ¢ A(a42)/p—m the double integral (3.1) exists
for all f € AP*® and defines a functional T € (A7'=)".

If p=(a+2)/(n+1), then g(m-D g},

Conversely, for any g with ¢g{™=2) ¢ A,, the double integral (3.1) exists and
represents a bounded linear functional on 4P'<.

Theorem 1 of [2] for 0 < p < 1/2 can be regarded as the limiting case of & = —1
of our results and the question arises whether it holds for the case 1/2 < p < 1. Also,
this result generalises the announced result of Burchaev and Ryabykh [1] for AP.

PROOF: Suppose that T € (AP®)" and Tz* = b:/(2(k+1)); then |Tz*| <
Tl Hz"”p’a. But

™

1 p2n 1/p
I+, = (22 (1— )% P**gndg) < Ch=C+e)lr
P o Jo

[5], so |bx] < C||T|| /k(+2)/P -1 and hence g(z) = i brz* is analytic in A. For each
k=0

f(z) = Y arz* € AP*® and for fixed p € [0, 1) let f,(z) = f(p*z) . Because the power
k=0

series of f, converges uniformly on A, and because T is continuous, we have

T(fo(2)) = Zak k+1)
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As p— 1, f, — f in the AP* metric (8, p.197)

T(f) = lim o / / > azt Zb,,z"dzdy

|zl<p E=0

= 5= [[ fa)a(@)asa.

lz|<1

For fixed p € A, let fe(z) =2/(1 - ¢2)’ = § (2n + 2)z"¢". Then
n=0

2

(3.2) lg() = 1T( N < T &)y

and hence g € H*®(A); also ¢ € A, since éurig(f) = %m}T(f(z)), and hence
%1'_139(5)=T(f1).
f(a+2)/(m+1)<p<(a+2)/m,m=23,...,1let

_am (£
Fo) = g (755) l<t

By a calculation, since F' € AP'® we get
1 (m-1)
T(F) =39 (é)-
It now follows from Theorem H that
(3.3) g™ (€)] < 21T 11, o = O(1 — [g)+D/2 1,

so that g{™~2) € A, where v = (y +2)/p — m, by Theorem A and g € A(A).
If p=(a+2)/(m+1),let F(z)=dmt/d¢™1(¢/(1 — €2)). By a similar argu-
ment one can show that

lst™ )| =o(( - 1en)
and g{™~2) ¢ A, by Theorem B and g € 4A(A).
To prove the converse we shall first show that if g(z) = 3. byz* € A, where
k=0

v=(a+2)/p —m, then for f(z) = Y a,z" € A", T(f) as defined in (3.1) exists.

n=0
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o0

If (a+2)/(m+1) <p<(a+2)/m,let $(p?) = Eo ax(be/(2k + 2))p?*. 1t is to

be shown that 1/)(p2) has a limit as p — 1. We shall prove the existence of the limit
by showing that

(3.4) /ol |("/’(P2)P2)'| dp < oo.

Set h(z) = z2™~2g(z); then
}_ = p_ 0} pm—1 —16 — - b 2k+1
- zf[,,,_z] (re )h (re )drd0 = Zak &P
o Jo yrd

o 2k4+2\’
arbyp
- z '______. b
(k=o 2%k + 2 ) + apbop,

so
(3.5) (¥ (pz)pz)' = /2* /p e"'of[,,,_n (re"o)h("“l) (re'ia)drdﬂ — apbop.
o Jo

Using the assumption that g{™~2) € A, gives

C
— r)l—(a+2)/1’ +m

(m-—-1) i | ¢
[am(re)| < T
by Theorem A, consequently (3.5) gives

p 2% X
l(¢(pz)pz)'| < C/o (1_,,)(¢:.+2)/1'—m—1/o | fim—2 (r€'®)| d8dr + |agbo .

Hence by using Theorem F and D we have (3.4).
Finally, let p = (a + 2)/(m + 1) and g{™-2) € A,; then (3.5) can be written in
the form

(3.6) (¥(p*)p?) =2 /o ’ /o i G(re*®)H(re™*®)dodr — agbop,

where H (re"e) = zh('“‘l)(re"e) and G(re“) = fim-2) (re"’). By Theorem F, G €
oo .

A?/3, Set G(z) = Y Awz*; then by Theorem F again Gz € A%/5 50 by Theorem D
k=0

1
(3.7) | =01, Gupm)dp < o.
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Now, since g(™~2) € A,, we have |H[*/2(re¥)| = O(1/(1 - +))*/2, by Theorem B and
Theorem G. Equation (3.6) can be written in the form

4 2x . .
(#(s*)p*) =2 /o /0 Gp1 /2 (re®) BB/ (re™®) dfdr — aobop;

consequently

@) | <c // — ],, |Glayz) (re®®) | dBdr + |aobol;

hence 2
P pox .
(#(e*)e*) < €1~ p)™/D / / |Gz (re™®)| d8dr + |aobo]
o Jo
and (3.7) gives (3.4).
To complete the proof, we need to show that if g(z) = Y biz* is any analytic
k=0

(ol
function for which T(f) as defined in (3.1) exists for every f(z) = Y arz* € 4P°,
k=0

then T € (AP*)". For fixed p € [0, 1), let T(f) = 20 (axbi)/(2k + 2)p**; T,(f) is

a linear functional on AP'®. Also T, is bounded for each p in [0, 1) by Theorem 1.
By hypothesis lin} T,(f) exists for each fixed f € AP»*. Call this limit T(f). By the
p—

uniform boundedness principle which holds for A?** {7, p.45], sup ||T,| = C < co.
05 p<1

Thus |T,(f)| < C||fll,,, and by the continuity of T}, in {0, 1}, |T(f)| < C||fll,,q-
Therefore f € (AP=)*.

4, EQUIVALENCE OF TWO BANACH SPACES

Let A (n=0,1,...,0 <a < 1) be the space of analytic functions f(z) in A
with f, f1,..., f* € A(A) and f(™ € A, with the form

f(n) (et(0+t)) f(n) (etO) |
ta

151 = 11+ sup

>0
A7 is a Banach space [2].

Let A? be the Banach space of functions analytic in A with f, f*,..., f(M e A
and f(") € A,/ normed by

|f(n) (ei(O-H)) - Zf(") (eiO) + f(n) (e(a—t))l

1Al = Ifllee +sup :
t,0

’
t>0
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Two Banach spaces X and Y are said to be equivalent if there is one-to-one linear
mapping L of X onto Y such that both L and L~? are bounded. By the open mapping
theorem it is sufficient that L is bounded.

We have the following theorem:

THEOREM 2. If (a+2)/(m+1) < p < (a+2)/m, then the Banach space
(AP*)* and AT~2? with vy = (a +2)/p —m~1 are equivalent. If p = (o + 2)/(m + 1),
then (AP'*)* is equivalent to A™~2,

Theorem 2 of [2] is a limiting case of Theorem 2 for 0 < p < 1/2, and the question
arises whether it holds for the case 1/2 <p < 1.

PROOF: Let T € (A7'*)". By Theorem 1 the mapping T — g where g is defined
as in Theorem 1, is a one-to-one linear mapping L of (AP*®)* onto A,',"‘2 (A’:“z) . Then
by (3.3)

lo™=2()| < Tl (1 - ey

where 8 = ((a + 2)/p) — m. Hence the proof of Theorem 5.1 [3, p.74] shows that
m— i1 m— i 2
'g( 2) (e (9+t)) _ g( 2)(e 9)] < C(l + E) T Itlﬁ .

We have [lgl, = O(1) [IT]| by (3-2), so

lgll <CIIT|.
Thus g € AT~2? and L(T) =g, so
|L(T)] llgll
L]l = sup = sup £C.
iri=2 1T Il

Thus L is a bounded linear functional from (A?'*)" into -A?“z and Theorem 2 is

proved. 1|
REFERENCES

(1} K.XK. Burchaev and V.G. Ryabykh, ‘General form of linear functionals in H, spaces
0 < p < 1’, Siberian Math. J. 16 (1975), 678.

[2] P.L. Duren, B. Romberg and A.L. Shields, ‘Linear functionals on HP? spaces with
0 < p<1’, J. Reine Angew Math. 238 (1969), 32-60.

{3] Peter L. Duren, Theory of H? Spaces (Academic Press, 1970).

(4] G.H. Hardy and J.E. Littlewood, ‘Some properties of fractional integrals, II', Math. Z 34
(1932), 3-37.

https://doi.org/10.1017/50004972700028586 Published online by Cambridge University Press


https://doi.org/10.1017/S0004972700028586

[9)

(8]
(6]

(7]
(8]

(8]

Bergman spaces 425

C. Horowits, ‘Zero of functions in the Bergman spaces’, Duke Math. J. 41 (1974), 693-710.

A. Nakamura, F. Ohya and H. Watanabe, ‘On some properties of functions in weighted
Bergman spaces’, Proc. Fac. Sci. Tokai Univ. 15 (1979), 33—40.

W. Rudin, Functional analysis (MacGraw-Hill, 1973).

J.H. Shapiro, ‘Mackey topologies, reproducing kernels and diagonal maps on the Hardy
and Bergman spaces’, Duke Math. J. 43 (1976), 187-202.

A L. Shields and D.L. Williams, ‘Bounded projections, duality and multipliers in spaces
of analytic functions’, Trans. Amer. Math. Soc. 162 (1971), 287-302.

[10] S.V. Shvedenko, ‘On the Taylor coefficients of functions from Bergman spaces in the
polydisc’, Soviet Math. Dokl. 32 (1985), 118-121.
30 Rooks Run

Plymouth MA 02360
United States of America

https://doi.org/10.1017/50004972700028586 Published online by Cambridge University Press


https://doi.org/10.1017/S0004972700028586

