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Abstract

If fis areally mean p-valent in the unit disc, if A>0, and if f2 is defined as a
single-valued analytic function on the unit disc with finitely many arcs
removed, several results in the recent literature suggest that f* might be
areally mean pA-valent. The purpose of this note is to determine the valence
of £ when fis areally mean p-valent, and also to characterize those functions
for which f? is pA-valent for all A>0. Analogous results are obtained for
functions which are either s-dimensionally mean p-valent or logarithmically
mean p-valent.

Subject classification (Amer. Math. Soc. (MOS) 1970): 30A36, 30A32.

1. Introduction and statement of results

If f is regular in y ={z:|z|<1}, set n(r,w,f) equal to the number of roots in
y,={z:|z|<r} of f(z)=w, and put p(r,R.f)= (1/27) 3" n(r,Re®,f)d0. If
p(,R,F)<p for all R>0, f is called circumferentially mean p-valent, and we
write f€ C(p).

Denote the area, according to multiplicity, of f(y,)n{w: |w|< R} by A*(r, R,f).
It is easily verified that A*(r, R,f) = 37 [Bn(r, 1€, f) tdtdb. If A*(1,R,f)<pnR?
for all R>0, fis called areally mean p-valent, and we write f€ S(p).

Two additional classes of p-valent functions appearing in the literature are the
class of s-dimensionally mean p-valent functions (Spencer, 1940) and the class of
logarithmically mean p-valent functions (Jenkins and Oikawa, 1971). We denote
these classes by S(p) and L(p), respectively. We say that feS(p) if

JRp(l, R,A(R®)<pR® (R>0),
0
while feL( p) if

Ry p(1,R,[) Ry 1
_— =2 < —
n R dR<p (logR1+2) (0O<R,<Ry).
Many results in the recent literature have been concerned with the determination

of growth rates of various quantities associated with p-valent functions. For
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example, if f€ S(p) and if f(2)* = z# T +%a,(A)z" in an annulus {z: 0<ry <|z]|<1},
then a,(1) = O(1)n®*-1 if p>}, and more generally a,(A) = O(1)n2P2—1 if pA>}
(Hayman, 1967, p. 104).

Results of this nature suggest that if fis p-valent and A>0, then f? is pA-valent.
Some positive results are known. If fe C(p) and A>0, then f*e C(pA) (Hayman,
1967, p. 95). Also, if feS(p) and 0<A<1, then f2eS(p)) (Eke, 1967, p. 189).
The purpose of this note is to determine the valence of f* when fis p-valent, and
also to characterize those functions for which f is pA-valent for all A> 0.

Before proceeding further, we must specify the meaning of expressions such as
SA. In general, if f has zeros in v, f will not be single-valued. However, we shall
be dealing exclusively with functions f which are p-valent in one of the above
senses, and so, as is well known (Hayman, 1967, p. 103), f can vanish at most
finitely many times in y. If we now connect the zeros of f by a simple smooth
arc «, one of whose end points lies on the circumference |z| = 1, a single-valued
analytic branch of f* can be defined on the simply connected domain y; = y\ .
With this understanding, expressions such as fA€S(p)) shall mean that this
analytic branch of f? is areally mean pA-valent on the domain y,. Alternatively,
we could have defined an analytic branch of f* in a suitable annulus
{z: 1—e<|z|<1}, cut if necessary by a radius. All results in this paper are valid
with either understanding of f2.

We first determine the valence of f2 when fe S(p).

THEOREM 1. Let feS(p), and let A>0 be given. Set A = max (A, A%). Then
SfreS(pA), and the valence pA is best possible.

Note that for A>1, f2 need not belong to S(pA). We now characterize those
functions for which /€ S(pA) for all A>0. The characterization seems somewhat
interesting, since the areal behavior of f is characterized in terms of the circum-
ferential behavior.

THEOREM 2. Let p>0. Then f*€S(pA) for all A>0 if and only if fe C(p).
Both Theorem 1 and Theorem 2 continue to hold for the classes S(p) and L(p).
We have

THEOREM 3. Let A>0, A = max (A, 22). If fe S(p) (L(p)), then f* € S(pA)L(pA)),
and in each case the valence is best possible. Also, feC(p) if and only if
SreS(pA) (L(pA)) for all A>0.

2. Proofs of positive results
We begin by noting that if f'is regular in y and if A>0, then

VA
A*(r, R, f2) = 27X}, foR 22 1p(r, 1, 1) dt. 4}
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In order to prove this, we recall (Hayman, 1967, p. 96) that

p(r’ tA’fA) = )\P(", t’f)' (2)
After using (2) and changing variables in the formula defining 4*(r, R,f*), we
arrive at (1).

If 0<A<1, then A = A, and the fact that fAeS(pA) when feS(p) is known
(see Eke, 1967, p. 189 or Hayman, 1967, p. 45). We also note that this fact follows
easily from (1) upon integrating by parts.

We now assume A>1, so that A = A2 If fe S(p), it follows from (1) that

RY

A*(1, R,fY = 22X f
0

< R RV 4%(1, RUA, f)
< mpA2 R2,

Hence f2€ S(pA). An example showing that the valence pA is best possible will
be presented in Section 3.

We now prove Theorem 2. If fe C(p), it is well known (Hayman, 1967, p. 95)
that f2e C(pA), and hence f2eS(pA) for all A>0.

If fAcS(pA) for all A>0, then A*(1, R, )< ApnR? for all A>0, R>0. Upon
changing variables, we see that this is equivalent to

j " o1, ,f) d() < pT™
0

for all A>0, T>0. It now follows from a theorem of Spencer (Spencer, 1940,
p- 421) that p(1, R,f) <p for all R>0, and hence fe C(p).

The proof of Theorem 3 in the case of Syp) is essentially the same as the proof
in the case of S(p) = Sa(p), and hence it will be omitted.

If feL(p), then

A
222 1p(1,¢,f)dt

Ry A Ryl
f PLRSY) ip e P, 5.f) 4o

R R RylA s
R, 1
< L
< pA(logRl+2),

and so fAeL(pA). A simple modification of an example due to Jenkins and
Oikawa (Jenkins and Oikawa, 1971, pp. 402-403) shows that the valence pA is
best possible.

In order to complete the proof of Theorem 3, we note that if fe C(p), then
freC(pN)<=S(pA)<L(pA). Conversely, if fA€L(pA) for all A>0, then

[t [ attie)
4

R1 Ryt/a s

Ry 1
< Ap(logE +§)
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for all 0 < R, < R,. Thus, for any interval /< (0,00), we have
pe; f ££1,_s;j)_—£ds< A0/2. A3)
I

If there exists s, with p(1,5,,f)>p, then the fact that p(l,s,f) is a lower semi-
continuous function implies the existence of an interval I on which p(l,s,f)>p.
This in turn contradicts the fact that (3) holds for all intervals 7 and for all A>0.
Therefore, p(1,s,f)<p for all s, and so fe C(p).

3. Example

We now present an example to complete the proof of Theorem 1. Given p >0,
A>1 and O<e<pA? we construct feS(p) such that fA¢S(pA—e). We begin
by choosing xe(0,1) and setting y = (1—x%~1. Put A(x) = {re?: x1vP<t<1,
0e(0,2m)}. Let h map y conformally onto the simply connected domain A(x),
and set f= A¥?. Elementary geometric arguments now show that with m = [yp],
we have

m+1, 0€[0,2x(yp—m)), Re(x,1),

n(l,Re f)={ m, 0e2n(yp—m),2m), Re(x,1),

0 Ré(x,1).
This in turn implies that
yp, Re(x,1),
p(ls R,f) =
0, Ré¢(xD.

We now claim that fe.S(p). If 0< R<x, it is trivially true that
A*(1, R, f)<pnR2
If x<R<1, then

'R
A¥ (LR, [f) = 27'rf tp(1,t,f)dt
1]

R
= 2'n'f yptdt
x

= mp(l —x3)~1(R%—x2).

Straightforward computations now show that A*(1,R,f/)<pwR% If R>1, then
A*(1, R, f) = pr<pmR2 Hence fe S(p).

We now complete the construction by choosing x (and hence f) so that
SAr¢S(pA—e). If xA< R< 1, it follows from (1) that

A*(1, R,fY) = pAn(R*~x*}) y/A.
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Therefore

AYLRSY o 1—x®
sup{——ﬂRT——.x <R<l} —pA'X‘(l_—xz).

As x->1, (1—=x*)/A(1 —x?) = x2A-D 4 o(1). Hence, given >0, we choose x<1
such that

* A
sup{—A——(%r—’If—;—”: x"<R<1}>pA—e.

With such an x, we have f€S(p), yet fA¢S(pA—¢).
To construct a corresponding example for S/p), we merely define y to be
y = (1—x%)1, and proceed as above.
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