J. Austral. Math. Soc. (Series A) 46 (1989), 212-219

FOURIER SERIES WITH SMALL GAPS

P. ISAZA and D. WATERMAN

(Received 13 February 1987)

Communicated by J. F. Price

Abstract

A trigonometric series has “small gaps” if the difference of the orders of successive terms is
bounded below by a number exceeding one. Wiener, Ingham and others have shown that if a
function represented by such a series exhibits a certain behavior on a large enough subinterval
I, this will have consequences for the behavior of the function on the whole circle group. Here
we show that the assumption that f is in any one of various classes of functions of generalized
bounded variation on I implies that the appropriate order condition holds for the magnitude of
the Fourier coefficients. A generalized bounded variation condition coupled with a Zygmund-
type condition on the modulus of continuity of the restriction of the function to I implies
absolute convergence of the Fourier series.

1980 Mathematics subject classification (Amer. Math. Soc.): 42 A 16, 42 A 55, 26 A 45.

1. Introduction

A trigonmetric series Y ay, cos nz + by sin nz = Y A,(z) is said to be lacunary
if it exhibits large gaps, that is, a, = b, = 0 except for n € {nx} where
ng+1/ne = ¢ > 1, k = 1,2,.... Such series have been extensively studied
(Zygmund [10], Chapter V, Sections 6-8; Bary [1], Chapter XI) with results of
the following character: some particular local property of the series implies that
it has a certain global property.
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12] Fourier series with small gaps 213

We say that a trigonometric series Y Ap, (z) has “small gaps” if ngy1 —ng >
g > 1. Although this case is briefly treated in the standard sources ([10], Chapter
V, §9; [1], Chapter XI, §13), the literature is not well known and we will review
it briefly.

These problems seem first to have been considered by Wiener [9], who showed
that if a series with small gaps behaves well in a large enough interval, then
some aspects of this behavior hold for [0,27]. His primary interest was the
generalization of the Hadamard gap theorem.

Wiener’s result was improved by Ingham [3] who employed it to establish a
generalized form of the Hardy-Littlewood “high-indices” theorem. Kennedy [4]
established results on nonharmonic trigonometrical series which specialize to the
harmonic case as follows: If ngy1 — ng — oo and ) Ap, () is the Fourier series
of an integrable function f, then

(i) f of bounded variation (BV) on an interval I implies a,,b, = O(n™!).

(ii) feAg on I, 0 < a < 1, implies ay,, b, = O(n™?).

(iii) f€As on I, 3 < a < 1, implies Y |an| + |bn| < 00.

(iv) fEAqon I,0< a < 1, and f € BV implies ) |an| + |bs| < o0.

Here A, denotes the Lipschitz class of order a. Actually he showed these
results hold if lim(ngy1 — ng) > 32n/|I| and, therefore hold regardless of the
length of I if ng4q — ng — oo.

Noble [5] had established the above conclusions under the assumption (ng4+1—
ng)/log ng — oo. Bary [1], Chapter XI, §13, reports on the work of Noble and
slight generalizations of it by Ul'yanov. Her comment to the effect that Kennedy
required f € L%([0, 27]) in his results is misleading. Patadia [6] has shown that
a similar extension of Ste¢kin’s theorem on absolute convergence ([1, page 196])
can be made by assuming the conditions of that theorem to hold on an arbitrary
interval and requiring further ng41 — ng — oo.

2. Definitions and background

Let f be a real function defined on the circle group T'([0, 27)). {I,} will denote
a collection of nonoverlapping intervals in 7. If I = [a, b], then f(I) = f(b)— f(a).

If A = {)\,} is a nondecreasing sequence of positive real numbers such that
Y 1/An = 0o, we say that f is of A-bounded variation (ABV) if > | f(In)|/An
< oo for every {I,}. This is known to imply that the collection of sums
Y 1f(In)|/An is bounded [8].

Let ¢(z) be a nonnegative convex function defined on [0, co) such that p(z)/z
— 0as z — 0. We say that f is of p-bounded variation (¢ BV) if for some ¢ > 0,

sup {3 @(clf(In)){In}} = Ve(f) < o0.
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If h(n) is a nondecreasing concave-downward function on the positive integers,
we say that f € V[h] if there is a constant C such that > 7 |f(Ix)| < Ch(n),
n=1,2,..., for every collection {I,}.

We say that f is in one of the classes on I C T if, in the definition, we restrict
{In}by I, CI.

We concern ourselves here with the known estimates of the order of magnitude
of the Fourier coefficients for functions in these classes (7] and with a condition
for the absolute convergence of Fourier series of V' [n®] [2], showing that these
results hold if the conditions are satisfied on a (large enough) small interval
ICT.

3. Statement of results

We suppose throughout that f is a real function in L'(T) with Fourier series
ch,‘e‘""m, N_x = —ng, satisfying ng4y —ng 2 ¢ > 1,k =0,1,2,.... Let
I C T be a closed interval with length |I| = (1 + 6)2x/q, 6§ > 0.

We have the following results.

THEOREM 1. With f and I as above,

(i) f € V[h] on I implies ¢, = O(h(|n|)/|n|).

(i) f € ABV on I implies c, = O(1/ 1" 1/,).
(iii) f € @BV on I implies ¢, = O(p~1(1/|n|)).

THEOREM 2. Let f and I be as above. Let wy(f,t) be the modulus of conti-
nuity of f restricted to I. If feV[n*] onI,0<a < i, and

=1 (1-20)/2(1-0) [, 1
-2a —a
Z ;iwl (f’n> < 00,

n=1

then the Fourier series of f converges absolutely.

It is clear that if we make the assumption nx4; —nx — 00, then the conclusions
hold for any nondegenerate interval I.

4. Preliminaries

The proofs of our theorems rest on two other results:
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LEMMA 1. Let f € LY(T)NL%(I), I a closed subinterval of T. The sequence
of partial sums of the Fourier series of f converges to f in L2(I') for any closed
interval I' in the interior of I.

PROOF. With I and I’ as above, let g = f on [ and g =0 on T\I. Let S,(:)
be the nth partial sum of the Fourier series of a function. Since g € L?(T) we
have ||Sn(g) — gllz2(r) — 0 as n — oco. Therefore,

NSn(f) = fllLzary £ WSn(f) = Sn(@)llL2crry + ISn(g) = fllz2 vy
< NSa(f) = Sn(@lLzrry + 1Sa(9) — gllz2(r)
= o(1),

since the localization principle implies that S, (f) — Sp(g) — 0 uniformly on I’.
Lemma 1 enables us to extend a result due to Ingham (3] as follows.

LEMMA 2. Let ) cp, ™% be the Fourier series of a function f € LY(T)N
L(I) where —ng = n_g, ngp1—ne > q¢>1,k=0,1,2,..., and |I| = (1+6)27/q
for some 6 > 0. Then

> lenel? < (As/11) /, /(@) dz

-0

where As = 2m(1 + 6)%/46(2 + 6).

PROOF. Let I, be a closed interval of length (1 + 1)27/q concentric with I,
n < 6, and let Sy(z) = Zsz_N ¢n, €. Then by [10], Chapter V, Theorem
9.1

N
Z len, |* < (An/”r/')/l |Sn (z)|? dz.
k=—N n

By Lemma 1, S,, — f in L?(I,) as N — oo and therefore fI" |Sn |2 — fI” I£12,
implying

o0 .
S lem? < An/ilo) [ 17 da.
-—00 I'I

Letting 7 increase to 6 we have the desired result.

5. Proof of Theorem 1

Let |I| = 2x/q + 2¢ and let I’ be the concentric interval of length 27/q + €.
Consider |k| so large that 0 < 27/|ni| < €/2 and let N = Ny = [(|ngle/4n) — 1].
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For j = 1,+1,£2,...,£N, let
g5(z) = fz + 25/ |nk| + 7/2Inl) - f(z + 25/ |nk| — 7/2|nk|).
Then, for every s,
gi(ns) = icy, €2 /1M gin n o /2]ny .

(i) If f € V[h] on I, then g; is bounded on I’ and, therefore -~ g; € L*(I").

By Lemma 2.
N z 00 N 2 N 2
> am)| < ¥ | X s <0 [So)|
j=-N S=—00 j=—N r —N

(The letter C will denote various constants independent of k.) Since §;(ng) =
2icp, sgn ng and 0 < C < (2N +1)/|nk| < C’ for some constants C and C’ (that
is, 2N + 1 ~ |ng]), it follows that

(x <mur ), (Z 'gf")') &

< %(hwv +1))?

C
< W(h(lnkl))2

which establishes (i).
(ii) If f € ABV on I we observe that

N 2N+1
> lgs(a) (ZI/A)<C2N+1)
j=-—N

Thus from (*) we have

2N+1 [l

lenel < | N+ 1)/ Y10/ 1A
j=1 1

This establishes (ii).
(iii) We observe first that for small enough a > 0 (independent of k),

1 N
4 (mgadw(z)l) < 2Na+ Ve(£) <1/lml
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implying
N
Y lgs(@)| < C@N + e~ (1/Inl).
~N
Thus, from (*) we have
C

<
|cﬂ-k| - lnkl

(2N + 1) (1/In)

which yields (iii).

6. Proof of Theorem 2

Let f € V[n®] on I and let g; and I’ be as in the proof of Theorem 1.
From Lemma 2 we have

(>} o0

> la5nalP = Y tenPsin® nem/2nel < C [ loy(@)f de

S=-o00 S=-o00
for j =0,%1,...,£N. For s such that |ni|/2 < |n,| < |nk|, we have
sin® nym/2|ni| > 5

letting 3_* indicate summation over these values of s,

Y kenl?<C [ @) da.

Summing over j and noting that 2N + 1 ~ |ni| we have

. c &
c,ZS—/ g;(z)|? dz.
2 lenf? < 219
Fix z € I’ and for each integer m > 0, let

En = {5127 Dwr(f,7/Ink]) < gj(z) < 27 wr(f,7/Ink])}-

Since |g;(z)| < wi(f,/|nk|), each j belongs to one and only one E,,. Let op,
be the cardinality of E,,. Since f € V[n*] on I,

om2” D (f,r/Inkl) < Y lgi(2)] < Cog,
i€Bm

implying
om < C2™/ (A= r /A= (£ fing)).
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Therefore
N
Yo dg@PF=)_ Y lgi@)? <Zam4 "wi(f, 7/ Ink)
j=-N m JEEm
DL (o) 1
m
< Cup 20 (1, /),
implying

» C _ _
> len P < e O (fw ).

For large m, if there is ny such that 2™ < n, < 2™*+!, let k = max{s|n, < 2™*!}.
For such an m,

Y len <Y e P < w2 OO ()

2m<n, |<2m+1
< Cz—mwgl—za)/(l—a)(f’ x/2™).

Hence,

S len,] S C TR (£ 1 om),

am<|n,|<2m+1

The theorem follows then from the fact that the convergence of 3> |cy,,| is
implied by the convergence of

[ o}
Zw§1—2a)/2(l—a) (f, 1r/2m),

0
and the convergence of this last series is equivalent to that of

o0
1 (1-2a)/2(1-a) 1
2w o)

n=1
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