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1. Introduction. The theorem of the title asserts that every
non-degenerate continuum (that is, every compact connected Hausdorff
space containing more than one point) contains at least two non-cutpoints.
This is a fundamental result in set-theoretic topology and several
standard proofs, each varying from the others to some extent, have
been published. (See, for example, [1], [4] and [5]). The author has
presented a less standard proof in [3] where the non-cutpoint existence
theorem was obtained as a corollary to a result on partially ordered
spaces. In this note a refinement of that argument is offered which
seems to the author to be the simplest proof extant. To facilitate its
exposition, the notion of a weak partially ordered space is introduced
and the cutpoint partial order of connected spaces is reviewed.

2. Weak partially ordered spaces. If X is a topological space

endowed with a partial order < we write
L(x) ={yeX:y§x},
M(x) = {yeX:x<vy}.

An element m of X is maximal (minimal) if M(m) = {m} (L(m) = {m}).
A subset A of X is said to be increasing (decreasing) if M(a) C A
for each a ¢ A (L(a) C A for each a ¢ A). The space X is a weak
partially ordered space if, for each x ¢ X such that x is not maximal,
there exists a closed set K(x) C M(x) such that K(x) - {x} is non-
empty and increasing. The partial order is said to be weakly continuous
if X is a weak partially ordered space. We note that weak continuity
is a much weaker condition than upper semicontinuity and related
conditions which have been studied in [3]. It permits a generalization

of a well-known proposition about the existence of maximal elements

in partially ordered spaces which was first enunciated by Wallace [2].

PROPOSITION 1. A compact weak partially ordered space has
a maximal element.

Proof. Let X be a compact weak partially ordered space. By a
standard maximality argument it may be shown that X contains a
subset C satisfying the following conditions.
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(1) The set C is simply ordered.

(2) ¥ xe¢ C and x is not maximal then there exists a closed
set K(x) C M(x) such that K(x) - {x} is increasing and K(x)N\C - {x}
is non-empty.

(3) The set C is maximal with respect to (1) and (2).

Since X is compact there exists z ¢ () {K(x) : x ¢ C} . The maximality
of C insures that z ¢ C and that z is a maximal element of X.

PROPOSITION 2. Let X be a compact weak partially ordered
space which is not simply ordered and which satisfies the condition
(S) if x e X then L(x)is simply ordered. Then X contains at least
two distinct maximal elements.

Proof. Let x and y be elements of X which are not comparable
under the partial order. It follows from (S) that the sets M(x) and
M(y) are disjoint. Therefore, if K(x) and K(y) are the closed subsets
of M(x) and M(y), respectively, whose existence is guaranteed by the
weakly continuous partial order, then K(x) and K(y) are disjoint.
Now K(x) and K(y) are themselves compact weak partially ordered
spaces and so they have maximal elements by Proposition 1. Since

K(x) - {x} and K(y) - {y} are increasing, those elements are also
maximal in X.

3. The cutpoint order. Let X be a connected Hausdorff space
and suppose that e is a cutpoint of X. We define a relation < on X
by x<y if andonlyif x = e or x =y or x separates e and vy.
This relation has been called the cutpoint order on X. In this
paragraph we summarize a few of its properties. Proofs of
Propositions 3 and 6 are implicit in [3] but they are sketched here in
order to make the treatment self-contained.

PROPOSITION 3. The cutpoint order is a partial order.

Proof. This is straightforward except to show that if
e< x< y< z then x< z. By definition of the cutpoint order we have

X-{x} = AUB,

X -{y} = cUp,
where A and B are separated sets, C and D are separated sets,
e ¢ P_xﬂC, ve B and ze¢ D. Now D = DU{y} is connected, so if
z ¢ A then x ¢ D and hence y< x, which is impossible since < is

asymmetric. Therefore z ¢ B, whichis to say that x< z.

PROPOSITION 4. The non-cutpoints of X are precisely the
maximal points relative to the cutpoint order.
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Proof. Obvious.

PROPOSITION 5. The cutpoint order is weakly continuous.

Proof. Since X = M(e) is closed and M(e) - {e} 1is increasing
we may set K(e) =X, If x Jf e and x is not maximal then x is a
cutpoint and hence

X-{x} = EUF
where E and F are non-empty separated sets and e ¢ E. Now
F =FU{x} is closed and F is readily seen to be increasing.

Therefore we may set F = K(x) and the proposition follows.

PROPOSITION 6. If xe S then L(x) is simply ordered.

Proof. It is sufficient to show that if p and q are members of
L(x) - {e,x} and p{ q then gq<p. Now by definition p and q are
cutpoints separating e and x and therefore

1

X - {p} GUH,

X - {q}

1Y7,

where G and H are separated sets, I and J are separated sets,
ee GONI and x ¢ HO J. Further, since p ff_ q it follows that q e G
and hence the connected set J=J U {q} contains p. But then

qsp.

PROPOSITION 7. The cutpoint order is not a simple order.

Proof. Since e is a cutpoint of X there exist elements a and
of X such that e separates a and b. It follows that a does not
separate e and b and that b does not separate e and a, i.e.,

a and b are not comparable.

4. The main result. The non-cutpoint existence theorem can
now be obtained from the foregoing propositions.

THEOREM. A non-degenerate continuum has at least two non-
cutpoints.

Proof. The theorem is obvious if X is cutpoint free so we may
assume that X contains a cutpoint, e. We give X the cutpoint
order. By Propositions 3 and 5 X is a weak partially ordered space.
By Propositions 6 and 7 and the compactness of X the hypotheses of
Proposition 2 are satisfied so that X contains at least two distinct
maximal elements. The theorem now follows from Proposition 4.
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