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Cohomological Dimension and Schreier’s
Formula in Galois Cohomology

John Labute, Nicole Lemire, Ján Mináč, and John Swallow

Abstract. Let p be a prime and F a field containing a primitive p-th root of unity. Then for n ∈ N,

the cohomological dimension of the maximal pro-p-quotient G of the absolute Galois group of F is

at most n if and only if the corestriction maps Hn(H, Fp) → Hn(G, Fp) are surjective for all open

subgroups H of index p. Using this result, we generalize Schreier’s formula for dimFp H1(H, Fp) to

dimFp Hn(H, Fp).

Introduction

For a prime p, let F(p) denote the maximal p-extension of a field F. One of the fun-

damental problems in the Galois theory of p-extensions is to discover useful interpre-

tations of the cohomological dimension cd(G) of the Galois group G = Gal(F(p)/F)

in terms of the arithmetic of p-extensions of F. When cd(G) = 1, for instance, we

know that G is a free pro-p-group [S1, §3.4], and when cd(G) = 2, we have impor-

tant information on the G-module of relations in a minimal presentation [K, §7.3].

For a fixed n > 2, however, little is known about the structure of p-extensions

when cd(G) = n. Now when n = 1 and G is finitely generated as a pro-p-group, we

have Schreier’s well-known formula

(1) h1(H) = 1 + [G : H](h1(G) − 1)

for each open subgroup H of G, where h1(H) := dimFp
H1(H, Fp). (See, for instance,

[K, Example 6.3].)

Observe that from basic properties of p-groups it follows that for each open sub-

group H of G there exists a chain of subgroups G = G0 ⊃ G1 ⊃ · · · ⊃ Gk = H

such that Gi+1 is normal in Gi and [Gi :Gi+1] = p for each i = 0, 1, . . . , k − 1. Since

closed subgroups of free pro-p-groups are free [S1, Corollary 3, §I.4.2], Schreier’s

formula (1) is equivalent to the seemingly weaker statement that the formula holds

for all open subgroups H of G of index p:

(2) h1(H) = 1 + p(h1(G) − 1).
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Using the Bloch–Kato conjecture (see [V1, V2, SJ]), we deduce a generalization of

Schreier’s formula for each n ∈ N. The result requires a hypothesis on the surjec-

tivity of a single corestriction map, from an open subgroup of index p, on degree n

cohomology. By [NSW, Proposition 3.3.8], if cd(G) ≤ n, then this surjectivity of

the corestriction holds for every open subgroup of G of index p. Conversely, in Sec-

tion 1, we show that this surjectivity of the corestriction for every subgroup of index

p implies cd(G) ≤ n. Hence the result generalizes Schreier’s formula in two ways:

first, from n = 1 to n ∈ N, and second, from cd(G) = n to a condition on a single

corestriction map.

Let ξp denote a p-th root of unity of order p, F× the nonzero elements of a field

F, and for c ∈ F×, let (c) ∈ H1(G, Fp) denote the corresponding class. Moreover,

α ∈ Hm(G, Fp), abbreviate by annn α the annihilator

annn α = {β ∈ Hn(G, Fp) | α ∪ β = 0}.

Finally, set hn(G) = dimFp
Hn(G, Fp).

Theorem 1 Suppose that ξp ∈ F and hn(G) < ∞. Let H be an open subgroup of G

of index p, with fixed field F( p
√

a), and suppose furthermore that the corestriction map

Hn(H, Fp) → Hn(G, Fp) is surjective. Then

hn(H) = an−1(G, H) + p(hn(G) − an−1(G, H)),

where an−1(G, H) is the codimension of annn−1(a):

an−1(G, H) := dimFp
(Hn−1(G, Fp)/ annn−1(a)).

The proof of Theorem 1 provides additional insight into the structure of Schreier’s

formula; in fact, it makes Schreier’s formula transparent from the Galois module

point of view for any n ∈ N. In Section 1, we derive several interpretations for

the statement cd(G) = n. First, we prove in Theorem 2 that if F contains a prim-

itive p-th root of unity ξp, then cd(G) ≤ n if and only if the corestriction maps

cor : Hn(H, Fp) → Hn(G, Fp) are surjective for all open subgroups H of G of index

p. As a corollary, we show that the corresponding cohomology groups Hn+1(H, Fp)

are all free as Fp[G/H]-modules if and only if cd(G) ≤ n, under the additional hy-

pothesis that F = F2 + F2 when p = 2. Finally, we show in Theorem 4 that if G

is finitely generated, then cd(G) ≤ n if and only if a single corestriction map, from

the Frattini subgroup Φ(G) = Gp[G, G] of G, is surjective. In Section 2 we prove

Theorem 1.

For basic facts about Galois cohomology and maximal p-extensions of fields, we

refer to [K, S1]. In particular, we work in the category of pro-p-groups.

1 When Is cd(G) = n?

From the Bloch–Kato conjecture [V1,V2,SJ], we have the following interesting trans-

lation of the statement cd(G) ≤ n for a given n ∈ N. Observe that when cd(G) ≤ n,

the corestriction maps cor : Hn(H, Fp) → Hn(G, Fp) are surjective for all open sub-

groups H of G of index p [NSW, Proposition 3.3.8].
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Theorem 2 Suppose that ξp ∈ F. Then for each n ∈ N we have cd(G) ≤ n if and only

if cor : Hn(H, Fp) → Hn(G, Fp) is surjective for every open subgroup H of G of index p.

Proof Suppose that F satisfies the conditions of the theorem, and let GF(p) be the

absolute Galois group of F(p).

Observe that since F contains ξp, the maximal p-extension F(p) is closed un-

der taking p-th roots, and hence H1(GF(p), Fp) = {0}. By the Bloch–Kato con-

jecture [V2, Theorem 7.1], the subring of the cohomology ring H∗(GF(p), Fp) con-

sisting of elements of positive degree is generated by cup-products of elements in

H1(GF(p), Fp). Hence Hn(GF(p), Fp) = {0} for n ∈ N. Then, considering the

Lyndon–Hochschild–Serre spectral sequence associated to the short exact sequence

1 → GF(p) → GF → G → 1, we have that

(3) inf : H∗(G, Fp) → H∗(GF, Fp)

is an isomorphism.

Now suppose that cor : Hn(H, Fp) → Hn(G, Fp) is surjective for all open sub-

groups H of G of index p. Let K be the fixed field of such a subgroup H. Then

K = F( p
√

a) for some a ∈ F×. From [V1, Lemma 6.11 and §7] and [V2, §6 and

Theorem 7.1], as well as [V1, Proposition 5.2], modified in [LMS1, Theorem 5] and

translated to G from GF via the inflation maps (3) above, we obtain the following

exact sequence:

(4) Hn(H, Fp)
cor−→ Hn(G, Fp)

−∪(a)−−−→ Hn+1(G, Fp)
res−→ Hn+1(H, Fp).

Therefore res : Hn+1(G, Fp) → Hn+1(H, Fp) is injective for every open subgroup H

of G of index p.

Now consider an arbitrary element α = (a1) ∪ · · · ∪ (an+1) ∈ Hn+1(G, Fp), where

ai ∈ F× and (ai) is the element of H1(G, Fp) associated to ai , i = 1, 2, . . . , n + 1.

Suppose that (a1) 6= 0, and set K = F( p
√

a1) and H = Gal(F(p)/K). We have

0 = res(α) ∈ Hn+1(H, Fp). Since res is injective, α = 0. Again by the Bloch–Kato

conjecture [V1, Theorem 7.1], we know that Hn+1(G, Fp) is generated by the elements

α above. Hence Hn+1(G, Fp) = {0} and therefore cd(G) ≤ n. (See [K, page 49].)

Conversely, if cd(G) ≤ n then by [NSW, Proposition 3.3.8] we conclude that

cor : Hn(H, Fp) → Hn(G, Fp) is surjective for open subgroups H of G of index p.

From now on we will use without mention the fact from the proof above that

inf : H∗(G, Fp) → H∗(GF, Fp) and inf : H∗(H, Fp) → H∗(GK , Fp) are isomorph-

isms, as well as the fact that the latter isomorphism is Gal(K/F)-equivariant.

Using conditions obtained in [LMS2] for Hn(H, Fp) to be a free Fp[G/H]-module,

we obtain the following corollary. We observe the convention that {0} is a free

Fp[G/H]-module.

Corollary 3 Suppose that ξp ∈ F and if p = 2; suppose also that F = F2 + F2. Then

for each n ∈ N, we have that Hn+1(H, Fp) is a free Fp[G/H]-module for every open

subgroup H of G of index p if and only if cd(G) ≤ n.
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Observe that the condition F = F2 + F2 is satisfied in particular when F contains

a primitive fourth root of unity i: for all c ∈ F×, c = ((c + 1)/2)2 + ((c − 1)i/2)2.

Proof Assume that F is as above, n ∈ N, and that Hn+1(H, Fp) is a free Fp[G/H]-

module for every open subgroup H of G of index p. If p > 2, then it follows from

[LMS2, Theorem 1] that the corestriction maps cor : Hn(H, Fp) → Hn(G, Fp) are

surjective for all such subgroups H.

If p = 2, then we consider open subgroups H of index 2 with corresponding

fixed fields K = F(
√

a). From [LMS2, Theorem 1] we obtain that annn(a) =

annn((a) ∪ (−1)). It follows from the hypothesis F = F2 + F2 that (c) ∪ (−1) = 0 ∈
H2(G, F2) for each c ∈ F× and in particular for c = a. Hence annn(a) = Hn(G, F2).

But then from exact sequence (4) above, we deduce that cor : Hn(H, F2) → Hn(G, F2)

is surjective.

Since our analysis holds for all open subgroups H of index p, by Theorem 2 we

conclude that cd(G) ≤ n.

Assume now that cd(G) ≤ n. Then by Serre’s theorem in [S2] we find that

cd(H) ≤ n for every open subgroup H of G. Hence Hn+1(H, Fp) = {0} which,

by our convention, is a free Fp[G/H]-module, as required.

Remark When p = 2 and F 6= F2 + F2, the statement of the corollary may fail.

Consider the case F = R. Then the only subgroup H of index 2 in G = Z/2Z is

H = {1}. Then for all n ∈ N, Hn+1(H, F2) = {0} and is free as an F2[G/H]-module.

However, cd(G) = ∞.

Under the additional assumption that G is finitely generated, we will show that the

surjectivity of a single corestriction map is equivalent to cd(G) ≤ n.

Theorem 4 Suppose that ξp ∈ F and G is finitely generated. Then for each n ∈ N we

have cd(G) ≤ n if and only if cor : Hn(Φ(G), Fp) → Hn(G, Fp) is surjective.

Proof Because G is finitely generated, the index [G :Φ(G)] is finite, and we may

consider a suitable chain of open subgroups G = G0 ⊃ G1 ⊃ · · · ⊃ Gk = Φ(G)

such that [Gi :Gi+1] = p for each i = 0, 1, . . . , k − 1. (Then each Gi+1 is a normal

subgroup of Gi .)

If cd(G) ≤ n, then by Serre’s theorem [S2], cd(H) = cd(G) for every open sub-

group H of G. Hence if cd(G) ≤ n, we may iteratively apply Theorem 2 to the chain

of open subgroups to conclude that cor : Hn(Φ(G), Fp) → Hn(G, Fp) is surjective.

(Alternatively, we could use [NSW, Proposition 3.3.8] to deduce that this corestric-

tion map is surjective.)

Assume now that cor : Hn(Φ(G), Fp) → Hn(G, Fp) is surjective. For each open
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subgroup H of G of index p we have a commutative diagram of corestriction maps

Hn(Φ(G), Fp) //

&&N

N

N

N

N

N

N

N

N

N

N

Hn(H, Fp)

��

Hn(G, Fp),

since Φ(G) ⊂ H. We obtain that cor : Hn(H, Fp) → Hn(G, Fp) is surjective, and by

Theorem 2 we deduce that cd(G) ≤ n, as required.

2 Schreier’s Formula for Hn

We now prove Theorem 1. Suppose that H is an open subgroup of G of index p and

the corestriction map cor : Hn(H, Fp) → Hn(G, Fp) is surjective. Let K = F( p
√

a) be

the fixed field of H.

We claim that annn−1((a)∪(ξp)) = Hn−1(G, Fp). Suppose that α ∈ Hn−1(G, Fp).

By the surjectivity hypothesis there exists β ∈ Hn(H, Fp) such that cor β = (ξp) ∪α.

From [V1, Proposition 5.2] modified in [LMS1, Theorem 5], (a) ∪ (cor β) = 0

and hence (a) ∪ (ξp) ∪ α = 0. Therefore the claim is established. By [LMS1, The-

orem 1], we obtain the decomposition Hn(H, Fp) = X ⊕ Y , where X is a trivial

Fp[G/H]-module and Y is a free Fp[G/H]-module. (Because annn−1((a) ∪ (ξp)) =

Hn−1(G, Fp), there are no 2-dimensional summands when p > 2, and by the sur-

jectivity of the corestriction map, the summand Z in [LMS1, Theorems 1 and 2], a

trivial Fp[G/H]-module, is also {0}.) Moreover, from [LMS1, Theorems 1 and 2] we

have

x := dimFp
X = dimFp

Hn−1(G, Fp)/ annn−1(a) = an−1(G, H),

y := rank Y = dimFp
Hn(G, Fp)/(a) ∪ Hn−1(G, Fp).

Therefore hn(H) = dimFp
Hn(H, Fp) = x + py.

Now, considering the exact sequence

0 → Hn−1(G, Fp)

annn−1(a)

−∪(a)−−−−→ Hn(G, Fp) → Hn(G, Fp)

(a) ∪ Hn−1(G, Fp)
→ 0,

we see that dimFp
Hn(H, Fp) is equal to the sum of the dimension x of the kernel and

p times the dimension y of the cokernel, and the theorem follows.

Observe that our formula hn(H) = x + py holds without the assumption that

hn(G) is finite. (This assumption is used only in the formulation of Theorem 1 where

we subtract an−1(G, H) from hn(G).)

When n = 1, annn−1(a) = {0} so that an−1(G, H) = 1. Therefore when G is

finitely generated, we recover Schreier’s formula (2):

h1(H) = 1 + p(h1(G) − 1).

https://doi.org/10.4153/CMB-2007-056-3 Published online by Cambridge University Press

https://doi.org/10.4153/CMB-2007-056-3


Cohomological Dimension and Schreier’s Formula 593

References

[K] H. Koch, Galois theory of p-extensions. Translated from the 1970 German original by Franz
Lemmermeyer. With a postscript by the author and Lemmermeyer. Springer-Verlag, Berlin,
2002.
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