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It is common wisdom that collisionless shocks become non-planar and non-stationary
at sufficiently high Mach numbers. Whatever the shock structure, the upstream and
downstream fluxes of the mass, momentum and energy should be equal. At low
Mach numbers, these conservation laws are satisfied when the shock front is planar
and stationary. When this becomes impossible, inhomogeneity and time dependence,
presumably in the form of rippling, develop. In this study, we show that the shock structure
changes as a kind of ‘phase transition’ when the Mach number is increased while other
shock parameters are kept constant.
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1. Introduction

Collisionless shocks, particularly fast magnetized shocks, play an important role in
particle heating and acceleration in numerous systems in space plasmas. The magnetic
structure of the shock front largely determines what happens to the charged particles,
ions and electrons upon crossing the shock. This structure can be studied in detail only
within the heliosphere, where in situ measurements are possible. Plenty of heliospheric
observations (Montgomery, Asbridge & Bame 1970; Greenstadt e al. 1975, 1977, 1980;
Livesey, Kennel & Russell 1982; Russell, Hoppe & Livesey 1982a; Russell e al. 1982b,
1983; Bavassano-Cattaneo et al. 1986; Mellott & Livesey 1987; Farris, Russell & Thomsen
1993; Tatrallyay et al. 1997; Bale et al. 2005; Burgess et al. 2005; Moullard et al. 2006;
Lobzin et al. 2007, 2008; Lefebvre et al. 2009; Krasnoselskikh et al. 2013; Masters et al.
2013; Johlander et al. 2016; Gingell et al. 2017; Johlander et al. 2018; Dimmock et al.
2019; Liu et al. 2021) show that the shock structure depends on the Mach number, on the
angle 6g, between the upstream magnetic field and the shock normal and on the ratio of
the upstream plasma pressure to the upstream magnetic pressure . Quasi-parallel shocks,
Opn < 45°, are often thought to have an extended irregular shock front, although this is
not universal (Burgess et al. 2005; Dimmock et al. 2023; Jebaraj et al. 2024). Oblique
shocks typically have a well-defined shock transition. Very low-Mach-number shocks
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possess a nearly monotonic magnetic profile (Farris et al. 1993). Higher-Mach-number
shocks have a substantial overshoot (Russell ez al. 1982a), and even higher-Mach-number
shocks are rippled (Moullard et al. 2006) or reforming (Lobzin et al. 2007; Lefebvre
et al. 2009). However complicated is the shock structure, the mass, momentum and energy
must be conserved, that is, the upstream and downstream fluxes of the mass, momentum
and energy, properly averaged over space and time, should be equal. In other words,
the developed shock structure should be able to ensure the equality of the fluxes. If a
planar stationary structure is sufficient to maintain the conservation laws, the shock would
be planar and stationary. If a substantial overshoot is required but otherwise planarity
and stationarity are enough, an overshoot will grow (Gedalin & Sharma 2023; Gedalin
et al. 2023a; Sharma & Gedalin 2023). If this is not sufficient, the shock will become
rippled or even reforming, whatever the exact mechanism of the development of spatial
inhomogeneity and time dependence. This is the principle of the shock self-organization.
The structural changes in the shock front can be expected to occur via a series of ‘phase
transitions’. To illustrate the principle, we analyse whether the conservation laws can be
satisfied with a planar stationary profile, for a chosen set of the shock angle and upstream
B and gradually increasing Mach number.

2. Definitions

For simplicity, the plasma is assumed to be composed of ions i (protons p) and electrons
e. The upstream variables are denoted by the subscript # and the downstream variables
are denoted by the subscript d. The normal incidence frame (NIF) is the shock frame in
which the upstream plasma velocity is along the shock normal. The NIF upstream plasma
speed is V,. The upstream Alfvén speed is vy = B, /4mn,m,, where B, is the upstream
magnetic field magnitude, n, is the upstream proton number density (which is equal to
the upstream electron number density) and m, is the proton mass. The Alfvén Mach
number is My = V,/vs. The coordinates are chosen so that the upstream magnetic field
is B, = (B, Buy. B.;) = B, (cos 6y, 0, sin 0g,). We also define g; = 8nn, T}, /Bi and 8, =
8nn,T,, /Bi, where T;, and T,, are the ion (proton) and electron upstream temperatures,
respectively.

3. The method

The test particle analysis used here is described in detail by Gedalin (2016). Here, we
briefly describe the principles of the method. This is not a simulation but should be
considered as a numerical tool of theory. In the test particle analysis, the equations of
motion of charged particles (ions here) are solved numerically in the electromagnetic
fields prescribed by an appropriate model. At present, plenty of models of subcritical
and supercritical shocks, including rippling and reformation, have been developed and
analysed (Balikhin er al. 2008; Gedalin, Friedman & Balikhin 2015; Gedalin 2016,
2019a,b; Gedalin, Droge & Kartavykh 2016; Dimmock et al. 2023; Gedalin, Pogorelov
& Roytershteyn 2023b). The ion velocities are acquired at a dense grid, using the staying
time method (see technical details in Gedalin (2016) and Gedalin et al. (2023b)), and all
relevant moments of the ion distribution are calculated as functions of the position in
a large space surrounding the shock transition. The model profiles used in the analysis
typically depend on a small number of control parameters. This test particle analysis
has several applications. It has been used to separately determine the effects of various
parameters (e.g. magnetic compression and cross-shock potential) on the features and
relaxation of the downstream ion distributions (see e.g. Gedalin 2015), and to separate
the effect of macroscopic fields from the effect of fluctuations (Gedalin et al. 2023a). It
has been used to model observed shocks, and the predictions of the analysis were found to
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be in surprisingly good agreement with observations (Gedalin ez al. 2018; Pope, Gedalin &
Balikhin 2019). The method has been used for analysing whether a supercritical shock can
be stationary (Gedalin 2019a). All these tasks require the usage of the non-self-consistent
approach, where various parameters can be varied independently. Here, we use the test
particle analysis to study whether the conservation laws can be fulfilled if the shock profile
is planar and stationary, namely the ion number density conservation:

nVy=nVy, (3.1

and the conservation of the momentum along the shock normal, also known as pressure
balance:

n\" B B
2 u

Pix + nuTeu (_) +—= numpvu + nuTeu + nuTiu + —. (32)
ny 8 81

The procedure is as follows. First, we prescribe the model macroscopic fields B™® and
E™% of the shock, depending only on the coordinate x along the shock normal. Next,
we trace ions across this shock by numerically solving their equations of motion in the
prescribed fields. This solution provides us with the ion velocities at all positions across
the shock and, thus, allows us to numerically calculate the number density 79" (x), the
hydrodynamic velocity ¥“" (x) and the total (dynamic and kinetic) pressure p?ﬂfxr) (x), as
functions of the position x. Electrons are treated as a massless neutralizing fluid with the
equation of state p, o< n°/3. The approach maintains (3.1) automatically. Using (3.2) we

derive
(der) __ (den) n'n
B =|8n |W—p,; —nT. , (3.3)
, n

BZ
W= numpr + ny, (Teu + Tm) + 8_:[’ (34)

for the chosen upstream parameters n,, V,, T,,, T;, and B,. The derived magnetic field
magnitude B®" is ultimately compared with the magnitude B™°Y of the model magnetic
field used for the ion tracing. If there is substantial disagreement between the two, we
conclude that the model is not satisfactory.

The shock parameter space is multi-dimensional, so it is reasonable to keep most of
the parameters constant and vary only one or two. Here, the shock angle is kept constant,
O, = 60°, for all Mach numbers tested during the study. We also keep constant 8; = 8. =
0.5. The basic shock profile is chosen as follows (Gedalin 2016):

R+1 R-1 3
Bém"d) = B, sin 0y, (% + — tanh _x) , 3.5)
B™Y = B, cos Og,, (3.6)
(mod)
plmod) _ €€OS Opn dB; ’ (3.7)
Y MAwpi dx

where the coordinate x is along the shock normal. The parameter R is related to the
magnetic compression via

B
B—d = \/Ie2 Sil’l2 QBn + cos? eBn’ (38)
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My Bd/Bu Bd/Bu Bd/Bu
A=1 A=0.5 A=03
2.0 1.6 1.5 1.4
2.5 2.0 1.9 1.8
3.0 2.3 2.1 2.0
3.5 2.5 2.3 2.2
4.0 2.7 2.5 2.4
4.5 2.8 2.6 2.5
5.0 2.9 2.7 2.6
5.5 3.0 2.8 2.7

TABLE 1. Alfvénic Mach number M, versus magnetic compression B;/B,, (rounded up to first
digit after the decimal point), according to Rankine—Hugoniot relations with various anisotropies
A=T)/T..

and the NIF electric field is E™Y = —Kp(dB™?/dx), E;m"d) = V,B, sinbg,/c,
E{™9 =(. The coefficient K is determined by the value of the cross-shock potential:

e¢(mod) — / E)(Cmod)dx — s(mpV,f/2), (39)

where s is one of the varied parameters of modelling. The ramp width is chosen as
D = ¢/w,;, where the ion plasma frequency is w, = (4ntn,e*/m,)'"/%.

The chosen model profile reproduces the observed nearly monotonic increase of the
main magnetic field B, in the ramp, the non-coplanar magnetic field B, confined within
the ramp and the cross-shock electric field E, inside the ramp (see e.g. Greenstadt et al.
1975, 1980; Scudder et al. 1986; Farris et al. 1993; Dimmock et al. 2012). The approximate
relations between the field components were analytically derived (Jones & Ellison 1987;
Gosling, Winske & Thomsen 1988; Schwartz er al. 1988; Gedalin 1996) and successfully
used for comparison with observations (Gedalin et al. 2022b). Note that ions are not
sensitive to fine details of the shock front or small-scale fields (Gedalin 2020).

The magnetic compression B, /B, is not a free parameter but is taken from the solution
of the Rankine—Hugoniot relations taking into account that the downstream pressure is
not necessarily isotropic (Abraham-Shrauner 1967; Hudson 1970; Chao & Goldstein 1972;
Sanderson 1976; Lyu & Kan 1986; Kennel 1988; Vogl et al. 2001; Livadiotis 2019; Gedalin
et al. 2022a; Haggerty, Bret & Caprioli 2022). Table 1 contains the pairs My, B;/B, for
the chosen 6g,, B = B; + B. and anisotropy ratio A = p, /pas.., where || and L refer to the
direction of the downstream magnetic field. If needed, an overshoot will be added to the
profile (see below).

Initially, there are 80 000 Maxwellian distributed ions starting their motion towards the
shock from a position far upstream, where the flow velocity is V = (V,, 0, 0). Catching
ions crossing thin layers, the distribution function f(v, x) is derived, from which the
number density n'®” = [ f(v, x) d*v and the ion pressure pﬁﬂj{’ =m, [vif(v,x)d’v are
calculated (Gedalin 2016).

We vary the parameters s and B,/B, (the latter within the fork given in the table)
to achieve convergence of the far downstream B to the initially chosen B,. If such
convergence can be achieved, we further check whether the profiles B™? (x) and B (x)
agree reasonably.

https://doi.org/10.1017/50022377824001545 Published online by Cambridge University Press


https://doi.org/10.1017/S0022377824001545

‘Phase transition’ of shocks 5

AN
4

B|/B,

05 - ]
-5 0 5 10 15

@/ (Va/Q)

FIGURE 1. The model B™°% (x) (black line) and derived B4 (x) (blue line) magnetic field
magnitudes for My = 2, s = 0.3 and B;/B,, = 1.55. The far downstream values agree very well.

There are weak downstream magnetic field oscillations in the derived profile.
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FIGURE 2. The reduced distribution function f(x, v,) (log scale). The model magnetic field
magnitude is shown by the black line.

4. Dependence on the Mach number
41. My =2

For a Mach number of M, = 2.0, the best agreement between the derived and model
downstream fields is achieved for s = 0.3 and B,;/B, = 1.55. The derived and model
profiles are shown in figure 1. The magnetic compression is weaker than would be expected
in the isotropic case. Indeed, in such ion tracings, the downstream ion distributions are
significantly anisotropic (Gedalin ef al. 2022a). Such anisotropies are observed at the Earth
bow shock as well. The far downstream values agree very well. There exists a transitional
region where weak oscillations of the magnetic field appear in the derived profile. These
oscillations are related to the gradual kinematic collisionless relaxation of the gyrating
directly transmitted ions behind the shock front (Balikhin et al. 2008; Ofman et al. 2009;
Pope et al. 2019), which is seen in the reduced distribution function f(x, v,) in figure 2.
The relative amplitude of these oscillations |B — B,|/B, does not exceed 15 % and they are
not expected to affect the ion motion, so there is no reason to try to improve the agreement
by adding an overshoot.
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FIGURE 3. The model B™Y (x) (black line) and derived B (x) (blue line) magnetic field
magnitudes for My = 2.5, s = 0.25 and B;/B,, = 1.86. The far downstream values agree well.
The overshoot and undershoot also agree rather well.

4.2. My =25

For a Mach number of M, = 2.5, the amplitude of the oscillations becomes substantial,
|B — By|/Bs > 30 %, and it is necessary to take into account the overshoot and the
undershoot in the model profile. Each oscillation is added using the localized function
(Gedalin & Ganushkina 2022; Gedalin et al. 2023a,b)

AB, = aB, sin Og,g(x, X;, Wi, Xp, W;), 4.1

3(x — 3(x —x,
g(xv Xis Wi, Xry Wr) = (1 + tanh OC_XI)) (1 — tanh M) s (42)
W,

wi

where the parameters are adjusted for both the overshoot and the undershoot. The best
agreement was achieved using a = 1, x, = 0.8, x, = 0.8, w; = 1.25, w, = 0.95 for the
overshoot and a = —0.95, x; = 1.55, x, = 1.55, w; = 0.95, w, = 0.95 for the undershoot,
while s = 0.25 and B,/B, = 1.86. The addition to B, and E, is obtained following the
same prescription as for the non-structured shock. The model and derived profiles are
shown in figure 3. The far downstream values of the magnetic field magnitude agree
well. The overshoot and undershoot also agree rather well. The corresponding reduced
distribution function is shown in figure 4. Given the success of adjusting the structured
profile, there is no reason to seek further improvements by modelling more oscillations.
It is clear that a structured planar stationary profile is sufficient for maintaining pressure
balance to good precision.

4.3. MA =3 andMA =35

Until now, no noticeable ion reflection has occurred. That is, even if there was a very
small fraction of reflected ions, they had no effect on the shock profile. The overshoot,
undershoot and subsequent oscillations were produced due to the deceleration of the
directly transmitted ions at the shock crossing and their postshock gyration and gradual
gyrophase mixing. At M, = 3, ion reflection is already substantial. Yet, using the same
procedure as above, it appears possible to achieve a good agreement between the derived
and model profiles, as can be seen in figure 5. In this case, the best agreement was found
to be at s = 0.65 and B, /B, = 2.05. The reflected ions are seen in figure 6. Note that the
overshoot and other oscillations are still due to the deceleration and gyration of the directly
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FIGURE 4. The reduced distribution function f(x, v,) (log scale). The model magnetic field
magnitude is shown by the black line.
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FIGURE 5. The model B™Y (x) (black line) and derived B (x) (blue line) magnetic field
magnitudes for My = 3, s = 0.65 and By/B, = 2.05. The far downstream values agree well.
The overshoot and undershoot also agree rather well.

transmitted ions, while the reflected ions play an important role in the regulation of the
overshoot strength (Gedalin & Sharma 2023).

For M, = 3.5 we can similarly adjust the profile with B,/B, = 2.25 and s = 0.52. The
results are shown in figures 7 and 8. The differences between the two cases, M, = 3 and
M, = 3.5, are quantitative and not qualitative. In both cases, a planar stationary structured
shock profile is capable of ensuring the pressure balance to a good approximation. Note
that in both cases, the presence of reflected ions is seen mainly in the increasing spread of
the distribution function in the velocity space, that is, heating enhancement.

44. My =4

It was not possible to achieve agreement on the far downstream values of the derived
and modelled magnetic field, whatever structure modifications or parameter variations
have been tried. Although it is always possible that we were not lucky enough in this
try-and-check quest, there are good chances that this failure indicates the requirement
of significant non-planarity and/or non-stationarity of the shock front to ensure that the
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FIGURE 6. The reduced distribution function f(x, vy) (log scale). The model magnetic field
magnitude is shown by the black line.
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FIGURE 7. The model B™°Y (x) (black line) and derived B4 (x) (blue line) magnetic field
magnitudes for My = 3.5, s = 0.52 and B;/B, = 2.35. The far downstream values agree well.

The overshoot and undershoot also agree rather well.
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FIGURE 8. The reduced distribution function f(x, v,) (log scale). The model magnetic field
magnitude is shown by the black line.
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FIGURE 9. The magnetic compression R = B;/B,, (left) and the dimensionless heating ¥ =
Td/mpV,f (right) as functions of the Mach number My, as derived from Rankine—Hugoniot
relations in the case 6, = 0.

conservation laws are satisfied. Since the shock is quasi-perpendicular, we expect the
development of rippling (Gingell et al. 2017).

5. Discussion

For simplicity of the discussion, we assume perpendicular geometry, cold upstream
plasma and isotropic downstream plasma and ignore electron heating. Then, the
conservation laws give

B _ V.

Um Bu Vd ( )
B2 B2
numpV,f + é = ndmij + ﬁ + nyT,, (5.2)
B*V 1 BV, 5
—nm, V> + 1 = —pm, V3 + 4 “n TV, 53
2]’1 mp u + s zndmp d =+ . =+ an aVa ( )
Let Y = T;/m,V?, then

+ ! = ! + K + RY 5.4

2M3 R 2M? ' '
1+ 2 —1+2R+5Y (5.5)

M2 R* M? ' '

The expressions (5.4) and (5.5) determine both the magnetic compression R and the ion
heating Y as functions of M,, shown in figure 9.

We should be able to obtain the same parameters from a model using additional
parameters and/or structural elements. In a non-structured low-Mach-number shock,
there are only directly transmitted ions. If the cross-shock potential is ¢ = s(m,V>/2e),
the ion velocity upon crossing the shock would be V,(+/1 —s,0,0) while the drift
speed is V,/R. The gyration speed is v, = V,|+/1 —s — 1/R| and the dimensionless
downstream temperature Yogel = %(«/1 —s—1/R)?. Figure 10 shows that only for
s = 0.4 can the model dimensionless downstream temperature Y. be made equal
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FIGURE 10. The model dimensionless downstream temperature Yiodel (blue) for
s =0.2,0.3,0.4, 0.5 versus the Rankine-Hugoniot required Y (black).

to the Rankine-Hugoniot required Y, and only for M, < 2.5. If there were an
overshoot, the maximum overshoot magnetic field could be estimated using By.x/B, =

\/ZMA?(I — +/1 — ) + 1 (Gedalin, Russell & Dimmock 2021). For s = 0.4 and M, = 2.5,

this estimate indicates that there is no overshoot or it is negligible.

For higher Mach numbers, the presence of reflected ions is necessary to ensure
the required heating to satisfy the Rankine—-Hugoniot relations. The two main model
parameters affecting the ion distributions and heating are the cross-shock potential and
the maximum overshoot magnetic field. Ion reflection cannot be discussed for the cold
upstream ion distribution since, in this case, all ions are either directly transmitted or
reflected. For an actual thermal upstream distribution, reflected are those ions that are
in the tail of the distribution. Therefore, the number of reflected ions is not large and
sensitive to the cross-shock potential and the maximum magnetic field in the overshoot
(Sharma & Gedalin 2023). The increase of each of these parameters increases the number
of reflected ions and thus increases the contribution of the reflected ions in the downstream
pressure. The cross-shock potential decreases the downstream gyration energy of the
directly transmitted ions, thus decreasing their contribution to the total pressure. It also
decreases the directly transmitted ion pressure upon the ramp crossing, where gyration has
only started and no gyrophase averaging occurs. As a result, the magnetic pressure should
substantially increase, resulting in the overshoot. The effect of the overshoot on the directly
transmitted ions is in effectively increasing the local magnetic field in which they start to
gyrate and decreasing the local drift speed so that in the overshoot—undershoot region, the
ion pressure fluctuates. The minimum of the ion pressure corresponds to the maximum
of the overshoot, while the maximum of the ion pressure leads to the magnetic dip in the
undershoot. In this region, the directly transmitted ions are still gyrating as a beam so that
the minimum and maximum pressures are closely related, and the growth of the overshoot
is accompanied by the depression in the undershoot. The magnetic pressure cannot become
negative, which limits the overshoot strength in the case of a planar stationary shock.
When the Rankine—Hugoniot relations require too strong an overshoot and, therefore, too
deep a magnetic depression in the undershoot, that means that a planar stationary profile
is no longer capable of maintaining the pressure balance, and the shock has to become
non-planar and/or time-dependent.
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FIGURE 11. The reduced distribution function f(x, v,) at time ¢t = 7082, ! from the beginning
of the run with viy = 2v4. The coordinates are measured in the ion inertial lengths c¢/w;, the
velocity is measured in Alfvén velocities v4 and the magnetic field is normalized on the upstream
magnetic field B,,.

6. Simulations

For illustrative purposes, we have performed several low-cost two-dimensional hybrid
simulations using the dHybrid code (Gargaté et al. 2007). A grid size of 2000 x 20 was
chosen, with cell spacing of 0.2(c/wy;) in each direction. The longest dimension is along
the shock normal, x, with the open boundary at x = 0 and reflection boundary at x =
400(c/wy;). lons are injected at the open boundary, and a shock is produced due to the
reflection of these ions off the reflection boundary. The shortest dimension, z, is along
the main magnetic field, with periodic conditions at both boundaries. The shock angle is
O, = 60°, that is, the initial magnetic field is Bu(\/§ /2,0, 1/2). Initially, g; = B, = 0.1,
lower than in the test particle analysis, to avoid unnecessary attempts to make detailed
comparisons. The objective of the simulations is to observe the transition to rippling with
an increase of the Mach number while keeping other parameters constant. The task does
not require high precision, so we use 36 particles per cell and a time step of 10722,

Figure 11 shows the reduced distribution function f(x, v,), on a log scale, at time
t =7082;" from the beginning of the run with the upstream plasma speed vi, = 2v, in
the frame of the simulation. The shock speed in this frame is vy, & 0.8v,4, so the Mach
number is M, & 2.8. The downstream gyration of the directly transmitted ions is very
clear, together with the gradual relaxation. There are no reflected ions. Figure 12 shows
the two-dimensional patterns of B.(x, z) (figure 12a) and B, (x, z) (figure 12b), at the
same 7 = 7082, "'. There are no signs of spatial inhomogeneity along the shock front in
B.. Fluctuations of the normal component of the magnetic field, B, (x, z), are the clearest
signatures of the developing inhomogeneity (Gedalin & Ganushkina 2022). In this case,
the level of these fluctuations is negligible.

Figure 13 shows the reduced distribution function f(x, v,) at time r = 708" from
the beginning of the run with the upstream plasma speed v;, = 3v, in the frame of
the simulation. The shock speed in this frame is vy, =~ 0.8vs, so the Mach number
is My ~ 3.8. The downstream gyration of the directly transmitted ions is very clear,
together with the gradual relaxation. The overshoot is stronger, and there are reflected
ions contributing to the downstream pressure. Figure 14 shows two-dimensional patterns
of B.(x,z) (figure 14a) and B,(x,z) (figure 14b) at the same t = 7082, . The main
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FIGURE 12. The main component of the magnetic field B,(x, z) (a) and the normal component
of the magnetic field By (x, z) (b) at time t = 7082, ! from the beginning of the run.
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FIGURE 13. The reduced distribution function f(x, v,) at time t = 70 £2, ! from the beginning
of the run with vj, = 3vy.

component B, does not show any signs of inhomogeneity along the shock front. There
are weak but noticeable fluctuations of the normal component of the magnetic field.
Such fluctuations have been observed in low-Mach-number shocks, which otherwise were
planar and stationary, according to all other signatures (Gedalin et al. 2022b). Figure 14
means that rippling starts to develop but does not affect the ion motion yet.

Figure 15 shows the reduced distribution function f(x, v,) at time t = 7082 ' from
the beginning of the run with the upstream plasma speed vy, = 3.5v4 in the frame of
the simulation. The shock speed in this frame is vy, & 0.9v4, so the Mach number is
My ~ 4.4. There is a strong overshoot in the profile, ensuring strong ion reflection. The
reflected ions contribute substantially to the downstream ion pressure. Figure 16 shows
the two-dimensional patterns of B,(x, z) (figure 16a) and B, (x, z) (figure 16b) at the same
t = 7082 ". Rippling is now clearly seen both in B, and in the large fluctuations of B,.
Thus, for the chosen parameters of the upstream state, the phase transition from a planar
stationary profile to a rippled profile occurs in the vicinity of Mach number M, ~ 4.
The performed simulations confirm the theoretical predictions done with the use of the
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FIGURE 14. The main component of the magnetic field B;(x, z) (¢) and the normal component
of the magnetic field B (x, z) (b) at time t = 7082, ! from the beginning of the run.
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FIGURE 15. The reduced distribution function f(x, vy) at time t = 7082, ! from the beginning
of the run with v, = 3.5v4.

test particle analysis. More sophisticated simulations with a larger simulation box, more
particles per cell and a smaller grid spacing would probably refine the details of the shock
profile, ion distributions and the Mach number at which the transition occurs but would
not change the physical picture drastically. We leave such simulations for future work.

7. Conclusions

We used test particle analysis in a model shock profile, keeping the values of 6g,
and B constant and Mach number increasing from My = 2 to M4 = 4. We have shown
that momentum conservation (pressure balance) can be ensured if the shock is planar,
stationary and non-structured, for My, =2 and M, = 2.5. At higher Mach numbers,
M, =3 and M, = 3.5, the shock can still be planar and stationary but switches to a
structured ‘phase’, in which the overshoot and undershoot play an important role in
shaping the ion distributions in such a way so as to ensure pressure balance. For M, = 4,
no planar stationary structure was found that could be consistent with the momentum
conservation. We argue that between M, = 3.5 and M, = 4, the shock should undergo a
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FIGURE 16. The main component of the magnetic field B, (x, z) (a) and the normal component
of the magnetic field By(x, z) (b) at time t = 7082, ! from the beginning of the run.

‘phase transition’, and the shock front should become rippled. The conclusion is supported
by simple two-dimensional hybrid simulations.

Our usage of the term ‘phase transitions’ should not be confused with true
thermodynamic phase transitions. The system under study is not in thermal equilibrium,
and there is no analogy of the coexistence of phases, latent heat or order parameter. On the
other hand, observations show that there are various types of shock structure, also known
as ‘phases’. Our results indicate that the shock parameter space is divided into ranges, in
each of which shocks can exist in only one of these ‘phases’, that is, have a certain type
of structure. We have seen that, given the shock angle and the upstream g, the ‘phase’
in which the shock can exist changes when the Mach number increases. Such a ‘phase
transition’ is not expected to be abrupt when the Mach number exceeds some threshold
but may occur rapidly within a narrow range of Mach numbers.
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