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We analyse the long-time dynamics of trajectories within the stability boundary between
laminar and turbulent square duct flow. If not constrained to a symmetric subspace, the
edge trajectories exhibit a chaotic dynamics characterised by a sequence of alternating
quiescent phases and intense bursting episodes. The dynamics reflects the different
stages of the well-known near-wall streak—vortex interaction. Most of the time, the edge
states feature a single streak with a number of flanking vortices attached to one of
the four surrounding walls. The initially straight streak undergoes a linear instability
and eventually breaks in an intense bursting event. At the same time, the downstream
vortices give rise to a new low-speed streak at one of the neighbouring walls, thereby
causing the turbulent activity to ‘switch’ from one wall to the other. If the edge dynamics
is restricted to a single or twofold mirror-symmetric subspace, the bursting and wall-
switching episodes become self-recurrent in time, representing the first periodic orbits
found in square duct flow. In contrast to the chaotic edge states in the non-symmetric
case, the imposed symmetries enforce analogue bursting cycles to simultaneously appear
at two parallel opposing walls in a mirror-symmetric configuration. Both the localisation
of turbulent activity to one or two walls and the wall-switching dynamics are shown to
be common phenomena in marginally turbulent duct flows. We argue that such episodes
represent transient visits of marginally turbulent trajectories to some of the edge states
detected here.
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1. Introduction

Turbulent flows in straight pipes of various cross-sections are of utmost relevance for many
industrial processes. For circular pipes, the turbulent dynamics both in the transitional
and the fully developed regime is nowadays quite well understood (Smits, McKeon &
Marusic 2011; Avila, Barkley & Hof 2023). Ducts with a rectangular cross-section, on the
other hand, have attained much less attention, despite their relevance in many technical
applications such as air ventilation systems. In contrast to the circular case, the rotational
symmetry with respect to the centreline is broken by the four surrounding walls, and a
two-dimensional mean velocity field with a distinct mean secondary flow of Prandtl’s
second kind is the consequence (Bradshaw 1987). Although of comparably low amplitude
(usually approximately O(1 %) of the bulk velocity uj), these mean secondary currents are
of significance for the mass, momentum and heat transfer between the near-wall zones, the
corner regions and the duct core (Demuren & Rodi 1984; Modesti & Pirozzoli 2022). In a
streamwise- and time-averaged sense, the turbulence-induced secondary flow is generated
by the inhomogeneity and anisotropy of the Reynolds-stress tensor across the duct cross-
section (Speziale 1982). Hence, most previous experimental studies (Brundrett & Baines
1964; Gessner 1973) and direct numerical simulations (DNS) (Gavrilakis 1992, 2019;
Modesti et al. 2018; Pirozzoli et al. 2018) laid great emphasis on a detailed analysis of
the mean momentum, vorticity and energy budgets (Nikora & Roy 2012).

While such investigations of the mean flow equations are insightful, for instance,
regarding the scaling of the mean secondary flow pattern and its intensity with
the Reynolds number, they provide little information about the underlying physical
mechanisms and the involved coherent flow structures. Uhlmann et al. (2007) and Pinelli
et al. (2010) therefore performed detailed coherent structure eduction studies for a range
of marginal to moderate Reynolds numbers, assessing the role of individual streaks and
quasi-streamwise vortices in the generation of the characteristic mean secondary flow
pattern. Uhlmann ez al. (2007) showed that, for sufficiently high Reynolds numbers Re; =
up Hp (where H is the duct’s half-side length and v is the kinematic viscosity), each of the
four bounding walls accommodates one or more streaks with flanking quasi-streamwise
vortices that undergo the classical self-sustained near-wall regeneration cycle (Hamilton,
Kim & Waleffe 1995; Waleffe 1997; Hall & Sherwin 2010). However, the quasi-streamwise
vortices next to the corner regions are limited in their spatial mobility by the two adjacent
walls (Kawahara & Kamada 2000), so that they get essentially locked in their cross-
sectional position and leave a clear footprint in the mean streamwise vorticity (wy ). The
resulting preferential organisation of small-scale vortices in certain regions of the cross-
section has direct implications for the large-scale secondary flow that is coupled to the
small-scale dynamics by a Poisson equation VZ(W) xt = —{wyx)xr; With (¥)y; indicating
the mean secondary flow streamfunction (Pinelli et al. 2010). Further theoretical support
for this causal relation between coherent structures and the mean secondary flow was
provided by Uhlmann, Kawahara & Pinelli (2010), who found a family of travelling wave
solutions whose ‘exact coherent structures’ induce a strikingly similar ‘eight-vortex’ mean
secondary flow pattern (see also the discussion of invariant solutions below).

At marginal Reynolds numbers Rej, just large enough to sustain turbulence, on the
other hand, the typical diameter of the quasi-streamwise vortices (which naturally scale
in wall units) is, at O(0.1 H), so large that independent streak—vortex pairs cannot always
be sustained on all four walls simultaneously (Uhlmann et al. 2007). Instead, only a subset
of the four surrounding walls features a significant turbulent/vortical activity during such
episodes, while turbulent fluctuations are weak or even entirely absent near the remaining
ones. In the remainder of this study, we will occasionally refer to these two situations
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Figure 1. (a,b) Selected instantaneous streamwise-averaged velocity fields (u), taken from a long-time
turbulent trajectory of O(10*) bulk time units length at a bulk Reynolds number Re; = 1150 and a streamwise
domain length L, = 27H. (c) Long-time average of the velocity field (), over the full trajectory. In all panels,
solid lines represent isolines of (1) between 0 and 1.5 times the bulk velocity u;, with increment 0.25. Intensity
and orientation of the secondary flow field ((v), (wHT is indicated by the vector plot. The arrows in (c¢) are
scaled by a factor of two compared with those in (a,b) for better visibility. For a complete definition of the
velocity field and the averaging operators, see § 2.

as ‘active’ and ‘non-active’ walls, respectively. Figure 1(a,b) present the streamwise-
averaged velocity fields for two such flow states extracted from a long-time turbulent
trajectory at Rep = 1150, in which a single and two opposing walls are ‘active’ in the
above defined sense. Such localised states are transient in time and a ‘switching’ of the
vortical activity to other walls takes place intermittently in intervals of O(100) bulk time
unit length (Uhlmann et al. 2007), although the underlying physical mechanisms are not
entirely understood. Only long-time averages over intervals much longer than the lifetime
of the individual coherent structures and the characteristic ‘wall-switching’ time scale do
recover the characteristic fourfold-symmetric eight-vortex mean secondary flow pattern
under such marginal conditions (cf. figure 1c). Both the ‘wall-switching’” behaviour and
the localisation of turbulent fluctuations to individual walls possess analogues in ‘minimal
flow units’ of plane channel flow (Jiménez & Moin 1991): for extended time periods,
only one of the two channel walls hosts a streak with accompanying vortices, while the
other one features an essentially laminar dynamics until an intermittent switching event
causes a reorganisation of the flow (Neelavara, Duguet & Lusseyran 2017). Also, there is
an equivalence between the discussed temporally intermittent ‘wall-switching’ behaviour
and a spatially intermittent ‘wall switching’ observed in DNS of extended domains like
the L, = 160 H long duct studied by Sekimoto (2011). For a fixed moment in time, the
dynamics along each wall is here characterised by a streamwise alternating pattern of
‘active’ and ‘passive’ regions, all together inducing the characteristic fourfold-symmetric
‘eight-vortex” mean secondary flow in the instantaneous streamwise average.

While the occurrence of spatially localised states and intermittent wall-switching
events in low-Reynolds-number square duct turbulence is hence well documented, our
understanding of the underlying physical mechanisms remains incomplete. In this study,
we analyse both phenomena from a dynamical systems’ perspective of fluid turbulence,
in which the time evolution of a turbulent system is understood as a trajectory wandering
across the state space associated with the dissipative Navier—Stokes system (Hopf 1948).
While the latter is formally of infinite dimension, the turbulent dynamics within a finite
spatial domain can be expected to lie on an inertial manifold, and can therefore be
expressed with a finite number of degrees of freedom (Foias et al. 2001). Turbulent
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coherent structures are interpreted as physical incarnations of the least unstable invariant
solutions in this state space (Jiménez 1987; Gibson, Halcrow & Cvitanovi¢ 2008), which
comprises stationary equilibria, travelling waves (TWs, equilibria within a co-moving
frame of reference) and periodic orbits (POs). Together with their stable and unstable
manifolds, these invariant solutions form the skeleton of the system’s dynamics in state
space: chaotic turbulent trajectories visit their neighbourhood transiently and shadow their
dynamics during that time, before they get repelled along their unstable manifolds (Waleffe
2002). In the past decades, this conceptual picture has been extraordinarily fruitful for the
understanding of transitional (Kerswell 2005; Avila et al. 2023) and sustained turbulence
(Kawahara, Uhlmann & van Veen 2012; Graham & Floryan 2021) in a variety of different
flow configurations. Most prominently, equilibria, TWs and (relative) POs have been found
in plane Couette (Nagata 1990; Kawahara & Kida 2001; Gibson et al. 2008) and plane
Poiseuille flow (Park, Shekar & Graham 2018; Waleffe 2001, 2003), asymptotic suction
boundary layers (Khapko et al. 2013; Kreilos et al. 2013) and circular pipe flow (Duguet,
Willis & Kerswell 2008; Avila et al. 2013; Budanur et al. 2017). In square duct flows,
on the other hand, only a handful of TWs are known to date: the solution documented
by Uhlmann et al. (2010) generates an ‘eight-vortex’ mean secondary flow pattern that
bears a striking similarity to the long-time average in low-Reynolds-number flows. The
‘four-vortex’ states of Wedin, Bottaro & Nagata (2009) and Okino et al. (2010) and the
‘two-vortex’ state of Okino & Nagata (2012), in turn, are representative of situations in
which not all of the four surrounding walls feature a significant vortical activity. In contrast
to canonical flows such as circular pipe or plane channel flows, however, no POs have been
found so far in the square duct setting to the best of the authors’ knowledge.

For all above discussed flow configurations including square duct flow (Tatsumi &
Yoshimura 1990), the laminar flow state is stable with respect to infinitesimal disturbances
for Reynolds numbers at which transition to turbulence usually sets in. Hence, finite-
amplitude perturbations are required to trigger the transition to turbulence and the laminar
flow takes the form of an equilibrium/fixed point in state space, with a distinct basin
of attraction (Graham & Floryan 2021). For transiently turbulent systems, the laminar
state is complemented by a chaotic saddle to which nearby trajectories are attracted for a
potentially long, but finite time horizon, before they finally experience a relaminarisation.
For sustained turbulence, two concurring state space pictures have been discussed:
turbulence might be further understood as a chaotic saddle, but with survival times of
turbulent perturbations tending to infinity. Alternatively, turbulence is seen as a strange
attractor from which trajectories cannot escape (cf. Avila et al. 2023 for a recent review).

Irrespective of the chosen viewpoint, the state space of all above considered flows has
been seen to feature an invariant manifold of co-dimension one (Guckenheimer & Holmes
1983) that is conventionally termed the ‘edge’ . : trajectories starting off from a point
inside the edge will stay in the latter for all times, neither swinging up to a turbulent state
nor decaying directly towards the laminar fixed point. While the existence of the edge is
consistent with both discussed state space pictures of turbulence, only in the presence of
a turbulent attractor does it become a separatrix of phase space in a strict sense (Avila
et al. 2023). Analysing the dynamics of such edge trajectories and identifying attracting
sets within .# (‘edge states’) has provided valuable insights into the transition processes
to turbulence (Toh & Itano 2003; Schneider, Eckhardt & Yorke 2007; Duguet, Schlatter &
Henningson 2009; Mellibovsky et al. 2009). In this context, the nature of the detected
edge states differs significantly among the different flows, ranging from simple equilibria
in Couette flow (Schneider et al. 2008) and POs in plane channels (Rawat, Cossu & Rincon
2014; Zammert & Eckhardt 2014), asymptotic suction boundary layers (Khapko et al. 2013,
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2014, 2016; Kreilos et al. 2013) or symmetric subspaces of circular pipe flow (Avila et al.
2013) to chaotic edge states in the unconstrained circular pipe (Duguet et al. 2008).

To the best of the authors’ knowledge, only two groups have made efforts to analyse
the edge for square duct flows: Biau & Bottaro (2009) compared a rather short edge
trajectory with a flow state that they had found to be optimal in terms of the maximum
nonlinear growth, without further discussing the edge dynamics or possible edge states.
Okino (2014, in Japanese) and Gepner, Okino & Kawahara (2025) searched for edge states
in a square duct under certain symmetry restrictions and in domains of streamwise periods
Ly/H €{2m, 4, 8}. For the three considered domains, a ‘domain-filling” TW, a chaotic
(relative) attractor and a streamwise-localised TW were found to be edge states of the
respective symmetry-reduced systems, respectively. Especially the streamwise-localised
solution bears a strong resemblance to localised ‘puff-like’ solutions in the circular
pipe (Avila et al. 2013), with important implications for the understanding of localised
turbulence in rectangular ducts (Takeishi et al. 2015).

However, a comprehensive study addressing the edge dynamics and how it compares
with the characteristics of chaotic low-Reynolds-number turbulence is lacking. In this
study, we therefore present a detailed analysis of the edge in square duct flow for both
the full state space and symmetric subspaces thereof. We provide evidence that the edge
states in the full state space are chaotic attractors within .#, whereas their counterparts in
the symmetric subspaces turn out to be POs. To the best of the authors’ knowledge, these
periodic solutions are the first of their kind and are hence considered to be of relevance for
the understanding of transitional and marginally turbulent duct flows. Specific implications
for the understanding of transverse turbulence localisation and the process behind the
‘wall-switching’ dynamics are discussed.

The manuscript is organised as follows: in § 2, the considered physical system and the
admissible symmetry groups are presented. The essential features of the DNS code and the
details of the edge-tracking algorithm are described in § 3. With the aid of these methods,
the edge to turbulence in square duct flows is analysed in § 4: the edge dynamics in the full
state space is addressed first, before we turn to the edge states in symmetric subspaces. In
§ 5, the detected edge states are juxtaposed to states in marginally turbulent square duct
flow and their properties are discussed in comparison with edge states in other flows. The
manuscript ends with a summary of the relevant outcomes and an outlook on future work
in § 6.

2. Theoretical framework
2.1. Flow configuration

In the present study, the flow of an incompressible Newtonian fluid in a straight,
streamwise-periodic duct of square cross-section with side lengths 2H is considered.
No-slip boundary conditions are imposed along the four surrounding walls. A Cartesian
coordinate system with the origin located in the centre of the cross-section is adopted, with
basis vectors pointing in the streamwise (x) and the two cross-stream, wall-normal direc-
tions (y, z). For the sake of clarity, we choose a terminology similar to that in plane Couette
or Poiseuille flow and refer to y and z as the ‘vertical’ and ‘spanwise’ directions in the
remainder of this work. Note that this designation is an arbitrary choice since the two cross-
sectional directions are equivalent regarding the rotational symmetry obeyed by the gov-
erning equations. In what follows, the velocity field is expressed as u(x, t) = (u, v, w)T,
with u, v and w indicating the fluid velocity along the x-, y- and z-directions, respectively.
Analogously, the vorticity field is introduced as @(x, 1) =V X u = (wy, wy, wZ)T.
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All flow variables are periodic in the streamwise direction, with fundamental
period Ly =2nH /o and fundamental wavenumber «. If not otherwise stated, oo =1
and thus L, =2mH holds for the simulation results presented in this manuscript.
Streamwise, volume and time averaging operators are consequently defined as

T

7'[
al / /dx li 1/ d 2.1
x = = — . = l1Im — [} .
2 V=g e T ’
0

0

where 2 =[0, 27 /a) x [—H, H] x [—H, H] denotes the physical domain. In a similar
fashion, the L,-norm of a vector field a is introduced as

1
lal?’=— [ a-adx=(a-a)y. (2.2)
2 21

A time-dependent streamwise pressure gradient f, = (f.(t),0,0)7 is imposed and
adjusted at each time step to drive the flow at a constant mass flow rate Q,,, guaranteeing
a fixed bulk velocity up = Q. /(4H 2). Unless otherwise stated, time will be measured in
bulk time units 7, = H/u;, in the remainder of this work. Both the perimeter-averaged
wall shear stress

du

H
T,(0) = PV / ou dz + /
= P v4
8H ay yG{*H,H} aZ
H H

7=— y=—

dy 2.3)
—H,H)

and the friction velocity u.(t)=+/Ty()/p fluctuate in time. Variables non-
dimensionalised with the time-averaged friction velocity (u;); and v are indicated as o™,
Based on this definition, all considered systems feature a domain clearly longer than the
critical value required to sustain turbulence (Lj{| min =~ 200, cf. Uhlmann et al. 2007 and
compare with table 1) and are thus not minimal with respect to the buffer layer structures
(Jiménez & Moin 1991).

For the considered case of a pressure-driven square duct flow, the overall kinetic energy
budget simplifies to a balance between the energy input / and the dissipation rate D per
unit mass, viz.

d—E =I1-D, 2.4)
dr

where the individual contributions are defined as
1
E=_(-uy, I=(fowy, D=v{lol)y. (2.5)

The laminar base flow w4, = (U4, (v, 2), 0, 0)7 is defined as the solution of the following
Poisson equation:

WV tigm = — folam (2.6)

where Vi = (3°/8y* 4+ 8%/8z°) represents a two-dimensional Laplacian acting along the
two cross-sectional directions only, and f, ;. indicates the constant pressure gradient
necessary to drive a laminar flow at identical mass flow rate Q,,. Perturbations of a
given velocity field with respect to the laminar equilibrium are henceforth denoted as
Uy =U—Ugp.
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Case Rep, Re; L,/H L.t T/T), Symmetries Type
— CA20002, 2000 88.7 2 557 — — CA
— CA20004, 2000 88.8 4 1116 — — CA
— PO1600, 1600 81.4 21 511 433.1 Zy PO
— P0O2000, 2000 90.5 2 569 531.9 Zy PO
— P02200, 2200 94.8 2 595 593.3 Zy PO
— P0O2400, 2400 98.8 2 621 653.3 Zy PO
— P0O3200, 3200 113.6 2 714 3776.5 Zy PO
— PO1600,, 1600 86.7 2 545 1397.0 Zy,Z, PO
— PO1800,, 1800 90.8 21 570 403.7 Zy,Z, PO
— P0O2000,, 2000 95.2 2 598 401.9 Zy,Z, PO
— P0O2200,, 2200 99.4 2 624 432.8 Zy,Z, PO
— P02400,, 2400 103.4 2 650 463.8 Zy,Z, PO
— P02600,, 2600 107.4 2 675 492.7 Zy,Z, PO
— P0O2800,, 2800 111.2 2 699 518.8 Zy,Z, PO
— PO3000,, 3000 114.9 21 722 542.4 Zy,Z, PO
— P0O3200,, 3200 118.7 2 746 563.4 Z,,Z, PO

Table 1. Physical properties of the detected edge states. Here, Re;, is the bulk, Re; the mean friction Reynolds
number and L, /H, L] indicate the outer- and inner-scaled streamwise domain periods, respectively. For time-
periodic edge states, the period (here given in bulk time units 7, = H /ujp) is estimated as described in § 4.2
and Appendix A. The last two columns list imposed symmetries and provide information on the shape of the
found edge state, respectively (CA: chaotic attractor, PO: stable (relative) PO within .Z).

2.2. Symmetric subspaces

Subject to the given boundary conditions, the Navier—Stokes equations admit several
continuous and discrete symmetries. Streamwise periodicity induces a continuous
translational shift symmetry in x, viz.

T T
L) [y v, wl (6, y,2) — [ v, w] (X + 50, 9, 2) ste[—g,g), 2.7)

allowing the existence of TWs (relative equilibria) and relative POs, where ‘relative’
refers to invariance within a co-moving frame of reference. Unlike circular pipe flow,
the rectangular cross-section cannot feature a continuous rotational symmetry. Instead,
the symmetry group reduces to the discrete dihedral group D, ={e, Z,, Z,, R;}. Here,
e denotes the identity, Z,, Z, are the two reflectional symmetries along the y- and z-
directions, respectively, and R, is the m-rotational symmetry around the x-axis, viz.

Zy: [u,v,wl(x,y,2) — [u,—v,w](x,—y,2),
Z,: [u,v,w]x,y,2) — [u,v,—w]kx,y, —2), (2.8)
R;: [u,v,wlx,y,2) — [u,—v,—w]kx,—y, —2).

For the special case of a square cross-section, the symmetry group increases to D4 =
D, U{Dy;, D;y, Ry2, R3z/2}. In addition to the elements of D;, D4 hence contains
reflectional symmetries with respect to the corner bisectors y =z and y = —z (D, Dy)
and rotational symmetries by counter-clockwise rotations of /2 and 37 /2 about the
x-axis (Ry /2, R3z)2), viz.
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Dy,: [u,v,w]x,y,2) — [u,w,v]x,zy),

D;y: [u,v,w](x,y,2) [u, —w, —v] (x, =z, —Y),

%
(2.9)
Rypp: [u,v,wl(x,y,2) — [u,—w,v](x, —z,y),
ﬁ

R3zpp: [u, v, wl(x,y,2) [u, w, —v] (x, z, —y).

Combining both streamwise and cross-sectional symmetries, it is readily seen that the
governing equations are equivariant under the symmetry group I' = SO (2), x D4. In the
current work, the ‘shift-reflect’ and ‘shift-rotate’ elements of I" for fixed streamwise shifts
Ly /2 =m/a are of specific interest and therefore deserve an explicit definition

T
Sy: [u,v,wl(x,y,2) — [u,—v,w]<x+—,—y,z),
o
S [w,v,w](x,y,2) — [u,v,—w]<x+g,y,—z>, (2.10)

T
Szt [u,v,wlx,y,2) — [u, —v, —w] (x+g,—y,—z)-

3. Numerical method
3.1. Fluid solver

The pseudo-spectral DNS code developed by Pinelli et al. (2010) is used to integrate a
given flow state forward in time. Time stepping is realised using an incremental pressure
projection scheme, in the context of which linear and nonlinear contributions are treated
with a semi-implicit Crank—Nicolson and a low-storage Runge—Kutta method (Rai & Moin
1991; Verzicco & Orlandi 1996), respectively. Throughout, simulation time steps are small
enough to ensure that the CFL number stays below 0.3. The velocity and pressure fields are
expanded in terms of truncated Fourier series in the periodic streamwise and Chebyshev
polynomials in the two cross-stream directions. While a grid of equispaced nodes is
introduced in the streamwise direction, the standard Gauss—Chebyshev—Lobatto points are
chosen as collocation points in the cross-stream directions. Back and forth transformation
between physical and Fourier space along the streamwise direction is performed with the
aid of fast Fourier transforms and standard de-aliasing according to the 2/3-rule is applied
throughout. Fourier expansion of the fields along the streamwise direction allows us to
solve linear Poisson and Helmholtz equations for each streamwise wavenumber separately.
The resulting two-dimensional systems only depend on the cross-sectional directions and
can be efficiently solved with a fast-diagonalisation technique (Haldenwang et al. 1984).
The remaining nonlinear contributions are solved in physical space.

For all edge-tracking simulations, a combination of N, = {64, 128} (for L,/H =
{27, 47}) Fourier modes and Ny = N, = 129 Chebyshev polynomials are chosen in the
streamwise and the two cross-stream directions, respectively. The resulting discretisation
fulfils the resolution requirements for fully turbulent trajectories at all considered
Reynolds numbers, leading to inner-scaled grid spacings of Ax™ < 14 and max(Ay™) =
max(Az1) < 3.5. Tests in which edge trajectories were integrated with fewer Chebyshev
polynomials Ny = N, = {65, 97} gave qualitatively similar results in that the trajectories
converged to periodic edge states at comparable period. However, the coarser runs failed
to resolve the bursting amplitudes of the higher-resolution data with sufficient precision,
justifying the relatively high resolution in the two cross-stream directions. A lower
resolution of Ny x Ny x N, =48 x 65 x 65 is merely used for the reference simulation
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at a marginal Reynolds number Re;, = 1150, in which case this discretisation is sufficient
to resolve all relevant flow scales.

3.2. Edge tracking

Tracking trajectories along the edge is commonly done by a bisection between trajectories
that approach the laminar fixed point and those which leave the neighbourhood of
the edge towards the turbulent attractor/saddle (Itano & Toh 2001; Toh & Itano 2003;
Skufca, Yorke & Eckhardt 2006; Schneider et al. 2007; Duguet et al. 2008; Schneider &
Eckhardt 2009). In the remainder, trajectories that return to the laminar state and those
experiencing a rise in energy towards a turbulent state are denoted as u’ and u’,
respectively. While similar in concept, the different edge-tracking approaches feature some
relevant differences concerning the states chosen on either side of the edge to perform
the bisection. In this study, we apply a technique similar to that presented by Schneider
et al. (2007) to follow trajectories along the edge. In this approach, bisection is performed
along a ray connecting a state u’’ that will tend to the turbulent ‘side’ and the laminar
equilibrium wu,,. As long as u —wuy,, is not tangential to .#, the procedure per se
allows us to track edge trajectories for arbitrary time intervals. However, the positive
Lyapunov exponents of the chaotic system cause any initially close trajectories to separate
exponentially fast. Hence, even if the bisection determines a flow state on the edge up
to double precision, a ‘refinement step’ after §r = O(1007}) is unavoidable to find a new
approximation for a state on .# (Toh & Itano 2003; Duguet et al. 2008). The finally
obtained solution is therefore — strictly speaking — a piecewise-continuous approximation
to a true edge trajectory, with small-amplitude discontinuities occurring at the refinement
times #; (Itano & Toh 2001).

In the current work, the first bisection is initialised with a flow state u¢(x, fy), randomly
chosen from a turbulent trajectory at matching Rep. The general procedure can then be
summarised as follows: the ith bisection step iteratively seeks a parameter §; € R (Vi € N)
that rescales the velocity perturbation of a state ul.H_ 1 (x, t;—1) with respect to the laminar
base flow at the beginning of the corresponding time interval #;_1, viz.

ug (x,ti—1) = Uigm + Bi (uihi](xa ti—1) — ulam) atr =11,
t

0
ug (x, 1) = ug (x,ti—1) + / Pyl dr’ Vi€ (ti-1, 1i)-

t'=ti_|

3.1

In each of these shooting steps, the rescaled flow state is advanced in time according to
(3.1) with the aid of the DNS code outlined in § 3.1, until the flow either relaminarises
or becomes turbulent. As a measure for when a trajectory has left the edge, we use the
root mean square (r.m.s.) of the kinetic energy of the non-constant streamwise Fourier
modes, viz.

Ems=Y [Espl’, (3.2)
J
with
Ne—1 H
Ewlj= Y[t dzay vie (ry.a) (33)
=1y :=—H

Therein, &; and &; indicate the ith Fourier coefficient and its complex conjugate,
respectively, and [e]; denotes the jth component of a vector field. The trajectory is
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considered as deviated from .# when E,, either falls below Eﬁms ~2 x 10 3u or,
following a steep energy rise, exceeds E’,, ~2 x 10~!u;,. Each bisection is continued
until the relative error |87 — BL|/|28;| falls below 10~!2, where B; represent the current
approximation to the parameter 8. The bracketing parameter values, eventually leading to
a relaminarisation or a turbulent state, are denoted by B~ and ¥, respectively.

Since the process is started with a turbulent flow state, the first parameter value S
is usually clearly lower than unity. For short enough refinement intervals, subsequent
bisections start with a much better initial guess for a state within ., so that all 8; Vi > 2
are very close to unity and, thus, the computed piecewise-continuous curve is a good
approximation to a true edge trajectory. In order to ensure this quality of the approximation,
the trajectories u’ and u” are advanced in time over 8¢ = 3007} (in single cases up
to 6t =6007}), as long as it is guaranteed that the relative distance between the two
bracketing states u’ and uf

|t (t; + 8t) — uk(t; + 81) ||2
|uf (1; +80)||, + |ukt; +80)]|,

1y = | (3.4)

remains below a threshold of 107, In case &7y exceeds this limit, 87 is successively
reduced until the criterion is fulfilled (Kreilos ef al. 2013).

4. Results
4.1. Edge-state dynamics in the full state space

In a first step, edge trajectories are sought in the full phase space without restriction to
any symmetric subspace. The characteristic dynamics will be analysed for trajectories in
two domains of different streamwise period, L, /H € {27, 47}, at Reynolds number Rej, =
2000 (equivalent to a friction Reynolds number Re, = H™ ~ 89 in the turbulent case).
Trajectories at other Reynolds numbers up to Rep = 3200 revealed a qualitatively similar
behaviour, so that the current findings can be seen as representative of a wider range of
Reynolds numbers. In the remainder of this work, the two considered cases will be referred
to as CA2000;,, and CA20004,, respectively, and the properties of their edge states are
summarised in table 1, together with the periodic edge states discussed in the subsequent
section.

The here analysed Reynolds numbers Rep, > 2000 lie well above the critical value for
the sustainance of turbulence Rej, ~ 1077 (equivalent to Re; ~ 77 in the turbulent case),
so that all four bounding walls simultaneously feature a pronounced turbulent activity
most of the time. A clear separation between the typical perturbation energy level within
the edge and along fully turbulent trajectories is for these Reynolds numbers guaranteed.
Note that the latter is vital for the edge-tracking protocol, as it allows an unambiguous
classification of whether or not a trajectory has left the edge towards the turbulent basin.
For much lower Reynolds numbers approaching Rej, on the other hand, states along edge
trajectories and those in turbulence are of comparable amplitude and can no longer be
properly distinguished from each other (Schneider & Eckhardt 2009; Kreilos et al. 2013).

At Rep, = 2000, in the absence of imposed symmetries, the edge states in the considered
domains are relative chaotic attractors within .#: trajectories initiated with appropriately
scaled random turbulent snapshots quickly approach a chaotic edge state, as can be
seen from the temporal variation of the perturbation energy signals E,, depicted in
figure 2(a,b). A recurrent pattern can nonetheless be found in all analysed chaotic edge
trajectories: throughout, the dynamics is characterised by long-lasting, relatively quiescent
phases of O(1007}) length, which are suddenly interrupted by intense bursting events.
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Figure 2. Time evolution of different flow measures for the non-symmetric edge trajectories of cases (a,c,e)
CA20002; and (b,d,f) CA20004x . (a,b) The r.m.s. energy signal E ;s (), with solid nodes indicating snapshots
that are visualised in subsequent figures. (c,d) Individual contributions S;(¢) of the triangular sectors to the
overall mean streamwise enstrophy. (e, f) Shear stress averaged along each of the four walls separately, 7, ; (),
normalised by the corresponding laminar value Ty ; jam (f). In (c—f), colour coding indicates the respective
wall/sub-sector: i = S (blue), i = E (green), i = N (orange), i = W (red).

These latter manifest themselves in form of a rapid rise of the systems’ perturbation energy,
followed by a decrease back to the energy level of the quiescent period. In wall-bounded
turbulence, such bursting events are usually attributed to the bending and eventual breakup
of a streamwise velocity streak due to the action of flanking quasi-streamwise vortices
(Hamilton er al. 1995; Waleffe 1997). In order to deduce near which of the four walls
such a bursting event is happening, the enstrophy contained in the streamwise-averaged
vorticity (Uhlmann et al. 2007)

S (1) :/ (wy)? dA Vie (W, S, E, N} (4.1)
2l 1021 A40-11
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is measured for the four disjoint triangular subsets

Qs={y,Dly<zAy<—-z}, 2n={(, Dly>z N y>—z},
Qw={,Dly>zANy<—-2},e={(y.Dly<z ANy>-—z}, 4.2)

of the duct cross-section §2| =[—H, H] x [—H, H] separately. In order to quantify
which of the two pairs of parallel walls features a significant turbulent activity, we define
in addition a dimensionless indicator function (Uhlmann et al. 2007)

1d _ (Sn+Ss) = (Sw + SE)
A= Sy +Ss+ Sw + Sk

based on the triangular sector contributions defined in (4.1). By definition, Ida attains
values close to plus or minus unity whenever the enstrophy carried by the streamwise-
averaged vorticity is predominantly focussed near the walls at y € {—H, H} or those at
z€{—H, H}, respectively.

The temporal variation of the different contributions S;(#) presented in figure 2(c,d)
clearly indicates that, over a significant portion of the observation interval, the turbulent
vortical activity is primarily concentrated near a single wall. As has been shown earlier,
this (instantaneous) ‘localisation’ of streaks and vortices to a subset of the four surrounding
walls only is not exclusive to edge trajectories, but is visible in marginally turbulent
flows as well (cf. figure 1a). Interestingly, the concentration to a single wall is strongest
at the peaks of the bursting phases, with over 99 % (CA20002,) and 97 % (CA20004)
of the enstrophy associated with (wy), residing in the vicinity of a single wall during
these times. Also, figure 2(c,d) reveals that each bursting episode is accompanied by
a ‘switching’ of the activity to one of the neighbouring walls. During this switching
period, in turn, turbulent activity spreads temporarily over several triangular sectors £2;,
before focussing again in a single one. The sequence in which the individual contributions
S; dominate the overall vortical activity moreover implies that the ‘switching’ is not
necessarily continuously oriented in one direction, but that a back-and-forth switching
is equally possible. This is interesting as a qualitatively similar chaotic dynamics is
reported for the lateral ‘streak switching’ in the chaotic edge states of the asymptotic
suction boundary layer (Khapko et al. 2013), in this case in form of an irregular left—
right switching. In the square duct case, the ‘wall-switching’ dynamics also leaves its
footprint in the temporal evolution of the wall shear stress, separately averaged over the
four surrounding walls: as can be seen from figure 2(e, f), the wall shear stress t,,; of
‘active walls’ can exceed the values in a corresponding laminar flow by approximately
70 %. The vicinity of the remaining walls is then usually quiescent, with an averaged
wall shear stress 7y, ; & Ty,i.1am, Underlining the absence of a self-sustaining near-wall
regeneration cycle along these walls.

The different stages of a selected bursting event in the interval ¢ /T, € [600, 900] and
the corresponding wall switching are shown in figure 3 in terms of the streamwise-
averaged velocity field (u),;, extracted from the edge trajectory at the instances indicated
by solid markers in figure 2(a). Figure 4 complements this view with three-dimensional
visualisations of the low-speed streaks (depicted as iso-surfaces of u,) and the flanking
quasi-streamwise vortices (measured as regions of high values of the second invariant
of the velocity gradient tensor, Q; see Hunt er al. 1988) at the same moment in
time. Figure 4(a) reveals that the flow state just before the energetic burst excursion is
characterised by a single pronounced low-velocity streak near the centre of the top wall,
flanked by a pair of counter-rotating quasi-streamwise vortices in a streamwise staggered
arrangement. The vortices are inclined with respect to both the neighbouring wall and
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Figure 3. Selected snapshots of the instantaneous streamwise-averaged primary and secondary velocity fields
for case CA2000,,. The snapshots are extracted at different times along a selected bursting event ¢/7}, €
[600, 900], as indicated by the markers in figure 2(a): (a—f) t/Tp = {675.4, 712.7, 744.5, 787.4, 825.3, 862.6}.
Isovalues are the same as in figure 1.

the streamwise direction, so that they induce a four-vortex cell pattern in the streamwise-
averaged field (cf. figure 3a). While this configuration promotes the evolution of the
low-speed streak in the direct vicinity of the wall, it counteracts it further away — until
the low-speed streak eventually turns into a high-speed streak as the burst reaches its
peak (figures 3c and 4c). Here, the special shape of the duct cross-section comes into
play, since the quasi-streamwise vortices responsible for the birth of the high-speed streak
at the top wall simultaneously induce new low-speed streaks along the two sidewalls at
z={—H, H}, while the energy quickly tends back to the pre-burst level (figures 3d and
4d). The flow is, however, not entirely symmetric with respect to the y-axis and, eventually,
a pronounced low-speed streak surrounded by a pair of quasi-streamwise vortices is only
evolving on one of the sidewalls at z = —H (figures 3e,f and 4e,f). In contrast to their
counterparts at the top wall just before the bursting event, these structures are still in an
early stage of their lifetime: the streak is still aligned with the streamwise direction, while
the vortices do not lean over the streak yet, as can be seen from the streamwise-averaged
secondary flow patterns in figure 3(e,f).

The successive change of a mild low-speed streak to an intense high-speed region in
two different bursting events at t = 7507}, (top wall y = H) and ¢t & 13207}, (right sidewall
z = H) can be clearly identified by the footprint these events leave in the wall shear stress
profiles in figure 5. Therein, the temporal evolution of the streamwise-averaged wall shear
stress (|Tyy| or |Ty;|) is shown for all four walls separately, and is contrasted with the time
signal of the perimeter-averaged friction Reynolds number. The visualisation underlines
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(d)
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Figure 4. Three-dimensional visualisations of the velocity field in case CA2000, in terms of low-speed
streaks and quasi-streamwise vortices during the selected bursting event ¢/T}, € [600, 900], extracted at the
same times as those in figure 3 and as indicated by the markers in figure 2(@). Light blue iso-surfaces
of the streamwise perturbation velocity u, = —0.15u; indicate the position of low-speed streaks. Quasi-
streamwise vortices are identified in terms of the Q-criterion of Hunt, Wray & Moin (1988) as regions with
Q0 > 0.6 max (Q). Clockwise (red) and counter-clockwise rotation (dark blue) is measured by the local sign
of wy.

that the high shear stress declines quickly in O(1073) after the bursting event, but its
value at the corresponding wall stays the dominant contribution over a much longer time
interval. In between the two bursting events, when the turbulent activity is rather evenly
distributed across the different triangular sectors, there is also no pronounced high- or low-
speed streak detectable on either of the four walls. The edge state therefore features two
characteristic time scales, a slow one with O(100)7}, that is associated with the interval
between two bursting events and a much faster related to the structures’ downstream
propagation (Kreilos et al. 2013).

The observed streak—vortex interaction, including the breakup and bursting of the
streaks, agrees well with the different phases of the classical self-sustained process/vortex—
wave interaction envisaged by Hamilton et al. (1995), Waleffe (1997) and Hall & Sherwin
(2010). To provide quantitative evidence, the kinetic perturbation energy per unit mass
is decomposed into different contributions that can be associated with the different
ingredients of the process (Lucas & Kerswell 2017), viz.

1 1 1 1
Ep = ‘(”§>v = §(<”p>§>v + §(<UP>;25 + <wp>;2c)v + 5((”17 - <"p>x)2>V' “4.4)

Estreak Erolls Ewave
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Figure 5. Variation of the streamwise-averaged wall shear stress along each wall during two bursting episodes
in the interval ¢ / T}, € [600, 1500] of case CA20002: (ty;)x along (a) the left (z = — H) and () right sidewalls
(z=H), as well as (txy), along (c) the bottom (y = —H) and (d) top walls (y = H). The wall shear stress
is normalised with the perimeter-averaged value in the corresponding laminar state. Isocontours are drawn in
the interval [0, 3.5], with increment 0.25. (e¢) Temporal variation of the perimeter-averaged friction Reynolds
number Re; over the same time window.

Here, Esteaks Erons and Eyygye refer to the energy contributions of the streamwise
constant streak mode, the quasi-streamwise vortices/rolls and the streamwise-varying
wave mode, respectively. In the square duct, E,,s effectively measures the kinetic
energy of the instantaneous secondary flow. Despite being the dominant contribution
throughout, figure 6 highlights that the intensity of the streamwise-elongated streaks
Etrear regularly drops during the identified bursting intervals. In these phases, the energy
is instead transferred into the streamwise-dependent wave field (E,,4ve), that is, the initially
streamwise-aligned streak gets more and more distorted. With a slight delay of several
bulk time units, a rise of the roll mode energy E,, s follows, which indicates the gain
in strength of the quasi-streamwise vortices. Owing to the much smaller amplitude of the
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Figure 6. Time evolution of the individual contributions to the perturbation energy E, for cases (a) CA2000,,
and (b) CA20004 . Line styles indicate: Eyeqr (solid), E\ave (dashed), 150E,,y5 (dotted). The insets show the
evolution of the wave and roll modes’ amplitude enlarged during selected bursting events.

cross-stream velocity components compared with their streamwise counterpart, the kinetic
energy residing in the quasi-streamwise vortices is two orders of magnitude smaller than
that of the wave field. The outlined observations are consistent for the shorter and longer
domain, with somewhat higher portions of the total perturbation energy E, being held in
E\vave for the longer domain.

The fact that the edge state in the square duct is a chaotic attractor within .# is
consistent with circular pipe flows, where the edge state takes the same form (Duguet
et al. 2008; Mellibovsky et al. 2009; Schneider & Eckhardt 2009; Avila et al. 2023).
Given that many TW solutions detected in circular pipe flow (Pringle, Duguet & Kerswell
2009) possess a strikingly similar counterpart in the square duct (Okino 2011), the
current findings provide further support for the suspected close relation between the
state space structure of both systems. When it comes to a direct comparison of the
individual dynamics, however, it turns out that comparable alternating quiescent phases
and intermittent bursts have not been reported for the chaotic edge states of circular pipe
flows. In other systems including plane channels (Rawat et al. 2014, 2016; Toh & Itano
2003; Zammert & Eckhardt 2014) or asymptotic suction boundary layers (Kreilos et al.
2013), however, the edge states do feature a remarkably similar dynamics. For certain
(streamwise and spanwise) domain periods and Reynolds numbers, the edge state in these
systems even simplifies to a symmetric time-periodic limit cycle within ./, or an unstable
PO with respect to the full state space; a more detailed discussion of these solutions and
comparison with the edge states in square duct will follow in § 4.2.

4.2. Periodic edge-state dynamics in symmetric subspaces

In circular pipe flow, edge states reduce to simple invariant solutions merely if trajectories
are restricted to appropriate symmetric subspaces of the full state space. Examples include
TW edge states in w-rotational symmetric flows (Duguet ef al. 2008) and (relative) PO
edge states under enforcement of a z-rotational, combined with a reflectional symmetry
(Avila et al. 2013). Based on these experiences, Gepner et al. (2025) (cf. also Okino
2014, in Japanese) performed edge-tracking studies in the R;-symmetric subspace of
square duct flows driven with a constant pressure gradient. For domains of L,/H =2n
and L, /H = 8x length, these authors found the edge states to be TWs equivariant under
the symmetry groups (Sy, S;, R;) and (Z,, Z,, Ry), respectively. For the intermediate
domain length L, /H = 4, however, the edge state was chaotic even in the R, -symmetric
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subspace. In the current study, we found a TW edge state with the same characteristics as
the one found by Okino (2014) in the R,-symmetric subspace (with the solution featuring
a SyS;R;-symmetry) despite our somewhat different driving, i.e. a time-varying pressure
gradient ensuring a constant mass flow rate versus a constant pressure gradient in the study
of Okino (2014). Both solutions arguably belong to the same family of solutions, proving
the consistency of our results with theirs.

In the course of this work, edge trajectories have been analysed in a number of different
subspaces, obeying varying combinations of shift-reflect symmetries (S, S;), rotational
symmetries (Ry) and full reflectional symmetries (Zy, Z,). In most of the subspaces, the
edge states turned out to be TWs known in the community, even though not necessarily
in their role as edge states (Wedin et al. 2009; Uhlmann et al. 2010; Okino 2014).
In the remainder of this section, we therefore restrict ourselves to the Z,- and Z,Z -
symmetric subspaces, for which edge trajectories at various Reynolds numbers in the
range Rep, € [1600, 3200] converged to limit cycles with a rich bursting dynamics. At
selected Reynolds numbers, edge trajectories have been computed starting from different
turbulent snapshots as initial conditions. For almost all parameter points, the different
edge trajectories eventually converge to the same periodic edge states modulo discrete or
continuous symmetry operations. The only exception is the Z-symmetric case PO2000,,
for which one edge trajectory converged to the PO shown in figure 7(b), while the
other approached a TW. The latter has been successfully converged with a standard
Newton—Raphson method, using the generalised minimal residual (GMRES) approach to
approximately solve the arising linear systems (Chandler & Kerswell 2013). The detected
TW lives in a higher-symmetric subspace invariant under (Zy, S;, S;) and presumably
belongs to the family of solutions found by Wedin er al. (2009), although no effort was
made to prove this rigorously via a continuation study. To show that the TW is indeed
an alternative edge state rather than a relative saddle within .#, we continued tracking
the edge trajectory for several thousand bulk time units after it had approached the TW,
without any sign of deviation from the latter. State space configurations with multiple co-
existing ‘local’ edge states of possibly varying type (e.g. one TW and one PO as observed
here) are not exclusive to the square duct, but have been reported for a variety of flows
(Duguet et al. 2008; Suri et al. 2019).

In the remainder, we will restrict our analysis to the periodic edge states. Unfortunately,
the limit cycles’ long periods T = O(1007}) do not allow us to converge these solutions to
machine precision with the standard Newton—-GMRES approach; a problem that is shared
with time-periodic edge states in other systems (Kreilos ef al. 2013; Zammert & Eckhardt
2014). If at all possible, convergence might be achieved with more advanced multipoint-
shooting techniques (Budanur et al. 2017), or recently developed adjoint-based variational
Jacobian-free methods (Ashtari & Schneider 2023). Here, however, time stepping alone
provides a fairly good approximation to the PO since the latter is an attracting state in ./:
the relative distance between two velocity fields separated by a full period 7', viz.

lu(x+s,t+T)—ux, 1),

with s = (s, 0, 0)7, (4.5)
e lu(x, 1)l '

is small — of order @(10™>) when only the streamwise-dependent modes u — (u), are
compared in (4.5), and O(1073) if the full set of modes is considered. Here, the period of
the limit cycles is estimated up to a precision of SAt = 0.077}, (which is half the interval
in which statistics have been aggregated) based on the peaks of the auto-correlation
functions of different measures; see Appendix A for further details and Appendix B
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Figure 7. Time evolution of the r.m.s. energy signal E,,,s(¢) (upper plots) and individual contributions of the
triangular sectors to the overall mean streamwise enstrophy S; () (lower plots) for periodic edge states in the
Z ,-symmetric subspace: (a) PO1600,, (b) PO2000,, (c) PO2400, and (d) PO3200,. In (a—c), the fundamental
period (grey background) is repeated periodically. For the sake of visualisation, in (d), we show only the first
half of the POs period (blue background) which represents a pre-PO with period 7., = T /2 (see the discussion
in the main text). Colour coding in the lower plots is: i = E (green), i = W (red), i = {S, N} (orange, identical
due to symmetry).

for an explanation how the stability of the limit cycles has been verified based on first-
return maps of Ida(¢) (Khapko et al. 2013; Zammert & Eckhardt 2014). Note that the
minimisation over all possible streamwise shifts s, in (4.5) checks for relative POs, which
are self-recurrent in a co-moving frame of reference only. It turns out that the identified
edge states are relative POs indeed: In case PO2400,, for instance, u(x +s,1+7T) =
u(x, t) holds for s, /H ~ 0.11.

4.2.1. M under Z,-symmetry

In a first step, we analyse states whose velocity and pressure fields obey a single reflectional
symmetry with respect to the wall bisector. As for the chaotic edge states shown in
figure 2(a,b), the edge trajectories in the Z,-symmetric subspace experience regular
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Figure 8. Snapshots of the streamwise-averaged primary and secondary flow fields of case P0O2400,
extracted at different instances along the orbit, as indicated by the markers in figure 7(c): (a—f) t/Tp =
{88.0, 166.6, 226.3, 635.4, 653.2, 741.3}. Isovalues are the same as in figure 1.

bursting events that interrupt the otherwise quiescent dynamics (cf. figure 7, upper plots in
each panel) for all considered Reynolds numbers. Per periodic cycle, the flow undergoes
— depending on the Reynolds number — between two and ten such bursting episodes for
E,.ns with different peak amplitudes. In all cases, the strongest bursts go hand in hand with
a rapid increase in energy by approximately a factor three compared with the pre-burst
phase.

The temporal variation of the individual sector contributions to the streamwise-averaged
enstrophy, S;j(t), is presented in figure 7 (lower plots in each panel). For all but case
PO3200,, the two consecutive peaks of the energy signals come with a subsequent
switching from a ‘top-bottom’ (higher peak) to a ‘left-only’ (weaker peak) configuration,
or vice versa. The two configurations are seen in the streamwise-averaged velocity fields,
extracted along a full cycle of case PO2400, (cf. figure 8): the higher energetic peak
encodes the simultaneous bursting of a streak at the top wall and its symmetric twin at the
bottom wall (figure 8b), while the lower indicates a bursting event at one of the sidewalls
(figure 8d). The streak—vortex groups at the top and bottom walls arguably undergo the
same self-sustaining process as in the chaotic edge state, with the difference that the
symmetrical constrains here enforce them to appear in pairs at the two opposite walls.
In analogy to the dynamics of the chaotic edge state, each of the quasi-streamwise vortices
responsible for the change of the low-speed into a high-speed streak at the bottom and top
wall induces a low-speed streak at the neighbouring sidewall — a first one in the lower half
(y/H < 0) and a second one in the upper half (y/H > 0) of the domain (figure 8¢). The two
mirror-symmetric streaks then experience a similar instability as their larger counterparts
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Figure 9. Variation of the streamwise-averaged wall shear stress along each wall over a full period of case
P0O2400,: (ty;), along (a) the left sidewall (z=—H) and () right sidewall (z= H) and (c) (zxy), along
the top/bottom walls (y = = H). The wall shear stress is normalised with the perimeter-averaged value in the
corresponding laminar state. [socontours are drawn in the interval [0, 3.5], with increment 0.25. (d) Temporal
variation of the perimeter-averaged friction Reynolds number Re; over the same time window.

at the top and bottom wall, until they finally break (figure 8d) and the associated quasi-
streamwise vortices give rise to a new generation of streaks at the top and bottom walls
(figure 8f). A comparison of this last state in figure 8f with the one in figure 8a once more
confirms the exact recurrence of the orbit after a period T = 653.37},.

The switching behaviour between a single streak—vortex family at the bottom and top
wall on the one hand and the two narrow streaks with associated vortices at one of the
sidewalls leaves a footprint in the temporal evolution of the streamwise-averaged wall shear
stress, cf. figure 9. On the other hand, the presented data also indicates that the remaining
wall at z= H never hosts a pronounced streak, again highlighting that the switching
occurs only between the top/bottom walls and the sidewall at z = —H in this case.
The observed behaviour is qualitatively similar for the lower-Reynolds-number cases
PO1600,, PO2000,, PO2200, (not shown) and PO2400,, the only difference being that
the period of the orbits monotonically increases with the bulk Reynolds number (cf.
discussion of figure 13). Such a trend is consistent with observations for periodic edge
states in other flow configurations (Kreilos et al. 2013). These characteristics change for
the highest considered Reynolds number (case PO3200,), for which the edge state is still
periodic, but the dynamics is more complex and the period is with approximately 38007}
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one order of magnitude longer than those at the lower Reynolds numbers. In contrast to
these latter cases, the edge state in case PO3200, switches between three rather than two
distinct states in a fairly complicated manner (cf. figure 7d). The sequence of dominant
contributions S; over a single cycle reads

(SS U SN) — SW d (SS U SN) g SW —> (SS U SN) —> SE — (SS U SN) d SE, (46)

pre-PO; pre-PO,

i.e. the flow changes between a ‘top-bottom’ state and a flow state with turbulent
vortical activity focussing near either of the two sidewalls. It turns out that the two
sequences marked as pre-PO; and pre-PO; represent two pre-POs (Cvitanovi¢ et al.
2022, p. 187): after Ty, = T /2, the flow state repeats itself modulo a reflection such that
ux,t)=2Zux,t+Tye)andu(x,t)=2Z,Z,u(x,t+T)=u(x,t+ T)holds, ignoring
possible streamwise shifts for readability. Note that such sudden changes of the edge-state
characteristics due to parameter variations (e.g. changing domain extents or Reynolds
number) are reported for edge states in many flow configurations, sometimes even
changing from a simple TW or PO to a chaotic state (Khapko et al. 2013; Kreilos et al.
2013; Zammert & Eckhardt 2014).

422. M under ZZ -symmetry
In a second step, the flow is further restricted to the twofold mirror-symmetric subspace
for which trajectories are invariant under the operations Z, and Z,. It is then readily
shown that states in this subspace automatically fulfil a rotational symmetry by 7 about
the x-axis (R;) as well. As for the Z,-symmetric cases, all considered trajectories at
various Reynolds numbers converge after an initial transient to a relative PO as edge state.
The converged limit cycles can be identified in terms of E,, in figure 10 for different
Reynolds numbers. The general dynamics is similar to that of their counterparts in the
Z y-symmetric subspace in that quiescent phases alternate again with intermittent intense
high energy and dissipation excursions. Here, however, the systems oscillate periodically
between two states in which the overall turbulent activity is almost entirely focussed at the
top and bottom walls at y = +H or the two sidewalls at z = £ H, respectively. All edge
states with Re;, 2> 2000 (cf. cases PO2000,, and PO3200,, in figure 10c,d as examples)
undergo two bursting events with identical peak amplitudes per limit cycle, from which
one is associated with a streak breakup at the top/bottom walls and the other one with
a corresponding event at the sidewalls. Figure 11, in which the temporal evolution of the
streamwise-averaged wall shear stress is presented for case PO2000,, reveals that not only
the peak amplitudes are identical: the limit cycle consists of two pre-POs with 7),,, =T /2
that are identical modulo R > or R3;/2, i.e. rotations by /2 or 37 /2 about the x-axis.
Hence, the relative distance between two velocity fields separated by 7). (following the
definition in (4.5) including a correction for the rotation) is at O(107?) of the same order
as when evaluated for the full period T'. In figure 12, therefore, instantaneous streamwise-
averaged velocity fields are shown for the first half of the limit cycle only. A comparison
between the states in figure 12(b, f) visually confirms that any two states separated by 7).
are identical except for a rotation by /2. Apart from that, the snapshots underline that
the different phases the two neighbouring streaks undergo during a cycle of the pre-PO on
each of the two sidewalls are arguably the same as those observed for the streaks along
the sidewall of case PO2400, in figure 8 — enforced by the symmetry constraints to appear
simultaneously on both opposing walls.

It is interesting to see that a reduction of the Reynolds number below 2000 breaks the
discussed R >-symmetry between the two pre-periodic segments: in case PO1800,, (cf.
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Figure 10. Time evolution of the r.m.s. energy signal E,,;(f) (upper plots) and individual contributions of the
triangular sectors to the overall mean streamwise enstrophy S; () (lower plots) for periodic edge states in the
Z,Z,-symmetric subspace: (a) PO1600,., (b) PO1800,., (c) PO2000,, and (d) PO3200,,. Colour coding in
the lower plots is: i = {W, E} (red, identical due to symmetry), i = {S, N} (orange, identical due to symmetry).

figure 10b), the two energetic peaks associated with the different pairs of opposite walls
differ slightly in amplitude, and the dynamics during the decline of the energy after the
burst is somewhat different too. Analogue symmetry breaks have been reported for edge
states in the asymptotic suction boundary layer by Kreilos et al. (2013), in their case,
however, induced by a variation of the domain size. At even lower Reynolds numbers (cf.
case PO1600,,, figure 10a), the energy signal implies that a period-doubling sequence
might occur for Re, < 1800: a full cycle period now features eight individual bursting
episodes, four associated with the ‘top/bottom-wall states’ and four with the ‘sidewall
states’.

To completely clarify whether such period-doubling or period-multiplication sequences
take place in the intervals Rej, € (2400, 3200) and Rej, € (1600, 1800) for the Z,- and
the Z,Z,-symmetric subspaces, respectively, many more edge-tracking runs have to be
launched to resolve the ‘continuation’ in Reynolds number — an undertaking that is out of
the scope of the current study. Nonetheless, the current results indicate that the variation
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Figure 11. Variation of the streamwise-averaged wall shear stress over a full period of case PO2000,,:
(@) (Txz)x along the left/right sidewalls (z=24H) and (b) (txy), along the top/bottom walls (y = +H).
(c) Temporal variation of the perimeter-averaged friction Reynolds number Re; over the same time window.
Contour levels and normalisation are identical to those in figure 9.

of the edge-state characteristics with the Reynolds number is for both subspaces highly
non-uniform across the parameter space: figure 13(a,b) visualises the edge-state periods
as a function of the Reynolds number, implying that the period varies essentially linearly in
some parameter ranges. In others, however, a similar change in Reynolds number causes
abrupt increases of the limit cycle’s period, by factor four and six in the Z,- and the
Z,Z.-symmetric subspaces (as indicated by the open symbols in figure 13), respectively.
Such sudden changes of the edge-state characteristics are in qualitative agreement with
the findings of Zammert & Eckhardt (2014), who reported alternating regimes of periodic
and chaotic edge states, separated by intervals of period multiplication sequences, as
the Reynolds number increases in plane channel flow. Khapko et al. (2014) observed a
similar variation of the edge-state properties in the asymptotic suction boundary layer
when varying the spatial period of their computational domain. To clarify whether the
current variations of the edge-state period are of similar nature, however, requires further
efforts and goes beyond the scope of the current study.

5. Discussion
5.1. Comparison with marginal duct turbulence

In figure 14, we compare the perturbation energy E,,s and the mean secondary flow
intensity u | = +/2E,.ys of the detected edge states with the corresponding values in fully
turbulent trajectories and those for the ‘four-’ and ‘eight-vortex state’ TW families of
Okino et al. (2010) and Uhlmann et al. (2010), respectively, in a domain of identical
length. The key difference between the two measures is that E,,;; quantifies the energy in
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Figure 12. Snapshots of the streamwise-averaged primary and secondary flow fields of case PO2000,.,
extracted at different instances along the orbit as indicated by the markers in figure 10c: (a—f) t/Tp =
{0.5, 37.7, 88.2, 138.2, 178.6, 239.1}. Isovalues are the same as in figure 1.
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Figure 13. Edge-state periods (closed squares) as a function of the bulk Reynolds number for (a) the Z-
symmetric and (b) the Zy Z . -symmetric subspaces. For limit cycles with long periods, additional open symbols
indicate the time separation to other local maxima of the auto-correlation function associated with the signal
Ida(1).

the streamwise-varying modes of all three velocity components, whereas u | measures the
streamwise-constant modes of the cross-stream velocity components only. From figure 14,
it can be seen that the period-averaged values for both quantities in the newly detected
edge states are comparable to those of the TWs found by Uhlmann et al. (2010) and Okino
et al. (2010). As can be expected from the number of mean secondary flow cells hosted
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Figure 14. (a) The r.m.s. energy signal E,,;s/u;, and (b) mean secondary flow intensity u /u; of the edge
states as a function of the bulk Reynolds number Rep,. The vertical ‘error bars’ visualise the range of values
attained during one cycle of the periodic cases or along the entire chaotic edge trajectory. Time averages over a
full cycle (periodic) or the full trajectory (chaotic) are indicated by a short thick horizontal line along the error
bar. The black and blue dashed lines indicate the TW families found by Uhlmann ez al. (2010) (‘eight-vortex
state’) and Okino ef al. (2010) (‘four-vortex state’), respectively, for the same streamwise period « H = 1. Black
circles indicate long-time averages of turbulent trajectories (Uhlmann et al. 2007). Note that data points for Z -
and Z, Z;-symmetric cases have been shifted to Re;, + 20, respectively, to improve their visibility.

by each of the TW solutions, the mean perturbation energy of the doubly symmetric edge
states agrees fairly well with the ‘eight-vortex state’ of Uhlmann ef al. (2010), while that
of the single-symmetric edge states attains comparable values as the ‘four-vortex state’
found by Okino et al. (2010). Instantaneously, however, the peak values of both quantities
clearly exceed the corresponding period-averaged values and those attained by the TW
solutions. While the maxima of the perturbation energy E,,s along a periodic cycle
remain clearly below the level of the turbulent long-time averages, the largest values of the
mean secondary flow intensity u are of similar amplitude, sometimes even exceeding the
turbulent long-time averages, in particular for the doubly symmetric edge states. The fact
that the doubly-symmetric edge state features the highest mean secondary flow strength is
not surprising, as the twofold symmetry enforces vortices to appear near two of the four
surrounding walls during the entire cycle, while the chaotic edge state features vortical
activity near a single wall most of the time.

A closer look at the temporal variation of energy and dissipation is provided in figure 15,
where the edge dynamics is presented as low-dimensional projections onto planes spanned
by I and D as well as by Idx and D. Recalling that edge states, together with their stable
and unstable manifolds, act as mediators between the laminar and turbulent basins in
phase space (Toh & Itano 2003), they are well known to feature relevant similarities with
weakly turbulent states on the edge to relaminarisation concerning both their organisation
in physical space and their flow dynamics in general (Mellibovsky et al. 2009). In figure 15,
the edge states are therefore contrasted with the joint probability density function (jpdf)
for the corresponding quantities in the marginally turbulent reference simulation at Rep =
1150, for which selected snapshots have been presented in figure 1. The Reynolds number
considered for the reference trajectory is slightly higher than the critical value Rej, ~ 1077
(Uhlmann et al. 2007) and thus just large enough to sustain turbulence over time intervals
of O(10*T}) length or longer. In contrast to the fully-developed turbulent case, however,
not all four walls are able to host a turbulent regeneration cycle simultaneously most of the
time, as has been seen in figure 1.

The energy input-dissipation diagrams depicted in figure 15(a—c) highlight that the edge
states reside most of the time in the rather quiescent region of the state space in between
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Figure 15. State space projections onto the planes spanned by (a—c) the dissipation D and the energy input
I and (d—f) the indicator function Idx and the dissipation D. Energy input and dissipation are normalised
with the respective values in a laminar flow with identical mass flow rate. The coloured curves in (a,d)
represent the dynamics along the chaotic edge states of cases CA2000,, (solid) and CA20004, (dashed).
The remaining plots visualise the dynamics of the periodic edge states in (b,e) the Zy-symmetric subspace
(PO1600y, PO2400,, PO3200, as solid, dashed, dotted lines) and (c,f) the Z,Z, -symmetric subspace
(PO1800y., PO2600,, PO3200,, as solid, dashed, dotted lines). The grey-coloured background maps rep-
resent joint probability density functions of the same quantities in the turbulent reference simulation at Rep =
1150, with contours enclosing 90 % and 50 % of their total masses. The white-filled squares in (a—c) represent
the two flow states in figure 1a,b, with the lower-dissipation state being the ‘two-vortex state’ in figure la.

the laminar equilibrium (/y4;,, Diam) and what is the turbulent regime for Rep = 1150.
For all edge states, the flow orbits along the cycles in a clockwise sense, implying that
first the dissipation (or equivalently the enstrophy) experiences a steep rise owing to the
strengthening of the quasi-streamwise vortices. After a small time lag of O(17}), the
former low-speed streak turns into an intense high-speed region, causing the wall shear
stress and thus the external energy input / to increase abruptly. This is consistent with
the different phases of the self-sustaining process discussed with the aid of the energy
decomposition in (4.4) (Waleffe 1997), and is in line with the edge-state dynamics in plane
Poiseuille flow (Toh & Itano 2003) and the asymptotic suction boundary layer (Kreilos
et al. 2013).

Also, figure 15(c,f) provides further evidence for the symmetry break occurring
for Rep <1800 within the Z,Z,-symmetric edge-state family: two distinct loops are
discernible at the lower Reynolds number that collapse onto each other as the Reynolds
number increases, reflecting that the full orbit is composed of two pre-POs that differ
by a rotation of 7 /2 about the centreline. During the bursting excursions, the chaotic
edge states touch the lower end of the turbulent regime indicating the chaotic saddle,
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Figure 16. Comparison of instantaneous ‘two-vortex’ states in (@) the chaotic edge state CA2000,, and (b) the
marginally turbulent state at Rep = 1150. Left column: streamwise-averaged velocity fields (u), (iso-levels as
in previous plots). The arrows in (a) are scaled by a factor of two compared with those in (b). Right column:
three-dimensional visualisation of the velocity field. The green iso-surface marks u = 0.75u;, for all y < —z.
Vortices are identified as (@) Q7 > 0.002 and (b) QT > 0.004, respectively. Clockwise (red) and counter-
clockwise rotation (blue) is measured by the local sign of wy. To facilitate the comparison, the flow state in (b)
has been rotated by 7r/2 about the x-axis.

while their periodic counterparts in the symmetric subspaces reach much further into the
turbulent ‘regime’. This is expected as the imposed symmetries enforce turbulent activity
to appear on two opposing walls for a subinterval of the cycle (in the Z,-symmetric
subspace) or even for the full period (in the Z,Z,-symmetric subspace). The volume-
averaged dissipation and energy input should therefore attain higher values than in the
symmetrically unconstrained case, where the vortical activity is — most of the time — of
relevant amplitude near a single wall only.

For the sake of comparison, the parameter points associated with the ‘two-vortex’
state and the ‘four-vortex’ state presented in figure 1(a,b) are marked with white squares
in figure 15(a—c), illustrating that the energy input and dissipation is in these cases
comparable to the values attained by some of the detected edge states. Such ‘two-vortex’
states, characterised by a strong concentration of the turbulent activity to a single wall, are
in fact not that rare for flows under marginally turbulent conditions: for 20 % of the long-
time turbulent trajectory at Rep = 1150, more than 50 % of the total streamwise-averaged
enstrophy ) ; S; resides in a single triangular sector. The qualitative comparison between
a ‘two-vortex’ configuration of the chaotic edge state and one extracted from the chaotic
marginally turbulent trajectory in figure 16 highlights that the general flow configuration
of a single low-velocity streak, surrounded by several counter-rotating quasi-streamwise
vortices, along a single wall is comparable in both situations. The difference lies in the
amplitude of the vortices and thus the intensity of the generated secondary flow field, as
well as in the streamwise length of the coherent structures: while the edge state features a
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single pair of streamwise elongated vortices, their counterparts in the turbulent state have
a more complex shape and stretch less in the mean flow direction.

The fact that the turbulent trajectory transiently visits states in which a single wall/a pair
of opposing walls dominates ) _; S; is confirmed by the jpdfs presented in figure 15(d—f):
the turbulent trajectory stays most of its lifetime at dissipation levels exceeding 1.6 Dy,
featuring a vortical activity that is with |[Ida| < 0.5 rather uniformly distributed among the
triangular sectors. However, the presented data also indicate that the turbulent trajectory
spends a non-negligible portion of its lifetime in a low-dissipation regime too. The latter
is associated with a stronger focussing of the turbulent activity to a single wall/a pair of
opposing walls, and the detected edge states are seen to oscillate between these two low-
dissipation ‘tails’ with indicator values |Ida| > 0.5. The marginally turbulent trajectory, on
the other hand, does not switch directly from a state with Ida = 0.5 to one with Ida < 0.5
or vice versa, but it usually spends a (potentially long) while in the higher-dissipation
region first (cf. also Sekimoto 2011).

Our findings thus strongly suggest that the low-dissipation excursions of a weakly
turbulent trajectory to localised flow states are transient visits to one of the discussed
edge states. The trajectories shadow the edge-state dynamics for a certain time, potentially
undergoing a bursting and wall-switching episode. Eventually, however, they get repelled
from the edge along its single unstable direction back to the higher-dissipation regime
of phase space, where flow states feature a significant vortical activity all over the
cross-section.

5.2. The edge state in state space

In their seminal work on the edge state of plane Poiseuille flow, Toh & Itano (2003)
observed a periodic-like dynamics of alternating quiescent phases and energetic bursting
episodes along the edge to turbulence, but their limited computational resources did not
allow them to track the edge trajectory longer than one and a half cycles. So, Toh & Itano
(2003) were raising the question whether the state space object they had identified was a
PO or a heteroclinic cycle. In contrast to a PO, a heteroclinic cycle consists of two saddles
that are mutually connected in phase space by two heteroclinic orbits (cf. Guckenheimer &
Holmes 1983, p. 46 ff and Wiggins 2003, p. 631 ff).

While Zammert & Eckhardt (2014) later re-analysed the edge for plane Poiseuille flow
and confirmed that the edge state is indeed a PO, heteroclinic cycles were for a long time
interpreted as the state space equivalent of turbulent bursts: Aubry et al. (1988) found such
an attracting heteroclinic cycle in a low-dimensional model of the near-wall region of a
turbulent boundary layer. For most of their lifetime, trajectories were seen to stay near one
of the two weakly unstable fixed points — representing relatively quiescent episodes of the
turbulent activity. These episodes are interrupted when the trajectories eventually leave the
fixed points along their unstable manifolds, following the heteroclinic orbit to its sibling.
In physical space, the dynamics along the heteroclinic orbits represents intense bursting
events. In a follow-up study, Armbruster, Guckenheimer & Holmes (1988) showed that it is
in fact the O (2)-symmetry of the system that makes structurally stable heteroclinic cycles
possible. In the following years, similar statements were made for other systems obeying
a O(3)-symmetry (Guckenheimer & Holmes 1988) and even discrete D,-symmetries
(Campbell & Holmes 1992), underlining the high relevance of the system’s symmetries
for the existence of simple invariant sets in state space.

For the square duct, we have provided clear evidence that the symmetric edge states
are limit cycles within the edge, and attempts to identify weakly unstable fixed points
along the orbit were unsuccessful. In this regard, our results are in good accordance with
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findings in O (2)-symmetric flow systems like plane Poiseuille flows (Neelavara et al. 2017,
Rawat et al. 2014, 2016; Zammert & Eckhardt 2014) and the asymptotic suction boundary
layer (Khapko et al. 2013; Kreilos et al. 2013), whose edge states are all POs rather than
heteroclinic cycles between two saddles.

Even though simple heteroclinic cycles could not be found within .# for the discussed
flows, the systems’ symmetries still play a major role for the structure of the edge:
topologically more complicated heteroclinic networks between pairs of symmetry-related
saddles and stable fixed points (here the edge states) turn out to occur in many systems
and can be dynamically linked to periodic edge states. So, Kreilos er al. (2013) showed
with a homotopy from plane Couette flow to the asymptotic suction boundary layer — with
the suction velocity at the wall as homotopy parameter — that time-periodic edge states
arise in a saddle-node infinite-period (SNIPER) bifurcation (Tuckerman & Barkley 1988;
Strogatz 2018, p. 265f; Tuckerman 2020). Under subcritical conditions, the edge features
two symmetry-related edge states and two saddles separating them, all mutually connected
by heteroclinic orbits. At the critical point, the stable fixed points collide with the saddle
points and give rise to a PO whose period is infinite at the bifurcation point, but decreases
rapidly when moving away from it. Even for clearly supercritical conditions, the PO still
features some properties of the previously present invariant structures in that the dynamics
slows down significantly when the trajectory passes by the ‘ghosts’ of the fixed points
in phase space. A similar SNIPER bifurcation gives rise to the periodic edge states in
plane Poiseuille flow under a variation of the lateral spatial domain size (Rawat, Cossu &
Rincon 2016). In the light of the qualitatively similar dynamics and taking into account
the system’s symmetries, we suspect that the periodic edge states in the square duct might
also arise in a structurally similar SNIPER bifurcation. In analogy to the situation in plane
channel flow (Rawat et al. 2016), a likely candidate for a parameter that drives the system
into a SNIPER bifurcation is the cross-sectional aspect ratio A = L, /L. In order to check
for the existence of such a bifurcation, however, additional efforts in form of a thorough
homotopy study with A as homotopy parameter are required.

In a more general sense, our findings imply — consistent with the mentioned studies
on plane Poiseuille and asymptotic suction boundary layer flows — that the observed
bursting dynamics occurs when a system follows connecting orbits between one or more
low-dissipation invariant solutions, or the segment of a PO that is dynamically relatable
to such a homoclinic or heteroclinic orbit. This is in line with the observations of van
Veen & Kawahara (2011) who argued for Couette flow that the bursting dynamics might
represent the physical incarnation of a homoclinic cycle around a single ‘gentle’ PO.
The latter is an alternative to earlier considerations by Kawahara & Kida (2001) who
proposed a heteroclinic cycle between a ‘gentle’ low-dissipation periodic edge state and a
more ‘vigorous’ high-dissipation PO in the turbulent attractor as state space equivalent of
bursting events in physical space.

In this context, it is worth mentioning that bursting in all detected edge states (chaotic
and time periodic) goes hand in hand with a switching of the turbulent activity to one or
both neighbouring walls. Unless the dynamics is further restricted to a higher-symmetric
subspace in which states merely differing by a nmw /2-fold rotation about the x-axis (n € N)
collapse onto each other, the qualitative state space picture is that of two (or more)
heteroclinically connected states, or a related PO. A homoclinic orbit, on the other hand,
would imply a regeneration cycle that remains attached to the same wall after the burst,
not experiencing the ‘wall-switching’ dynamics visible in the here detected edge states.
While such dynamics is generally conceivable, we have not observed it in any of our edge-
tracking runs (neither in the unconstrained state space nor in its symmetric subspaces).
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6. Conclusion

In this study, we have investigated the dynamics of trajectories within the edge .# to
square duct turbulence for both the full state space and symmetric subspaces of the former.
Considering the full state space without symmetry constraints, the edge state is a chaotic
attractor within .# for the analysed parameter regime. The results are consistent with the
chaotic edge states reported for circular pipe flows (Duguet et al. 2008), which feature
many similarities to the dynamics in the square duct. In contrast to their counterparts
in the pipe, however, the edge states in the square duct experience phases of strong
intermittent bursts that interrupt the otherwise rather quiescent dynamics. In physical
space, these bursting episodes are seen to represent the different stages of the well-known
self-sustaining near-wall cycle (Waleffe 1997; Hall & Sherwin 2010): the quiescent phases
are characterised by a single straight low-speed streak that stretches along one of the
four surrounding walls, flanked by counter-rotating quasi-streamwise vortices on either
side. The initially straight streak undergoes a linear instability and starts bending laterally,
while the vortices intensify and tilt with respect to the streamwise direction. Eventually,
the vortices lean over the low-speed streak, tear it apart and induce a pronounced high-
speed zone instead. Due to the particular geometry of the square duct, however, the intense
vortices are located in the corner regions of the cross-section and interact simultaneously
with the near-wall region of both adjacent walls. In other words, the large corner vortices
simultaneously push high-momentum fluid towards one wall and induce a low-speed streak
at the other. The new low-speed streak at the neighbouring wall slowly starts bending
and the bursting cycle starts anew. With a length of O(100)7}, for both chaotic and time-
periodic edge states, the characteristic time scale of the bursting events is much longer
than that associated with their downstream propagation.

The outlined bursting cycles reveal a strong dynamical similarity to the periodic and
chaotic edge states in plane Poiseuille flow (Rawat er al. 2014; Zammert & Eckhardt 2014)
and the asymptotic suction boundary layer (Kreilos et al. 2013; Khapko et al. 2014). But
while the tilted vortices in these ‘planar’ spanwise-periodic flow configurations give birth
to a new low-speed streak shifted by (approximately) half the spanwise period L;/2 to
the left or right, here, the vortices induce a new low-speed streak at a position rotated by
/2 or 37 /2 about the duct centreline. The structural similarity of the edge dynamics in
both systems accentuates the role of the systems’ symmetries that make such switching
dynamics possible in the first place — a continuous O (2)-symmetry in Poiseuille flow or
the asymptotic suction boundary layer, and a discrete D,-symmetry in the square duct.

In the ‘planar’ spanwise-periodic cases, edge trajectories converge for a wide range of
Reynolds numbers and domain sizes to periodic edge states that are limit cycles within .7 .
For the square duct, we detect such (relative) periodic edge states merely when restricting
trajectories to distinct symmetric subspaces, specifically focussing on states obeying a
single or twofold mirror symmetry with respect to the duct’s wall bisectors. To the
best of the authors’ knowledge, the reported edge states are the first POs found in
a duct with rectangular cross-section. The edge states in both symmetric subspaces
feature a very similar dynamics to their chaotic siblings in the unconstrained case — with
the difference that the imposed symmetries partly enforce bursting cycles to appear in
symmetric pairs on two opposing walls. A systematic variation of the Reynolds number
confirmed the robustness of the detected periodic edge-state dynamics over a significant
range of Reynolds numbers, but it also revealed that the specific edge-state characteristics
change with the governing parameters in a highly non-uniform way — in accordance with
observations in ‘planar’ spanwise-periodic shear flows (Zammert & Eckhardt 2014). While
the edge-state period varies almost linearly with Rep, in some parameter regimes, sudden
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steep rises of the period in terms of a period doubling or a symmetry break are observed
elsewhere in the parameter space.

The current results indicate that the localisation of a single turbulent regeneration cycle
to one or two of the surrounding walls is a fundamental feature of the edge-state dynamics
in square duct flow. Also, it was revealed that marginally turbulent trajectories regularly
attain similar low-dissipation states, in which turbulent perturbations are concentrated near
one or two walls only. Together, these observations raise the question whether such ‘two-
vortex’ and ‘four-vortex’ episodes along marginally turbulent trajectories can be associated
with transient visits to the edge states detected in the course of this study. Within this
dynamical systems perspective, the trajectories are expected to approach an edge state via
its stable manifold that locally collapses with .#, to shadow its dynamics for a certain
time interval and to eventually get repelled along the single unstable direction towards the
turbulent saddle/attractor. In order to check the validity of this hypothesis, further efforts
are necessary to identify such excursions to the vicinity of an edge state along a marginally
turbulent trajectory and to verify that these are indeed accompanied by a localisation of
the turbulent activity to one or two walls.

More generally, it remains to clarify how the edge-state dynamics changes when
the cross-sectional aspect ratio A is increased towards rectangular ducts of non-square
cross-section. Although some preliminary results prove the general existence of spanwise-
localised TW solutions in the rectangular case A > 1 (Okino 2011), a comprehensive
investigation of the edge dynamics that could clarify how the intermittent bursting
dynamics and the wall-switching behaviour change with A is missing. With the
observation that periodic edge states can arise in the context of SNIPER bifurcations in
mind (Kreilos et al. 2013; Rawat et al. 2016), a comparison of the edge-state dynamics at
successively increasing aspect ratios will help verifying whether or not the here identified
periodic edge states are born in a similar global bifurcation. Recalling that plane Poiseuille
flow represents the asymptotic state of an infinitely wide duct as A — 0o, we expect such
a continuation in the duct’s aspect ratio to moreover provide valuable information on how
edge states in the rectangular duct are dynamically connected to those in plane channel
flow.
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Appendix A. Convergence to a periodic edge state

The time signal Ida(¢) is used to estimate the fundamental period of the shadowed
limit cycle, since it contains more information on the dynamics than the ‘pure’ energy
signal E . In particular, it distinguishes different states that are identical modulo finite
rotations. To check for convergence, an integral Ly-error between two consecutive cycles
ld z_l and Id ﬁ of the expected period length T is introduced as
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Figure 17. First-return map of the indicator function Ida in terms of the peak values of the signal for
selected POs in the (a) Zy- and (b) Z,Z,-symmetric subspaces. Thin black lines represent the best fit linear

approximation to the map Id*+! = P(ldX ), computed for the last three points in the sequence.

max max

1d* — 1ak!
_ liag 0t A

ldx 1.

where the Ly-norm over a full (guessed) period is defined as
+T
lell3 7 = / o’ dr. (A2)
t'=t

As period guess T, we choose the time at which the temporal auto-correlation function
of Ida(¢) (excluding an initial transient) attains its non-trivial global maximum. An edge
trajectory is then considered converged to a PO if the error ¢ defined in (A1) falls below
5 %. The only exception is case PO3200,, for which the two pre-POs feature the same
1da(¢) profile. In this case, we quantify convergence instead based on the signal of the
streamwise-averaged enstrophy in the single sectors, S; (7).

Appendix B. Stability of the periodic edge state

That the shadowed POs are indeed limit cycles is shown in figure 17, where a first-return
map is presented for the peaks of the signal Ida(¢) for selected POs in both considered
symmetric subspaces (Khapko et al. 2013; Zammert & Eckhardt 2014). Following classical
dynamical systems theory (Guckenheimer & Holmes 1983, p. 22), this low-dimensional
projection of the full system is strictly periodic if its Poincaré map converges to a fixed
point. This is the case if the sequence in the direct neighbourhood of the fixed point follows
a straight line with slope |y | < 1. The black lines in figure 17 represent the linear trend for
the last few iterations and verify that this condition is indeed fulfilled for the selected
cases.
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