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GENERALIZED JIŘINA PROCESSES

YUQIANG LI,∗ East China Normal University

Abstract

In this paper we prove that a sequence of scaled generalized Jiřina processes can converge
weakly to a nonlinear diffusion process with Lévy jumps under certain conditions.
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1. Introduction

By a generalized Jiřina process we mean a continuous-state population-size-dependent
branching process (continuous-state PSDBP) which is a modification of a classical Jiřina
process, namely, a continuous-state branching process with discrete time [5], taking into account
the fact that the reproductive behavior may depend on the size of the population. Here we recall
its definition.

A time-homogeneous Markov process {Y (k), k = 0, 1, 2, . . .} with state space [0,∞) is
called a continuous-state PSDBP if its one-step transition function P(x, dy) satisfies∫

[0,∞)

e−λyP (x, dy) = exp

{
−x

(
γ (x)λ+

∫
(0,∞)

(1 − e−λu)ν(x, du)

)}
.

Here γ (x) is a nonnegative Borel function and (1 ∧ u)ν(x, du) is a finite kernel from [0,∞)

to (0,∞).
Obviously, a continuous-state PSDBP is determined by the pair of functions γ (x) and ν(x, ·).
For any x ≥ 0, define m(x) := γ (x)+ ∫

(0,∞)
uν(x, du) and σ 2(x) := ∫

(0,∞)
u2ν(x, du).

We call m(x) and σ 2(x) the offspring mean and the offspring variance (when the parent
population is of size x), respectively, if the corresponding integral is finite. When m(x) and
σ(x) are finite for all x, it is easy to obtain, for any k > 0,

E[Y (k) | Y (k − 1)] = m(Y(k − 1))Y (k − 1) (1.1)

and
E[(Y (k)−mY(k − 1))2 | Y (k − 1)] = σ 2(Y (k − 1))Y (k − 1). (1.2)

The continuous-state PSDBP was first introduced by Li [9], who showed that it can arise
from the limit of a sequence of suitably scaled PSDBPs with discrete states [3], [8].

Diffusion approximation for branching processes was formulated by Feller [2] in 1951.
He described a procedure for obtaining diffusions as limits of Galton–Watson processes.

Received 7 February 2008; revision received 23 March 2009.
∗ Postal address: School of Finance and Statistics, East China Normal University, Shanghai 200241, China.
Email address: yqli@stat.ecnu.edu.cn

453

https://doi.org/10.1239/jap/1245676099 Published online by Cambridge University Press

https://doi.org/10.1239/jap/1245676099


454 Y. LI

Jiřina [6] gave a more precise proof of Feller’s assertion. Since then, many authors have
done much work in this field. See, for example, [4], [11], and the references therein.

In 1977, Lipow [13] studied the diffusion approximation for state-dependent branching
processes. He considered a sequence of continuous-time discrete-state branching processes
{Zn(t)}, n = 1, 2, . . . , whose reproductive behavior depends on the size of the population.
Using Kurtz’s theorem for the convergence of a semigroup, Lipow proved that, under certain
conditions, the sequence {Zn(nt)/n, t ≥ 0}, n = 1, 2, . . . , converges weakly to a diffusion
process with generator

Af (x) = λx[βf ′′(x)+ α(x)f ′(x)],
where λ and β are positive constants, and α(x) is a bounded continuous function on [0,∞).

In addition, by means of a semigroup, Rosenkranz [14] showed that, under certain conditions,
a sequence of density-dependent branching processes with random environment converges
weakly to a diffusion process which can be obtained as a solution of a stochastic differential
equation.

Motivated by their work, in this paper we discuss the relation between continuous-state
PSDBPs and diffusion processes. More precisely, we are interested in the relation between the
continuous-state PSDBPs and the diffusion processes with Lévy generators L satisfying

Lf (x) = xα(x)f ′(x)+ xβ(x)f ′′(x)+ x

∫
(0,∞)

(f (x + u)− f (x)− f ′(x)u)µ(x, du) (1.3)

for any f ∈ C∞
c [0,∞), where α(x) and β(x) are two functions, and C∞

c [0,∞) is the set of
all infinite differentiable functions f : [0,∞) → (−∞,∞) with compact support.

This kind of problem was also considered by Kawazu and Watanabe [7]. In [7], a continuous-
state branching process (CSBP) and a CSBP with immigration, when immigration components
exist, were defined. They pointed out that a conservative CSBP with immigration has the
following generator:

Af (x) = axf ′′(x)+ (bx + d)f ′(x)+
∫
(0,∞)

(f (x + y)− f (x))ν1(dy)

+ x

∫
(0,∞)

(
f (x + y)− f (x)− y

1 + y2 f
′(x)

)
ν(dy),

and that a Markov process with the above generator is a CSBP with immigration, where a ≥ 0,
b, and d ≥ 0 are constants, and ν1 and ν are two nonnegative measures on (0,∞) such that∫

(0,∞)

y2

1 + y2 ν(dy)+
∫
(0,∞)

y

1 + y
ν1(dy) < ∞.

Then, Kawazu and Watanabe [7] proved that, under mild conditions, a sequence of scaled
Galton–Watson processes with immigrations converges in finite-dimensional distributions to
a CSBP with immigration. In addition, Li [12] extended this result from the convergence of
finite-dimensional distributions to weak convergence in the Skorokhod space D[0,∞)[0,∞),
namely, the space of càdlàg functions (i.e. those that are right continuous with left limits) from
[0,∞) to [0,∞) with Skorokhod topology.

From [7] and [12] we can readily find that if
∫
(0,∞)

(y ∧ y2)ν(dy) < ∞ then the generator
of the conservative CSBP can be written as

Af (x) = axf ′′(x)+ b̄xf ′(x)+ x

∫
(0,∞)

(f (x + y)− f (x)− yf ′(x))ν(dy)

https://doi.org/10.1239/jap/1245676099 Published online by Cambridge University Press

https://doi.org/10.1239/jap/1245676099


A weak limit theorem 455

for some b̄ ≥ b, and that, under mild conditions, a sequence of scaled Galton–Watson processes
converges weakly inD[0,∞)[0,∞) to a CSBP. For the similarity between L and A, we naturally
regard the diffusion processX with Lévy generator L as a generalized CSBP. Hence, the work
of the present paper can be seen as a generalization of that of [7] and [12] in some sense. It is
proved in the present paper that, under certain conditions, a sequence of scaled continuous-state
PSDBPs converges weakly in the Skorokhod space D[0,∞)[0,∞) to a generalized CSBP.

The main tool used in this paper is the convergence theory of martingale problems; see
[1, Chapter 4, Corollary 8.17]). Below, we briefly introduce some basic definitions on martin-
gale problems. For further details, we refer the reader to [1, Chapter 3].

For a metric space E, DE[0,∞) denotes the Skorokhod space of càdlàg functions from
[0,∞) to E. Let T be an operator fromD(T ) ⊂ B(E) to B(E), where B(E) is the collection
of bounded measurable functions on E and D(T ) is the domain of T . By a solution of the
martingale problem for T we mean a measurable stochastic processX with value in E defined
on some probability space (�,F ,P) such that, for each f ∈ D(T ),

f (X(t))−
∫ t

0
T f (X(s)) ds

is a martingale with respect to the filtration

∗F X
t = F X

t ∨ σ
(∫ s

0
h(X(u)) du : s ≤ t, h(·) ∈ B(E)

)
,

where F X
t = σ(X(s), 0 ≤ s ≤ t). We say that a solution X of the martingale problem for T

is a solution of the martingale problem for (T , x) in DE[0,∞) if X(0) = x almost surely and
X is right continuous with left limits in path. We say that the uniqueness holds for solutions
of the martingale problem for (T , x) in DE[0,∞) if any two solutions in DE[0,∞) have the
same finite-dimensional distributions. If there exists a solution of the martingale problem for
(T , x) in DE[0,∞) and the uniqueness holds, we say that the martingale problem for (T , x)
is well posed in DE[0,∞).

This paper is organized as follows. In Section 2 we introduce the main assumptions and
results of this paper. The proofs of the results are given in Section 3.

2. The main results

In the sequel, unless otherwise stated, let L be the operator defined in (1.3). Furthermore,
we suppose that the following conditions hold.

(H1) xβ(x) and β(x) are bounded and continuous and β(x) > 0 for x > 0.

(H2) xα(x) and α(x) are bounded and continuous.

(H3) For any Borel measurable set � ⊂ (0,∞),
∫
�
u2xµ(x, du) is bounded and continuous.

(H4) b(x) := ∫
(0,∞)

u2µ(x, du) is bounded and continuous.

Let {Yn(k), k ≥ 0}n be a sequence of continuous-state PSDBPs given by a sequence of
parameters γn(x) and νn(x, ·). The corresponding offspring mean and offspring variance are
respectively denoted by mn(x) and σ 2

n (x). We assume the following conditions.

(E1) For x ≥ 0, mn(x) = 1 + αn(x)/n > 0 and σ 2
n (x) = βn(x)/n > 0, where αn(x) and

βn(x) are uniformly bounded.
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(E2) αn(x) and βn(x) converge locally uniformly to continuous functions α(x) and 2β(x)+
b(x), respectively.

(E3) For x ∈ [0,∞), let µn(x, ·) = νn(x, ·)− n−1µ(x, ·) and τn(x) = ∫
(0,∞)

u3|µn|(x, du),
where |µn|(x, ·) is the total variation measure ofµn(x, ·). Then nτn(x) converges locally
uniformly to 0.

The fact that a sequence of functions Tn(x) converges locally uniformly to a function T (x)
means that, for any bounded set I ⊂ [0,∞), limn→+∞ supx∈I |Tn(x)− T (x)| = 0.

We have the following result for

Xn(t) = Yn([nt]), (2.1)

where [nt] is the largest integer bounded by nt .

Theorem 2.1. Suppose that (H1)–(H4) and (E1)–(E3) hold. Let Yn(0) ≡ x0 ≥ 0. Then there
exists a solution X of the martingale problem for (L, x0) such that Xn converges weakly to X
in the Skorokhod space D[0,∞)[0,∞).

The converse of Theorem 2.1 holds in some sense.

Theorem 2.2. Suppose that (H1)–(H4) hold and thatX(t) is the unique solution of the martin-
gale problem for (L, x0), wherex0 ≥ 0. Furthermore, we assume thata(x) := ∫

(0,∞)
uµ(x, du)

is a bounded continuous function. Then there exists a sequence of continuous-state PSDBPs
Yn satisfying assumptions (E1)–(E3) and Yn(0) = x0. Hence, there exists a version of X(t)
such that Xn(t) = Yn([nt]) converges weakly in D[0,∞)[0,∞) to this version.

Remark 2.1. Theorem 2.2 still shows that conditions (E1)–(E3) are meaningful.

We will prove Theorem 2.1 via Corollary 8.17 of [1, Chapter 4], which requires two
preconditions. One is the uniqueness of the solutions to the martingale problem for (L, x0) in
D[0,∞)[0,∞). This work was done in [10] by a standard method; see [10, Theorem 2.1]. In fact,
based on Theorem 4.3 of [15], by the stopping time arguments, we can readily conceive that,
under conditions (H1)–(H4), the martingale problem for (L, x0) is well posed inD[0,∞)[0,∞).
The other requirement is that the sequence Xn satisfies the compact containment condition in
D[0,∞)[0,∞). We have the following lemma.

Lemma 2.1. Let {Yn} be a sequence of continuous-state PSDBPs with 0 < mn(x) = 1 +
αn(x)/n. Suppose that there exists a constant ξ > 0 such that αn(x) < ξ for all n and x. Then
{Xn} defined by (2.1) satisfies the compact containment condition.

From this lemma we immediately obtain the compact containment condition for Xn.

Corollary 2.1. Under the assumptions of Theorem 2.1, {Xn} satisfies the compact containment
condition.

The proofs of Theorem 2.1, Theorem 2.2, and Lemma 2.1 are given in the next section. For
convenience, let Zn(x) := Yn(1)− x and Ex[f (Yn(1))] := E[f (Yn(1)) | Yn(0) = x].

3. The proofs of the main results

Proof of Lemma 2.1. The proof is equal to checking that, for any η > 0 and T ≥ 0, there
exists a compact set �η,T ⊂ [0,∞) such that

lim inf
n→∞ P{Xn(t) ∈ �η,T for 0 ≤ t ≤ T } ≥ 1 − η. (3.1)
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Define a compact set �η,T := [0, 1/ηeξT x0]. Let Mn(t) := Xn(t)/
∑[nt]−1
i=0 mn(Yn(i)).

Then, for any n = 1, 2, . . ., Mn is a martingale. Observe that

P{Xn(t) ∈ �η,T for 0 ≤ t ≤ T }

= 1 − P

{
Mn(t) >

1

η
eξT x0

/ [nt]−1∑
i=0

mn(Yn(i)) for some 0 ≤ t ≤ T

}

≥ 1 − P

{
sup

0≤t≤T
Mn(t) >

eξT x0

η(1 + ξ/n)[nT ]

}
. (3.2)

Doob’s inequality indicates that

P

{
sup

0≤t≤T
Mn(t) >

eξT x0

η(1 + ξ/n)[nT ]

}
≤ η(1 + ξ/n)[nT ]

eξT x0
sup

0≤t≤T
E[Mn(t)] = η(1 + ξ/n)[nT ]

eξT
.

Hence, (3.2) implies that

P{Xn(t) ∈ �η,T for 0 ≤ t ≤ T } ≥ 1 − η(1 + ξ/n)[nT ]

eξT
. (3.3)

Then (3.1) follows from (3.3) as n → ∞. This completes the proof.

Proof of Theorem 2.1. According to Corollary 8.17 of [1, Chapter 4], it suffices to prove
that

lim
n→+∞ sup

x∈[0,∞)

|Anf (x)− Lf (x)| = 0

for any f ∈ C∞
c [0,∞), where Anf (x) = n(Ex[f (Yn(1))] − f (x)). To this end, it is enough

to prove that, for any xn ∈ [0,∞), if xn → x ∈ [0,∞] then

lim
n→+∞(Anf (xn)− Lf (xn)) = 0 (3.4)

for any given f ∈ C∞
c [0,∞).

From (1.1), it follows that

nExn [f ′(xn)Zn(xn)] = nxnf
′(xn)(mn(xn)− 1) = xnαn(xn)f

′(xn).

By Taylor’s expansion we obtain

Anf (xn) = nExn [f (Yn(1))− f (xn)]
= nExn [f ′(xn)Zn(xn)] +�n(xn)

= xnαn(xn)f
′(xn)+�n(xn),

where

�n(xn) = Exn

[
n

∫ 1

0
(1 − w)f ′′(xn + wZn(xn))Z

2
n(xn) dw

]
.

In the remainder of the proof, we consider two cases.
Case 1: xn → x = +∞. In this case, for sufficiently large n, we have xn > δ, where δ

is an upper bound of the support set of f ∈ C∞
c [0,∞). Therefore, for sufficiently large n,

Lf (xn) = 0 and xnαn(xn)f ′(xn) = 0. Consequently, (3.4) is equivalent to

lim
n→∞�n(xn) = 0. (3.5)
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Observe that
xn + wZn(xn) = xn + w(Yn(1)− xn) ≥ (1 − w)xn.

The integrand in �n(xn) is 0 if w < 1 − δ/xn. Hence, from (1.2), it follows that

�n(xn) ≤ Exn

[∫ 1

1−δ/xn
(1 − w)‖f ′′‖nZ2

n(xn) dw

]

= δ2

2x2
n

nExn [Z2
n(xn)]

= δ2

2x2
n

(n(mn(xn)− 1)2x2
n + nσ 2

n (xn)xn)

= δ2

2

(
α2
n(xn)

n
+ βn(xn)

xn

)
. (3.6)

From assumption (E1) we have

lim
n→∞

(
α2
n(xn)

n
+ βn(xn)

xn

)
= 0. (3.7)

Then (3.5) follows from (3.6) and (3.7).
Case 2: xn → x < +∞. In this case, by (H2) and (E2), we can readily obtain

xnf
′(xn)αn(xn) → xα(x)f ′(x) as n → ∞.

At the same time, (H3) and (H4) imply that∣∣∣∣
∫
(0,∞)

(f (xn + u)− f (xn)− f ′(xn)u)xnµ(xn, du)

−
∫
(0,∞)

(f (x + u)− f (x)− f ′(x)u)xnµ(xn, du)

∣∣∣∣
≤

∫
(0,∞)

|f ′(zn + u)− f ′(zn)− f ′′(zn)u||xn − x|xnµ(xn, du)

≤ ‖f ′′′‖|xn − x|
∫
(0,∞)

u2xnµ(xn, du)

→ 0, (3.8)

where zn ∈ (x, xn). Let φx(u) = (f (x + u) − f (x) − f ′(x)u)/u2 for u ∈ (0,∞). From
f ∈ C∞

c [0,∞)we know that φx(u) is bounded and continuous for any x ≥ 0. Therefore, (H3)
indicates that, as n → ∞,∫

(0,∞)

(f (x + u)− f (x)− f ′(x)u)xnµ(xn, du)

−
∫
(0,∞)

(f (x + u)− f (x)− f ′(x)u)xµ(x, du),

=
∫
(0,∞)

φx(u)xnu
2µ(xn, du)−

∫
(0,∞)

φx(u)xu
2µ(x, du)

→ 0. (3.9)
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Combining (3.8) and (3.9), we obtain∫
(0,∞)

(f (xn + u)− f (xn)− f ′(xn)u)xnµ(xn, du)

→
∫
(0,∞)

(f (x + u)− f (x)− f ′(x)u)xµ(x, du),

which implies that Lf (xn) → Lf (x) as xn → x < ∞. Consequently, to prove (3.4), it is
enough to prove that

�n(xn) → β(x)xf ′′(x)+
∫
(0,∞)

(f (x + u)− f (x)− f ′(x)u)xµ(x, du), (3.10)

which is proved in the following lemma.

Lemma 3.1. Using the same assumptions and notation as in Theorem 2.1 and its proof, if
xn → x < ∞ then (3.10) holds.

Proof. By Fubini’s theorem we have

�n(xn) =
∫ 1

0
(1 − w)Exn [nf ′′(xn + wZn(xn))Z

2
n(xn)] dw

−
∫ 1

0
(1 − w)Exn [nf ′′(x + wZn(xn))Z

2
n(xn)] dw

+
∫ 1

0
(1 − w)Exn [nf ′′(x + wZn(xn))Z

2
n(xn)] dw.

Since f ′′ is uniformly continuous, the dominated convergence theorem implies that, as xn → x,

∫ 1

0
(1 − w)Exn [nf ′′(xn + wZn(xn))Z

2
n(xn)] dw

−
∫ 1

0
(1 − w)Exn [nf ′′(x + wZn(xn))Z

2
n(xn)] dw → 0.

Hence, we only need to prove that

∫ 1

0
(1 − w)Exn [nf ′′(x + wZn(xn))Z

2
n(xn)] dw

→ β(x)xf ′′(x)+
∫
(0,∞)

(f (x + u)− f (x)− f ′(x)u)xµ(x, du). (3.11)

It suffices to prove that, as xn → x,

Exn [nf ′′(x + wZn(xn))Z
2
n(xn)]

→ 2xβ(x)f ′′(x)+ x

∫
(0,∞)

f ′′(x + wu)u2µ(x, du). (3.12)

In fact, if (3.12) holds then (3.11) follows from Taylor’s expansion.
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LetMx = − supn xn. For any n ≥ 0, define a measureQn(·) on [Mx,∞) such that, for any
Borel measurable set A ⊂ [Mx,∞),

Qn(A) := Exn [n 1A(Zn(xn))Z2
n(xn)] = Exn [n 1A(Yn(1)− xn)(Yn(1)− xn)

2]. (3.13)

Then, for any λ ≥ 0,∫
[Mx,∞)

e−λuQn(du) = Exn [n exp{−λ(Yn(1)− xn)}(Yn(1)− xn)
2]. (3.14)

Note that Yn is the continuous-state PSDBP with parameters γn(x) and νn(x, ·). We have

Exn [exp{−λ(Yn(1)− xn)}]
= exp

{
−xn

(
(γn(xn)− 1)λ+

∫
(0,∞)

(1 − e−λu)νn(xn, du)

)}

= exp

{
−xn

(
(mn(xn)− 1)λ+

∫
(0,∞)

(1 − e−λu − λu)νn(xn, du)

)}
.

Using this formula, via some simple calculation, we obtain

Exn [n exp{−λ(Yn(1)− xn)}(Yn(1)− xn)
2]

= ψ(n, xn, λ)φ(n, xn, λ)+ nϕ(n, xn, λ)
2φ(n, xn, λ), (3.15)

where

φ(n, xn, λ) = exp

{
−xn

(
(mn(xn)− 1)λ+

∫
(0,∞)

(1 − e−λu − λu)νn(xn, du)

)}
,

ϕ(n, xn, λ) = −xn
(
mn(xn)− 1 +

∫
(0,∞)

u(e−λu − 1)νn(xn, du)

)
,

ψ(n, xn, λ) = xn

∫
(0,∞)

u2e−λuµ(xn, du)+ xn

∫
(0,∞)

u2e−λunµn(xn, du).

Note that∣∣∣∣ − xn

(
(mn(xn)− 1)λ+

∫
(0,∞)

(1 − e−λu − λu)νn(xn, du)

)∣∣∣∣ ≤ λ
xn|αn(xn)|

n
+ λ2 βn(xn)

n

and that

|ϕ(n, xn, λ)| ≤ xn
|αn(xn)| + λβn(xn)

n
.

Then by condition (A1) we have, as n → +∞,

φ(n, xn, λ) → 1, nϕ(n, xn, λ)
2 → 0. (3.16)

Since ∫
(0,∞)

u2µn(x, du) = βn(x)− b(x)

n
,

(E3) implies that∣∣∣∣
∫
(0,∞)

u2e−λunµn(xn, du)− (βn(xn)− b(xn))

∣∣∣∣ ≤ λ

∫
(0,∞)

u3n|µn|(xn, du) → 0.
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Furthermore, from (E2)–(E3) and (H1)–(H2), it follows that βn(xn)−b(xn) → 2β(x). Hence,

ψ(n, xn, λ) → x

∫
(0,∞)

u2e−λsµ(x, du)+ 2xβ(x). (3.17)

Combining (3.15) with (3.16) and (3.17), we obtain

Exn [n exp{−λ(Yn(1)− xn)}(Yn(1)− xn)
2] → x

∫
(0,∞)

u2e−λsµ(x, du)+ 2xβ(x). (3.18)

Define a measure µ̄(x, ·) on [Mx,∞) as follows:

µ̄(x, A) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

∫
(0,∞)∩A

xu2µ(x, du)+ 2xβ(x), 0 ∈ A,
∫
(0,∞)∩A

xu2µ(x, du), otherwise,

for any Borel measurable set A ⊂ [Mx,∞). Equations (3.13), (3.14) and (3.18) imply that∫
[Mx,∞)

e−λuQn(du) →
∫

[Mx,∞)

e−λuµ̄(du) as n → +∞.

Hence, for any bounded continuous function h(u) on [Mx,∞),

Exn [nh(Yn(1)− xn)(Yn(1)− xn)
2] =

∫
[Mx,∞)

h(u)Qn(du)

→
∫

[Mx,∞)

h(u)µ̄(du)

= 2xβ(x)h(0)+ x

∫
(0,∞)

h(u)u2µ(x, du).

Let h(u) = f ′′(x + wu). Then (3.12) holds.

Proof of Theorem 2.2. From the assumptions of Theorem 2.2, for any n ≥ 1, we can
construct a continuous-state PSDBP Yn which satisfies

E[e−λYn(k+1) | Yn(k) = x]

= exp

{
−x

(
e(α(x)−a(x))/nλ
1 + n−1λβ(x)

+ 1

n

∫
(0,∞)

(1 − e−λu)µ(x, du)

)}

= exp

{
−x

(
γn(x)λ+

∫
(0,∞)

(1 − e−λu)µn(x, du)+ 1

n

∫
(0,∞)

(1 − e−λu)µ(x, du)

)}

for any λ ≥ 0, where

γn(x) =
{

0, β(x) > 0,

e(α(x)−a(x))/n, β(x) = 0,
(3.19)

µn(x, du) =

⎧⎪⎨
⎪⎩

e(α(x)−a(x))/n
(

n

β(x)

)2

e−nu/β(x) du, β(x) > 0,

0, β(x) = 0.
(3.20)
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By some simple calculation, we obtain

mn(x) = e(α(x)−a(x))/n + a(x)

n
, σ 2

n (x) = e(α(x)−a(x))/n 2β(x)

n
+ b(x)

n
,

and

τn(x) :=
∫
(0,∞)

u3µn(x, du) = 6e(α(x)−a(x))/n β
2(x)

n2 .

Since α(x), β(x), a(x), and b(x) are bounded and continuous, the sequence {Yn} satisfies all
the conditions of (E1)–(E3). Therefore, Theorem 2.2 follows from Theorem 2.1.
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