J. Appl. Prob. **46**, 453–462 (2009) Printed in England © Applied Probability Trust 2009

A WEAK LIMIT THEOREM FOR GENERALIZED JIŘINA PROCESSES

YUQIANG LI,* East China Normal University

Abstract

In this paper we prove that a sequence of scaled generalized Jiřina processes can converge weakly to a nonlinear diffusion process with Lévy jumps under certain conditions.

Keywords: Generalized branching processes; weak convergence; nonlinear diffusion processes

2000 Mathematics Subject Classification: Primary 60J80

Secondary 60J60; 60E07

1. Introduction

By a generalized Jiřina process we mean a continuous-state population-size-dependent branching process (continuous-state PSDBP) which is a modification of a classical Jiřina process, namely, a continuous-state branching process with discrete time [5], taking into account the fact that the reproductive behavior may depend on the size of the population. Here we recall its definition.

A time-homogeneous Markov process $\{Y(k), k = 0, 1, 2, ...\}$ with state space $[0, \infty)$ is called a continuous-state PSDBP if its one-step transition function P(x, dy) satisfies

$$\int_{[0,\infty)} e^{-\lambda y} P(x, dy) = \exp\left\{-x\left(\gamma(x)\lambda + \int_{(0,\infty)} (1 - e^{-\lambda u})\nu(x, du)\right)\right\}.$$

Here $\gamma(x)$ is a nonnegative Borel function and $(1 \wedge u)\nu(x, du)$ is a finite kernel from $[0, \infty)$ to $(0, \infty)$.

Obviously, a continuous-state PSDBP is determined by the pair of functions $\gamma(x)$ and $\nu(x, \cdot)$. For any $x \ge 0$, define $m(x) := \gamma(x) + \int_{(0,\infty)} u\nu(x, du)$ and $\sigma^2(x) := \int_{(0,\infty)} u^2\nu(x, du)$. We call m(x) and $\sigma^2(x)$ the offspring mean and the offspring variance (when the parent population is of size x), respectively, if the corresponding integral is finite. When m(x) and $\sigma(x)$ are finite for all x, it is easy to obtain, for any k > 0,

$$E[Y(k) | Y(k-1)] = m(Y(k-1))Y(k-1)$$
(1.1)

and

$$E[(Y(k) - mY(k-1))^2 | Y(k-1)] = \sigma^2(Y(k-1))Y(k-1).$$
(1.2)

The continuous-state PSDBP was first introduced by Li [9], who showed that it can arise from the limit of a sequence of suitably scaled PSDBPs with discrete states [3], [8].

Diffusion approximation for branching processes was formulated by Feller [2] in 1951. He described a procedure for obtaining diffusions as limits of Galton–Watson processes.

Received 7 February 2008; revision received 23 March 2009.

^{*} Postal address: School of Finance and Statistics, East China Normal University, Shanghai 200241, China. Email address: yqli@stat.ecnu.edu.cn

Jiřina [6] gave a more precise proof of Feller's assertion. Since then, many authors have done much work in this field. See, for example, [4], [11], and the references therein.

In 1977, Lipow [13] studied the diffusion approximation for state-dependent branching processes. He considered a sequence of continuous-time discrete-state branching processes $\{Z_n(t)\}, n = 1, 2, ...,$ whose reproductive behavior depends on the size of the population. Using Kurtz's theorem for the convergence of a semigroup, Lipow proved that, under certain conditions, the sequence $\{Z_n(nt)/n, t \ge 0\}, n = 1, 2, ...,$ converges weakly to a diffusion process with generator

$$\mathcal{A}f(x) = \lambda x [\beta f''(x) + \alpha(x) f'(x)]$$

where λ and β are positive constants, and $\alpha(x)$ is a bounded continuous function on $[0, \infty)$.

In addition, by means of a semigroup, Rosenkranz [14] showed that, under certain conditions, a sequence of density-dependent branching processes with random environment converges weakly to a diffusion process which can be obtained as a solution of a stochastic differential equation.

Motivated by their work, in this paper we discuss the relation between continuous-state PSDBPs and diffusion processes. More precisely, we are interested in the relation between the continuous-state PSDBPs and the diffusion processes with Lévy generators \mathcal{L} satisfying

$$\mathcal{L}f(x) = x\alpha(x)f'(x) + x\beta(x)f''(x) + x\int_{(0,\infty)} (f(x+u) - f(x) - f'(x)u)\mu(x, du)$$
(1.3)

for any $f \in C_c^{\infty}[0, \infty)$, where $\alpha(x)$ and $\beta(x)$ are two functions, and $C_c^{\infty}[0, \infty)$ is the set of all infinite differentiable functions $f: [0, \infty) \to (-\infty, \infty)$ with compact support.

This kind of problem was also considered by Kawazu and Watanabe [7]. In [7], a continuousstate branching process (CSBP) and a CSBP with immigration, when immigration components exist, were defined. They pointed out that a conservative CSBP with immigration has the following generator:

$$\mathcal{A}f(x) = axf''(x) + (bx+d)f'(x) + \int_{(0,\infty)} (f(x+y) - f(x))v_1(dy) + x \int_{(0,\infty)} \left(f(x+y) - f(x) - \frac{y}{1+y^2} f'(x) \right) v(dy),$$

and that a Markov process with the above generator is a CSBP with immigration, where $a \ge 0$, b, and $d \ge 0$ are constants, and v_1 and v are two nonnegative measures on $(0, \infty)$ such that

$$\int_{(0,\infty)} \frac{y^2}{1+y^2} \nu(\mathrm{d}y) + \int_{(0,\infty)} \frac{y}{1+y} \nu_1(\mathrm{d}y) < \infty.$$

Then, Kawazu and Watanabe [7] proved that, under mild conditions, a sequence of scaled Galton–Watson processes with immigrations converges in finite-dimensional distributions to a CSBP with immigration. In addition, Li [12] extended this result from the convergence of finite-dimensional distributions to weak convergence in the Skorokhod space $D_{[0,\infty)}[0,\infty)$, namely, the space of càdlàg functions (i.e. those that are right continuous with left limits) from $[0,\infty)$ to $[0,\infty)$ with Skorokhod topology.

From [7] and [12] we can readily find that if $\int_{(0,\infty)} (y \wedge y^2) \nu(dy) < \infty$ then the generator of the conservative CSBP can be written as

$$\mathcal{A}f(x) = axf''(x) + \bar{b}xf'(x) + x\int_{(0,\infty)} (f(x+y) - f(x) - yf'(x))\nu(\mathrm{d}y)$$

for some $\overline{b} \ge b$, and that, under mild conditions, a sequence of scaled Galton–Watson processes converges weakly in $D_{[0,\infty)}[0,\infty)$ to a CSBP. For the similarity between \mathcal{L} and \mathcal{A} , we naturally regard the diffusion process X with Lévy generator \mathcal{L} as a generalized CSBP. Hence, the work of the present paper can be seen as a generalization of that of [7] and [12] in some sense. It is proved in the present paper that, under certain conditions, a sequence of scaled continuous-state PSDBPs converges weakly in the Skorokhod space $D_{[0,\infty)}[0,\infty)$ to a generalized CSBP.

The main tool used in this paper is the convergence theory of martingale problems; see [1, Chapter 4, Corollary 8.17]). Below, we briefly introduce some basic definitions on martingale problems. For further details, we refer the reader to [1, Chapter 3].

For a metric space E, $D_E[0, \infty)$ denotes the Skorokhod space of càdlàg functions from $[0, \infty)$ to E. Let \mathcal{T} be an operator from $D(\mathcal{T}) \subset B(E)$ to B(E), where B(E) is the collection of bounded measurable functions on E and $D(\mathcal{T})$ is the domain of \mathcal{T} . By a solution of the martingale problem for \mathcal{T} we mean a measurable stochastic process X with value in E defined on some probability space (Ω, \mathcal{F}, P) such that, for each $f \in D(\mathcal{T})$,

$$f(X(t)) - \int_0^t \mathcal{T} f(X(s)) \,\mathrm{d}s$$

is a martingale with respect to the filtration

$${}^{*}\mathcal{F}_{t}^{X} = \mathcal{F}_{t}^{X} \vee \sigma \left(\int_{0}^{s} h(X(u)) \, \mathrm{d}u \colon s \leq t, \ h(\cdot) \in B(E) \right),$$

where $\mathcal{F}_t^X = \sigma(X(s), 0 \le s \le t)$. We say that a solution X of the martingale problem for \mathcal{T} is a solution of the martingale problem for (\mathcal{T}, x) in $D_E[0, \infty)$ if X(0) = x almost surely and X is right continuous with left limits in path. We say that the uniqueness holds for solutions of the martingale problem for (\mathcal{T}, x) in $D_E[0, \infty)$ if any two solutions in $D_E[0, \infty)$ have the same finite-dimensional distributions. If there exists a solution of the martingale problem for (\mathcal{T}, x) in $D_E[0, \infty)$ and the uniqueness holds, we say that the martingale problem for (\mathcal{T}, x) is well posed in $D_E[0, \infty)$.

This paper is organized as follows. In Section 2 we introduce the main assumptions and results of this paper. The proofs of the results are given in Section 3.

2. The main results

In the sequel, unless otherwise stated, let \mathcal{L} be the operator defined in (1.3). Furthermore, we suppose that the following conditions hold.

(H1) $x\beta(x)$ and $\beta(x)$ are bounded and continuous and $\beta(x) > 0$ for x > 0.

(H2) $x\alpha(x)$ and $\alpha(x)$ are bounded and continuous.

(H3) For any Borel measurable set $\Gamma \subset (0, \infty)$, $\int_{\Gamma} u^2 x \mu(x, du)$ is bounded and continuous.

(H4) $b(x) := \int_{(0,\infty)} u^2 \mu(x, du)$ is bounded and continuous.

Let $\{Y_n(k), k \ge 0\}_n$ be a sequence of continuous-state PSDBPs given by a sequence of parameters $\gamma_n(x)$ and $\nu_n(x, \cdot)$. The corresponding offspring mean and offspring variance are respectively denoted by $m_n(x)$ and $\sigma_n^2(x)$. We assume the following conditions.

(E1) For $x \ge 0$, $m_n(x) = 1 + \alpha_n(x)/n > 0$ and $\sigma_n^2(x) = \beta_n(x)/n > 0$, where $\alpha_n(x)$ and $\beta_n(x)$ are uniformly bounded.

- (E2) $\alpha_n(x)$ and $\beta_n(x)$ converge locally uniformly to continuous functions $\alpha(x)$ and $2\beta(x) + b(x)$, respectively.
- (E3) For $x \in [0, \infty)$, let $\mu_n(x, \cdot) = \nu_n(x, \cdot) n^{-1}\mu(x, \cdot)$ and $\tau_n(x) = \int_{(0,\infty)} u^3 |\mu_n|(x, du)$, where $|\mu_n|(x, \cdot)$ is the total variation measure of $\mu_n(x, \cdot)$. Then $n\tau_n(x)$ converges locally uniformly to 0.

The fact that a sequence of functions $T_n(x)$ converges locally uniformly to a function T(x) means that, for any bounded set $I \subset [0, \infty)$, $\lim_{n \to +\infty} \sup_{x \in I} |T_n(x) - T(x)| = 0$.

We have the following result for

$$X_n(t) = Y_n([nt]),$$
 (2.1)

where [nt] is the largest integer bounded by nt.

Theorem 2.1. Suppose that (H1)–(H4) and (E1)–(E3) hold. Let $Y_n(0) \equiv x_0 \geq 0$. Then there exists a solution X of the martingale problem for (\mathcal{L}, x_0) such that X_n converges weakly to X in the Skorokhod space $D_{[0,\infty)}[0,\infty)$.

The converse of Theorem 2.1 holds in some sense.

Theorem 2.2. Suppose that (H1)–(H4) hold and that X(t) is the unique solution of the martingale problem for (\mathcal{L}, x_0) , where $x_0 \ge 0$. Furthermore, we assume that $a(x) := \int_{(0,\infty)} u\mu(x, du)$ is a bounded continuous function. Then there exists a sequence of continuous-state PSDBPs Y_n satisfying assumptions (E1)–(E3) and $Y_n(0) = x_0$. Hence, there exists a version of X(t)such that $X_n(t) = Y_n([nt])$ converges weakly in $D_{[0,\infty)}[0,\infty)$ to this version.

Remark 2.1. Theorem 2.2 still shows that conditions (E1)–(E3) are meaningful.

We will prove Theorem 2.1 via Corollary 8.17 of [1, Chapter 4], which requires two preconditions. One is the uniqueness of the solutions to the martingale problem for (\mathcal{L}, x_0) in $D_{[0,\infty)}[0,\infty)$. This work was done in [10] by a standard method; see [10, Theorem 2.1]. In fact, based on Theorem 4.3 of [15], by the stopping time arguments, we can readily conceive that, under conditions (H1)–(H4), the martingale problem for (\mathcal{L}, x_0) is well posed in $D_{[0,\infty)}[0,\infty)$. The other requirement is that the sequence X_n satisfies the compact containment condition in $D_{[0,\infty)}[0,\infty)$. We have the following lemma.

Lemma 2.1. Let $\{Y_n\}$ be a sequence of continuous-state PSDBPs with $0 < m_n(x) = 1 + \alpha_n(x)/n$. Suppose that there exists a constant $\xi > 0$ such that $\alpha_n(x) < \xi$ for all n and x. Then $\{X_n\}$ defined by (2.1) satisfies the compact containment condition.

From this lemma we immediately obtain the compact containment condition for X_n .

Corollary 2.1. Under the assumptions of Theorem 2.1, $\{X_n\}$ satisfies the compact containment condition.

The proofs of Theorem 2.1, Theorem 2.2, and Lemma 2.1 are given in the next section. For convenience, let $Z_n(x) := Y_n(1) - x$ and $E_x[f(Y_n(1))] := E[f(Y_n(1)) | Y_n(0) = x]$.

3. The proofs of the main results

Proof of Lemma 2.1. The proof is equal to checking that, for any $\eta > 0$ and $T \ge 0$, there exists a compact set $\Gamma_{\eta,T} \subset [0,\infty)$ such that

$$\liminf_{n \to \infty} \mathbb{P}\{X_n(t) \in \Gamma_{\eta,T} \text{ for } 0 \le t \le T\} \ge 1 - \eta.$$
(3.1)

Define a compact set $\Gamma_{\eta,T} := [0, 1/\eta e^{\xi T} x_0]$. Let $M_n(t) := X_n(t) / \sum_{i=0}^{[nt]-1} m_n(Y_n(i))$. Then, for any $n = 1, 2, ..., M_n$ is a martingale. Observe that

$$P\{X_{n}(t) \in \Gamma_{\eta,T} \text{ for } 0 \le t \le T\}$$

$$= 1 - P\left\{M_{n}(t) > \frac{1}{\eta}e^{\xi T}x_{0} / \sum_{i=0}^{[nt]-1} m_{n}(Y_{n}(i)) \text{ for some } 0 \le t \le T\right\}$$

$$\ge 1 - P\left\{\sup_{0 \le t \le T} M_{n}(t) > \frac{e^{\xi T}x_{0}}{\eta(1 + \xi/n)^{[nT]}}\right\}.$$
(3.2)

Doob's inequality indicates that

$$\mathsf{P}\left\{\sup_{0\leq t\leq T}M_n(t) > \frac{\mathrm{e}^{\xi T}x_0}{\eta(1+\xi/n)^{[nT]}}\right\} \leq \frac{\eta(1+\xi/n)^{[nT]}}{\mathrm{e}^{\xi T}x_0} \sup_{0\leq t\leq T}\mathsf{E}[M_n(t)] = \frac{\eta(1+\xi/n)^{[nT]}}{\mathrm{e}^{\xi T}}.$$

Hence, (3.2) implies that

$$P\{X_n(t) \in \Gamma_{\eta,T} \text{ for } 0 \le t \le T\} \ge 1 - \frac{\eta (1 + \xi/n)^{[nT]}}{e^{\xi T}}.$$
(3.3)

Then (3.1) follows from (3.3) as $n \to \infty$. This completes the proof.

Proof of Theorem 2.1. According to Corollary 8.17 of [1, Chapter 4], it suffices to prove that

$$\lim_{n \to +\infty} \sup_{x \in [0,\infty)} |\mathcal{A}_n f(x) - \mathcal{L} f(x)| = 0$$

for any $f \in C_c^{\infty}[0, \infty)$, where $A_n f(x) = n(\mathbb{E}_x[f(Y_n(1))] - f(x))$. To this end, it is enough to prove that, for any $x_n \in [0, \infty)$, if $x_n \to x \in [0, \infty]$ then

$$\lim_{n \to +\infty} (\mathcal{A}_n f(x_n) - \mathcal{L} f(x_n)) = 0$$
(3.4)

for any given $f \in C_c^{\infty}[0, \infty)$.

From (1.1), it follows that

$$n \operatorname{E}_{x_n}[f'(x_n)Z_n(x_n)] = n x_n f'(x_n)(m_n(x_n) - 1) = x_n \alpha_n(x_n) f'(x_n).$$

By Taylor's expansion we obtain

$$A_n f(x_n) = n \operatorname{E}_{x_n} [f(Y_n(1)) - f(x_n)]$$

= $n \operatorname{E}_{x_n} [f'(x_n) Z_n(x_n)] + \Delta_n(x_n)$
= $x_n \alpha_n(x_n) f'(x_n) + \Delta_n(x_n),$

where

$$\Delta_n(x_n) = \mathbf{E}_{x_n} \left[n \int_0^1 (1 - w) f''(x_n + w Z_n(x_n)) Z_n^2(x_n) \, \mathrm{d}w \right]$$

In the remainder of the proof, we consider two cases.

Case 1: $x_n \to x = +\infty$. In this case, for sufficiently large *n*, we have $x_n > \delta$, where δ is an upper bound of the support set of $f \in C_c^{\infty}[0, \infty)$. Therefore, for sufficiently large *n*, $\mathcal{L}f(x_n) = 0$ and $x_n\alpha_n(x_n)f'(x_n) = 0$. Consequently, (3.4) is equivalent to

$$\lim_{n \to \infty} \Delta_n(x_n) = 0. \tag{3.5}$$

Observe that

$$x_n + wZ_n(x_n) = x_n + w(Y_n(1) - x_n) \ge (1 - w)x_n$$

The integrand in $\Delta_n(x_n)$ is 0 if $w < 1 - \delta/x_n$. Hence, from (1.2), it follows that

$$\Delta_{n}(x_{n}) \leq \mathbf{E}_{x_{n}} \left[\int_{1-\delta/x_{n}}^{1} (1-w) \| f'' \| n Z_{n}^{2}(x_{n}) \, \mathrm{d}w \right]$$

$$= \frac{\delta^{2}}{2x_{n}^{2}} n \, \mathbf{E}_{x_{n}} [Z_{n}^{2}(x_{n})]$$

$$= \frac{\delta^{2}}{2x_{n}^{2}} (n(m_{n}(x_{n}) - 1)^{2} x_{n}^{2} + n \sigma_{n}^{2}(x_{n}) x_{n})$$

$$= \frac{\delta^{2}}{2} \left(\frac{\alpha_{n}^{2}(x_{n})}{n} + \frac{\beta_{n}(x_{n})}{x_{n}} \right).$$
(3.6)

From assumption (E1) we have

$$\lim_{n \to \infty} \left(\frac{\alpha_n^2(x_n)}{n} + \frac{\beta_n(x_n)}{x_n} \right) = 0.$$
(3.7)

Then (3.5) follows from (3.6) and (3.7).

Case 2: $x_n \rightarrow x < +\infty$. In this case, by (H2) and (E2), we can readily obtain

$$x_n f'(x_n) \alpha_n(x_n) \to x \alpha(x) f'(x) \text{ as } n \to \infty$$

At the same time, (H3) and (H4) imply that

$$\begin{aligned} \left| \int_{(0,\infty)} (f(x_n + u) - f(x_n) - f'(x_n)u)x_n\mu(x_n, du) - \int_{(0,\infty)} (f(x + u) - f(x) - f'(x)u)x_n\mu(x_n, du) \right| \\ &\leq \int_{(0,\infty)} |f'(z_n + u) - f'(z_n) - f''(z_n)u||x_n - x|x_n\mu(x_n, du) \\ &\leq \|f'''\| \|x_n - x\| \int_{(0,\infty)} u^2 x_n\mu(x_n, du) \\ &\to 0, \end{aligned}$$
(3.8)

where $z_n \in (x, x_n)$. Let $\phi_x(u) = (f(x + u) - f(x) - f'(x)u)/u^2$ for $u \in (0, \infty)$. From $f \in C_c^{\infty}[0, \infty)$ we know that $\phi_x(u)$ is bounded and continuous for any $x \ge 0$. Therefore, (H3) indicates that, as $n \to \infty$,

$$\int_{(0,\infty)} (f(x+u) - f(x) - f'(x)u)x_n\mu(x_n, du) - \int_{(0,\infty)} (f(x+u) - f(x) - f'(x)u)x\mu(x, du), = \int_{(0,\infty)} \phi_x(u)x_nu^2\mu(x_n, du) - \int_{(0,\infty)} \phi_x(u)xu^2\mu(x, du) \rightarrow 0.$$
(3.9)

458

Combining (3.8) and (3.9), we obtain

$$\int_{(0,\infty)} (f(x_n+u) - f(x_n) - f'(x_n)u)x_n\mu(x_n, \mathrm{d}u)$$

$$\rightarrow \int_{(0,\infty)} (f(x+u) - f(x) - f'(x)u)x\mu(x, \mathrm{d}u)$$

which implies that $\mathcal{L}f(x_n) \to \mathcal{L}f(x)$ as $x_n \to x < \infty$. Consequently, to prove (3.4), it is enough to prove that

$$\Delta_n(x_n) \to \beta(x)xf''(x) + \int_{(0,\infty)} (f(x+u) - f(x) - f'(x)u)x\mu(x, \mathrm{d}u), \qquad (3.10)$$

which is proved in the following lemma.

Lemma 3.1. Using the same assumptions and notation as in Theorem 2.1 and its proof, if $x_n \rightarrow x < \infty$ then (3.10) holds.

Proof. By Fubini's theorem we have

$$\Delta_n(x_n) = \int_0^1 (1-w) \operatorname{E}_{x_n}[nf''(x_n+wZ_n(x_n))Z_n^2(x_n)] \,\mathrm{d}w$$

- $\int_0^1 (1-w) \operatorname{E}_{x_n}[nf''(x+wZ_n(x_n))Z_n^2(x_n)] \,\mathrm{d}w$
+ $\int_0^1 (1-w) \operatorname{E}_{x_n}[nf''(x+wZ_n(x_n))Z_n^2(x_n)] \,\mathrm{d}w.$

Since f'' is uniformly continuous, the dominated convergence theorem implies that, as $x_n \to x$,

$$\int_0^1 (1-w) \operatorname{E}_{x_n}[nf''(x_n+wZ_n(x_n))Z_n^2(x_n)] \,\mathrm{d}w$$

-
$$\int_0^1 (1-w) \operatorname{E}_{x_n}[nf''(x+wZ_n(x_n))Z_n^2(x_n)] \,\mathrm{d}w \to 0.$$

Hence, we only need to prove that

$$\int_{0}^{1} (1 - w) \operatorname{E}_{x_{n}}[nf''(x + wZ_{n}(x_{n}))Z_{n}^{2}(x_{n})] dw$$

$$\rightarrow \beta(x)xf''(x) + \int_{(0,\infty)} (f(x + u) - f(x) - f'(x)u)x\mu(x, du).$$
(3.11)

It suffices to prove that, as $x_n \to x$,

$$E_{x_n}[nf''(x+wZ_n(x_n))Z_n^2(x_n)] \to 2x\beta(x)f''(x) + x \int_{(0,\infty)} f''(x+wu)u^2\mu(x,du).$$
(3.12)

In fact, if (3.12) holds then (3.11) follows from Taylor's expansion.

Let $M_x = -\sup_n x_n$. For any $n \ge 0$, define a measure $Q_n(\cdot)$ on $[M_x, \infty)$ such that, for any Borel measurable set $A \subset [M_x, \infty)$,

$$Q_n(A) := \mathcal{E}_{x_n}[n \, \mathbf{1}_A(Z_n(x_n))Z_n^2(x_n)] = \mathcal{E}_{x_n}[n \, \mathbf{1}_A(Y_n(1) - x_n)(Y_n(1) - x_n)^2].$$
(3.13)

Then, for any $\lambda \ge 0$,

$$\int_{[M_x,\infty)} e^{-\lambda u} Q_n(\mathrm{d}u) = \mathbb{E}_{x_n} [n \exp\{-\lambda (Y_n(1) - x_n)\} (Y_n(1) - x_n)^2].$$
(3.14)

Note that Y_n is the continuous-state PSDBP with parameters $\gamma_n(x)$ and $\nu_n(x, \cdot)$. We have

$$\begin{split} \mathbf{E}_{x_n}[\exp\{-\lambda(Y_n(1)-x_n)\}] \\ &= \exp\left\{-x_n\left((\gamma_n(x_n)-1)\lambda + \int_{(0,\infty)}(1-\mathrm{e}^{-\lambda u})\nu_n(x_n,\mathrm{d}u)\right)\right\} \\ &= \exp\left\{-x_n\left((m_n(x_n)-1)\lambda + \int_{(0,\infty)}(1-\mathrm{e}^{-\lambda u}-\lambda u)\nu_n(x_n,\mathrm{d}u)\right)\right\}. \end{split}$$

Using this formula, via some simple calculation, we obtain

$$E_{x_n}[n \exp\{-\lambda(Y_n(1) - x_n)\}(Y_n(1) - x_n)^2]$$

= $\psi(n, x_n, \lambda)\phi(n, x_n, \lambda) + n\varphi(n, x_n, \lambda)^2\phi(n, x_n, \lambda),$ (3.15)

where

$$\phi(n, x_n, \lambda) = \exp\left\{-x_n\left((m_n(x_n) - 1)\lambda + \int_{(0,\infty)} (1 - e^{-\lambda u} - \lambda u)v_n(x_n, du)\right)\right\},\$$

$$\phi(n, x_n, \lambda) = -x_n\left(m_n(x_n) - 1 + \int_{(0,\infty)} u(e^{-\lambda u} - 1)v_n(x_n, du)\right),\$$

$$\psi(n, x_n, \lambda) = x_n\int_{(0,\infty)} u^2 e^{-\lambda u}\mu(x_n, du) + x_n\int_{(0,\infty)} u^2 e^{-\lambda u}n\mu_n(x_n, du).$$

Note that

$$\left|-x_n\left((m_n(x_n)-1)\lambda+\int_{(0,\infty)}(1-\mathrm{e}^{-\lambda u}-\lambda u)\nu_n(x_n,\mathrm{d} u)\right)\right|\leq \lambda\frac{x_n|\alpha_n(x_n)|}{n}+\lambda^2\frac{\beta_n(x_n)}{n}$$

and that

$$|\varphi(n, x_n, \lambda)| \le x_n \frac{|\alpha_n(x_n)| + \lambda \beta_n(x_n)}{n}$$

Then by condition (A1) we have, as $n \to +\infty$,

$$\phi(n, x_n, \lambda) \to 1, \qquad n\varphi(n, x_n, \lambda)^2 \to 0.$$
 (3.16)

Since

$$\int_{(0,\infty)} u^2 \mu_n(x, \mathrm{d}u) = \frac{\beta_n(x) - b(x)}{n}$$

(E3) implies that

$$\left|\int_{(0,\infty)} u^2 \mathrm{e}^{-\lambda u} n\mu_n(x_n, \mathrm{d} u) - (\beta_n(x_n) - b(x_n))\right| \leq \lambda \int_{(0,\infty)} u^3 n|\mu_n|(x_n, \mathrm{d} u) \to 0.$$

Furthermore, from (E2)–(E3) and (H1)–(H2), it follows that $\beta_n(x_n) - b(x_n) \rightarrow 2\beta(x)$. Hence,

$$\psi(n, x_n, \lambda) \to x \int_{(0,\infty)} u^2 \mathrm{e}^{-\lambda s} \mu(x, \mathrm{d}u) + 2x\beta(x).$$
(3.17)

Combining (3.15) with (3.16) and (3.17), we obtain

$$E_{x_n}[n\exp\{-\lambda(Y_n(1)-x_n)\}(Y_n(1)-x_n)^2] \to x \int_{(0,\infty)} u^2 e^{-\lambda s} \mu(x, du) + 2x\beta(x).$$
(3.18)

Define a measure $\bar{\mu}(x, \cdot)$ on $[M_x, \infty)$ as follows:

$$\bar{\mu}(x, A) = \begin{cases} \int_{(0,\infty)\cap A} xu^2 \mu(x, \mathrm{d}u) + 2x\beta(x), & 0 \in A, \\ \int_{(0,\infty)\cap A} xu^2 \mu(x, \mathrm{d}u), & \text{otherwise,} \end{cases}$$

for any Borel measurable set $A \subset [M_x, \infty)$. Equations (3.13), (3.14) and (3.18) imply that

$$\int_{[M_x,\infty)} e^{-\lambda u} Q_n(\mathrm{d} u) \to \int_{[M_x,\infty)} e^{-\lambda u} \bar{\mu}(\mathrm{d} u) \quad \text{as } n \to +\infty.$$

Hence, for any bounded continuous function h(u) on $[M_x, \infty)$,

$$E_{x_n}[nh(Y_n(1) - x_n)(Y_n(1) - x_n)^2] = \int_{[M_x,\infty)} h(u)Q_n(du)$$

$$\to \int_{[M_x,\infty)} h(u)\bar{\mu}(du)$$

$$= 2x\beta(x)h(0) + x\int_{(0,\infty)} h(u)u^2\mu(x, du).$$

Let h(u) = f''(x + wu). Then (3.12) holds.

Proof of Theorem 2.2. From the assumptions of Theorem 2.2, for any $n \ge 1$, we can construct a continuous-state PSDBP Y_n which satisfies

$$E[e^{-\lambda Y_n(k+1)} | Y_n(k) = x] = \exp\left\{-x\left(\frac{e^{(\alpha(x)-a(x))/n}\lambda}{1+n^{-1}\lambda\beta(x)} + \frac{1}{n}\int_{(0,\infty)}(1-e^{-\lambda u})\mu(x,du)\right)\right\} = \exp\left\{-x\left(\gamma_n(x)\lambda + \int_{(0,\infty)}(1-e^{-\lambda u})\mu_n(x,du) + \frac{1}{n}\int_{(0,\infty)}(1-e^{-\lambda u})\mu(x,du)\right)\right\}$$

for any $\lambda \geq 0$, where

$$\gamma_n(x) = \begin{cases} 0, & \beta(x) > 0, \\ e^{(\alpha(x) - a(x))/n}, & \beta(x) = 0, \end{cases}$$
(3.19)

$$\mu_n(x, du) = \begin{cases} e^{(\alpha(x) - a(x))/n} \left(\frac{n}{\beta(x)}\right)^2 e^{-nu/\beta(x)} du, & \beta(x) > 0, \\ 0, & \beta(x) = 0. \end{cases}$$
(3.20)

By some simple calculation, we obtain

$$m_n(x) = e^{(\alpha(x) - a(x))/n} + \frac{a(x)}{n}, \qquad \sigma_n^2(x) = e^{(\alpha(x) - a(x))/n} \frac{2\beta(x)}{n} + \frac{b(x)}{n},$$

and

$$\pi_n(x) := \int_{(0,\infty)} u^3 \mu_n(x, \mathrm{d}u) = 6\mathrm{e}^{(\alpha(x) - \alpha(x))/n} \frac{\beta^2(x)}{n^2}.$$

Since $\alpha(x)$, $\beta(x)$, a(x), and b(x) are bounded and continuous, the sequence $\{Y_n\}$ satisfies all the conditions of (E1)–(E3). Therefore, Theorem 2.2 follows from Theorem 2.1.

Acknowledgements

The author is greatly indebted to Professor Zenghu Li for his supervision. Thanks are also due to the anonymous referee for helpful comments.

References

- [1] ETHIER, S. N. AND KURTZ, T. G. (1986). Markov Processes. John Wiley, New York.
- [2] FELLER, W. (1951). Diffusion processes in genetics. In Proc. 2nd Berkeley Symp. Math. Statist. Prob., University of California Press, Berkeley, CA, pp. 227–246.
- [3] HÖPFNER, R. (1985). On some classes of population-size-dependent Galton–Watson processes. J. Appl. Prob. 22, 25–36.
- [4] ISPÁNY, M., PAP, G. AND ZUIJLEN, M. C. A. (2005). Fluctuation limit of branching processes with immigration and estimation of the means. Adv. Appl. Prob. 37, 523–538.
- [5] JIŘINA, M. (1960). Stochastic branching processes with continuous-state space. Czech. Math. J. 8, 292–313.
- [6] JIŘINA, M. (1969). On Feller's branching diffusion processes. Časopis. Pěst. Mat. 94, 84–90.
- [7] KAWAZU, K. AND WATANABE, S. (1971). Branching processes with immigration and related limit theorems. *Theory Prob. Appl.* 16, 34–51.
- [8] KLEBANER, F. (1984). Geometric rate of growth in population-size-dependent branching processes. J. Appl. Prob. 21, 40–49.
- [9] LI, Y. (2006). On a continuous-state population-size-dependent branching process and its extinction. J. Appl. Prob. 43, 195–207.
- [10] LI, Y. (2009). Uniqueness of solutions of martingale problems with degenerate coefficients. Preprint. Available at http://www.paper.edu.cn/en/paper.php?serial_number=200901-298.
- [11] LI, Z.-H. (2000). Orenstein–Uhlenbeck type processes and branching processes with immigration. J. Appl. Prob. 37, 627–634.
- [12] LI, Z. (2006). A limit theorem for discrete Galton–Watson branching processes with immigration. J. Appl. Prob. 43, 289–295.
- [13] LIPOW, C. (1977). Limiting diffusions for population-size-dependent branching processes. J. Appl. Prob. 14, 14–24.
- [14] ROSENKRANZ, G. (1985). Diffusion approximation of controlled branching processes with random environments. Stoch. Anal. Appl. 3, 363–377.
- [15] STROOCK, D. (1975). Diffusion processes associated Lévy generators. Z. Wahrscheinlichkeitsth. 32, 209-244.