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Quantum Symmetries of Graph C∗-algebras

Simon Schmidt and Moritz Weber

Abstract. _e study of graph C∗-algebras has a long history in operator algebras. Surprisingly, their
quantum symmetries have not yet been computed. We close this gap by proving that the quantum
automorphism group of a ûnite, directed graph without multiple edges acts maximally on the cor-
responding graph C∗-algebra. _is shows that the quantum symmetry of a graph coincides with
the quantum symmetry of the graph C∗-algebra. In our result, we use the deûnition of quantum
automorphism groups of graphs as given by Banica in 2005. Note that Bichon gave a diòerent deû-
nition in 2003; our action is inspired from his work. We review and compare these two deûnitions
and we give a complete table of quantum automorphism groups (with respect to either of the two
deûnitions) for undirected graphs on four vertices.

Introduction

Symmetry constitutes one of the most important properties of a graph. It is captured
by its automorphism group

Aut(Γ) ∶= {σ ∈ Sn ∣ σε = εσ} ⊆ Sn ,

where Γ = (V , E) is a ûnite graph with n vertices and no multiple edges, ε ∈

Mn({0, 1}) is its adjacency matrix, and Sn is the symmetric group. In modern math-
ematics, notably in operator algebras, symmetries are no longer described only by
groups, but by quantum groups. In 2005, Banica [1] gave a deûnition of a quantum
automorphism group of a ûnite graph withinWoronowicz’s theory of compact matrix
quantum groups [20]. In our notation, G+

aut(Γ) is based on the C∗-algebra

C(G+
aut(Γ))

∶= C(S+n)⟨uε = εu⟩

= C∗(u i j , i , j = 1, . . . , n ∣ u i j = u∗i j = u2
i j ,∑

l
u i l = 1 = ∑

l
u l j , RBan) ,

where S+n is Wang’s quantum symmetric group [18] and RBan are the relations

∑
k

u ikεk j = ∑
k
ε ikuk j .
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Earlier, in 2003, Bichon [5] deûned a quantum automorphism group G∗
aut(Γ) via

C(G∗
aut(Γ)) ∶=

C∗(u i j , i , j = 1, . . . , n ∣ u i j = u∗i j = u2
i j ,∑

l
u i l = 1 = ∑

l
u l j , RBic) ,

where RBic are the relations

∑
k

u ikεk j = ∑
k
ε ikuk j , us(e)s( f )ur(e)r( f ) = ur(e)r( f )us(e)s( f ) for e , f ∈ E ,

and r∶ E → V and s∶ E → V are range and source maps, respectively. We immediately
see that

Aut(Γ) ⊆ G∗
aut(Γ) ⊆ G+

aut(Γ)

holds, in the sense that there are surjective ∗-homomorphisms:

C(G+
aut(Γ)) Ð→ C(G∗

aut(Γ)) Ð→ C(Aut(Γ))
u i j z→ u i j z→ (σ ↦ σi j)

Relatively little is known about these two quantum automorphism groups of graphs,
and we refer the reader to Section 3.4 for an overview on all published articles in this
area.

Graph C∗-algebras in turn are well-established objects in operator algebras. _ey
emerged from Cuntz and Krieger’s work [8] in the 1980’s and have become one of the
most important classes of examples of C∗-algebras; see, for instance, Raeburn’s book
for an overview [15]. Given a ûnite graph Γ = (V , E) the associated graph C∗-algebra
C∗(Γ) is deûned as

C∗(Γ) ∶= C∗( pv , v ∈ V , se , e ∈ E ∣ pv = p∗v = p2
v , pv pw = 0 for v /= w ,

s∗e se = pr(e) , ∑
e∈E

s(e)=v

se s∗e = pv , if s−1
(v) /= ∅) .

A natural question is then: what is the quantum symmetry group of the graph C∗-
algebra, and is it one of the above two quantum automorphism groups of the underly-
ing graphs? _e answer is that it is given by the one deûned by Banica. Note however,
that Bichon’s deûnition has its justiûcation in other contexts, such as in [4, 6] or in
the recent work by Speicher and the second author [16]. Moreover, Bichon’s work [5]
inspired the formulatation our main theorem; see also Remark 4.2.

1 Main Result

Intuitively speaking, our main result is that the quantum symmetry of a ûnite graph
withoutmultiple edges coincides with the quantum symmetry of the associated graph
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C∗-algebra. In other words, the following diagram is commutative.

ûnite graphs

Γ↦G+

aut(Γ) ))

Γ↦C∗(Γ) // graph C∗-algebras

C∗(Γ)↦QSym(C∗(Γ))tt
quantum symmetry groups

More precisely, we have the following result.

Main _eorem Let Γ be a ûnite graph with n vertices V = {1, . . . , n} and m edges
E = {e1 , . . . , em} having no multiple edges. _e maps

α∶C∗(Γ) Ð→ C(G+
aut(Γ)) ⊗ C

∗
(Γ),

p i z→
n

∑
k=1

u ik ⊗ pk , 1 ≤ i ≤ n,

se j z→
m

∑
l=1

us(e j)s(e l )ur(e j)r(e l ) ⊗ se l , 1 ≤ j ≤ m,

and

β∶C∗(Γ) Ð→ C(G+
aut(Γ)) ⊗ C

∗
(Γ),

p i z→
n

∑
k=1

uki ⊗ pk , 1 ≤ i ≤ n,

se j z→
m

∑
l=1

us(e l )s(e j)ur(e l )r(e j) ⊗ se l , 1 ≤ j ≤ m

deûne a le� and a right action of G+
aut(Γ) on C∗(Γ), respectively. Moreover, whenever

G is a compact matrix quantum group acting on C∗(Γ) in the above way, we have
G ⊆ G+

aut(Γ). In this sense, the quantum automorphism group G+
aut(Γ) of Γ is the

quantum symmetry group of C∗(Γ); see also Remark 4.1.

We also provide some tools for comparing and dealing with the two deûnitions of
quantum automorphism groups of graphs, G+

aut(Γ) and G∗
aut(Γ), notably depending

on the complement Γc of Γ; see Section 3.5. Moreover, we provide a list of all Aut(Γ),
G+
aut(Γ) and G∗

aut(Γ) for undirected graphs Γ on four vertices, having no multiple
edges and no loops; see Section 3.6.

2 Preliminaries

2.1 Graphs

We ûx some notation for graphs used throughout this article. A graph Γ = (V , E) is
ûnite, if the set V of vertices and the set E of edges are ûnite. We denote by r∶ E → V
the rangemap and by s∶ E → V the sourcemap. A graph is undirected if for every e ∈ E,
there is a f ∈ E with s( f ) = r(e) and r( f ) = s(e); it is directed otherwise. Elements
e ∈ E with s(e) = r(e) are called loops. A graph without multiple edges is a directed
graph where there are no e , f ∈ E, e /= f , such that s(e) = s( f ) and r(e) = r( f ). For
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a ûnite graph Γ = (V , E) with V = {1, . . . , n}, its adjacency matrix ε ∈ Mn(N0) is
deûned as ε i j ∶= #{e ∈ E ∣ s(e) = i , r(e) = j}. Here N0 = {0, 1, 2, . . .}. _roughout
this article we restrict to ûnite graphs having no multiple edges.

If Γ = (V , E) is a directed graphwithoutmultiple edges, we denote by Γc = (V , E′)
the complement of Γ, where E′ = (V × V)/E. Within the category of graphs having
no loops, the complement Γc is deûned using E′ = (V × V)/(E ∪ {(i , i); i ∈ V}).

2.2 Automorphism Groups of Graphs

For a ûnite graph Γ = (V , E) without multiple edges, a graph automorphism is a bi-
jective map σ ∶V → V such that (σ(i), σ( j)) ∈ E if and only if (i , j) ∈ E. In other
words, εσ(i)σ( j) = 1 if and only if ε i j = 1. _e set of all graph automorphisms of Γ
forms a group, the automorphism group Aut(Γ). We can view Aut(Γ) as a subgroup
of the symmetric group Sn if Γ has n vertices:

Aut(Γ) = {σ ∈ Sn ∣ σε = εσ} ⊆ Sn .

2.3 Graph C∗-algebras

_e theory of Graph C∗-algebras has its roots in Cuntz and Krieger’s work [8] in 1980.
Nowadays, it forms awell-developed and very active part of the theory ofC∗-algebras;
see [15] for an overview or [9] for recent developments. For a ûnite, directed graph
Γ = (V , E) without multiple edges, the graph C∗-algebra C∗(Γ) is the universal C∗-
algebra generated bymutually orthogonal projections pv , v ∈ V and partial isometries
se , e ∈ E such that
(i) s∗e se = pr(e) for all e ∈ E,
(ii) pv = ∑e∈E∶s(e)=v se s∗e for every v ∈ V with s−1(v) /= ∅.
It follows immediately that s∗e s f = 0 for e /= f and∑v∈V pv = 1 hold true in C∗(Γ).

2.4 Compact Matrix Quantum Groups

Compact matrix quantum groups were deûned by Woronowicz [19, 20] in 1987. _ey
form a special class of compact quantum groups; see [13, 17] for recent books. A com-
pact matrix quantum group G is a pair (C(G), u), where C(G) is a unital (not neces-
sarily commutative) C∗-algebra that is generated by u i j , 1 ≤ i , j ≤ n, the entries of a
matrix u ∈ Mn(C(G)). Moreover, the *-homomorphism ∆∶C(G) → C(G) ⊗ C(G),
u i j ↦ ∑

n
k=1 u ik ⊗ uk j must exist, and u and its transpose ut must be invertible.

Example 2.1 Consider the quantum symmetric group S+n = (C(S+n), u), as deûned
by Wang [18] in 1998. It is the compact matrix quantum group given by

C(S+n) ∶= C
∗
(u i j ∣ u i j = u∗i j = u2

i j ,
n

∑
l=1

u i l = 1 =
n

∑
l=1

u l i for all 1 ≤ i , j ≤ n) .

One can show that the quotient of C(S+n) by the relations that all u i j commute is
exactly C(Sn). Moreover, the symmetric group Sn can be viewed as a compact matrix
quantum group Sn = (C(Sn), u), where u i j ∶ Sn → C are the evaluation maps of the
matrix entries. _is justiûes the name “quantum symmetric group”.
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If G = (C(G), u) and H = (C(H), v) are compact matrix quantum groups with
u ∈ Mn(C(G)) and v ∈ Mn(C(H)), we say that G is a compact matrix quantum
subgroup of H if there is a surjective *-homomorphism from C(H) to C(G) map-
ping generators to generators. In this case we write G ⊆ H. For example, Sn ⊆ S+n .
_e compact matrix quantum groups G and H are equal as compact matrix quantum
groups, writing G = H, if we have G ⊆ H and H ⊆ G.

2.5 Actions of Quantum Groups

Let G = (C(G), u) be a compact matrix quantum group and let B be a C∗-algebra. A
le� action of G on B is a unital *-homomorphism α∶B → C(G) ⊗ B such that
(i) (∆⊗ id) ○ α = (id⊗α) ○ α,
(ii) α(B)(C(G) ⊗ 1) is linearly dense in C(G) ⊗ B.
A right action is a unital *-homomorphism β∶B → C(G) ⊗ B with
(i) ((F ○ ∆) ⊗ id)) ○ β = (id⊗β) ○ β,
(ii) β(B)(C(G) ⊗ 1) is linearly dense in C(G) ⊗ B,
where F is the �ip map:

F∶C(G) ⊗ C(G) → C(G) ⊗ C(G), a ⊗ b ↦ b ⊗ a.

Note that in some articles (for instance in [18]), the property (ii) is replaced by
(ii′) (ε ⊗ id) ○ α = id,
(iii′) there is a dense *-subalgebra of B such that α restricts to a right coaction of the

Hopf *-algebra on the *-subalgebra.
One can show that (ii′) and (iii′) are equivalent to (ii); see [14].

2.6 Quantum Symmetry Group of n Points

According to Wang’s work [18], we know that S+n (from Example 2.1) is the quantum
symmetry group of n points in the sense that
(i) S+n acts from the le� and right on

C∗( p1 , . . . , pn ∣ p i = p∗i = p2
i ,∑

l
p l = 1)

by α(p i) ∶= ∑
n
k=1 u ik ⊗ pk and β(p i) ∶= ∑

n
k=1 uki ⊗ pk , respectively,

(ii) S+n is maximal with these actions; i.e., any other compact matrix quantum group
with actions deûned as α and β is a compact matrix quantum subgroup of S+n .

See also [11] for similar questions around quantum symmetries.

3 Quantum Automorphism Groups of Graphs

Wang’s work in the 1990’s was the starting point of the investigations of quantum sym-
metry phenomena for discrete structures (within Woronowicz’s framework). Note
that n points can be viewed as the totally disconnected graph on n vertices. A decade
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later, Banica and Bichon extendedWang’s approach to a theory of quantum automor-
phism groups of ûnite graphs. In the sequel, we restrict our attention to ûnite graphs
having no multiple edges.

3.1 Bichon’s Quantum Automorphism Group of a Graph

In 2003, Bichon [5] deûned a quantum automorphism group as follows.

Deûnition 3.1 Let Γ = (V , E) be a ûnite graph with n vertices V = {1, . . . , n}
and m edges E = {e1 , . . . , em}. _e quantum automorphism group G∗

aut(Γ) is the
compact matrix quantum group (C(G∗

aut(Γ)), u), where C(G∗
aut(Γ)) is the universal

C∗-algebra with generators u i j , 1 ≤ i , j ≤ n and relations

u i j = u∗i j , u i ju ik = δ jku i j , u jiuki = δ jku ji , 1 ≤ i , j, k ≤ n,(3.1)
n

∑
l=1

u i l = 1 =
n

∑
l=1

u l i , 1 ≤ i ≤ n,(3.2)

us(e j)iur(e j)k = ur(e j)kus(e j)i = 0, e j ∈ E , (i , k) ∉ E ,(3.3)
u i s(e j)ukr(e j) = ukr(e j)u i s(e j) = 0, e j ∈ E , (i , k) ∉ E ,(3.4)
us(e j)s(e l )ur(e j)r(e l ) = ur(e j)r(e l )us(e j)s(e l ) , e j , e l ∈ E .(3.5)

In Bichon’s original deûnition, there is actually another relation that is implied by
the others:

m

∑
l=1

us(e l )s(e j)ur(e l )r(e j) = 1 =
m

∑
l=1

us(e j)s(e l )ur(e j)r(e l ) , e j ∈ E(3.6)

Indeed, relations (3.6) are implied by relations (3.2), (3.3), and (3.4):

m

∑
l=1

us(e l )s(e j)ur(e l )r(e j) =
n

∑
i ,k=1

u i s(e j)ukr(e j) = (
n

∑
i=1

u i s(e j))(
n

∑
k=1

ukr(e j)) = 1.

3.2 Banica’s Quantum Automorphism Group of a Graph

Two years later, Banica [1] gave the following deûnition.

Deûnition 3.2 Let Γ = (V , E) be a ûnite graphwith n vertices and adjacencymatrix
ε ∈ Mn({0, 1}). _e quantum automorphism group G+

aut(Γ) is the compact matrix
quantum group (C(G+

aut(Γ)), u), where C(G+
aut(Γ)) is the universal C∗-algebra with

generators u i j , 1 ≤ i , j ≤ n and relations (3.1), (3.2) together with uε = εu, which is
nothing but∑k u ikεk j = ∑k ε ikuk j .

3.3 Link Between the Two Definitions

It is easy to see ([10, Lemma 3.1.1] or [16, Lemma 6.7]) that Banica’s deûnition can be
expressed as

C(G+
aut(Γ)) = C

∗
(u i j ∣ relations (3.1)–(3.4) hold).
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We thus have

Aut(Γ) ⊆ G∗
aut(Γ) ⊆ G+

aut(Γ)

in the sense of compact matrix quantum subgroups; see Section 2.4. Equality holds
if C(G∗

aut(Γ)) and C(G+
aut(Γ)) are commutative. Moreover, note that (see Example

2.1):
C(S+n) = C

∗
(u i j ∣ relations (3.1) and (3.2) hold).

Example 3.3 Let Γ be the complete graph (i.e., E = V × V ). _en

Aut(Γ) = G∗
aut(Γ) = Sn , G+

aut(Γ) = S+n .

For its complement Γc (i.e., E = ∅), we have

Aut(Γc) = Sn , G∗
aut(Γ

c
) = G+

aut(Γ
c
) = S+n .

3.4 Review of the Literature on Quantum Automorphism Groups of Graphs

At the moment there are only few articles about quantum automorphism groups of
graphs. Some results are the following. In [6], Bichon deûned the hyperoctahedral
quantum group and showed that this group is the quantum automorphism group of
some graph. Banica computed the Poincaré series ofG+

aut(Γ) for homogenous graphs
with less than eight vertices in [1]. Banica, Bichon, and Chenevier considered circu-
lant graphs having p vertices for p prime in [3]. _ey proved that G+

aut(Γ) = Aut(Γ)
if the graph Γ does fulûll certain properties. Banica and Bichon investigated G+

aut(Γ)
for vertex-transitive graphs of order less or equal to eleven in [2]. _ey also computed
G+
aut(Γ) for the direct product, the Cartesian product, and the lexicographic product

of speciûc graphs. Chassaniol also studied the lexicographic product of graphs in
[7]. In her Ph.D. thesis [10], Fulton studied undirected trees Γ such that Aut(Γ) =
Z2 ×Z2 × ⋅ ⋅ ⋅ ×Z2, where we have k kopies of the cyclic group Z2 = Z/2Z. She proved
that Aut(Γ) = G∗

aut(Γ) = G+
aut(Γ) for k = 1 and Aut(Γ) /= G∗

aut(Γ) = G+
aut(Γ) for k ≥ 2.

See also [4, 12] for links to quantum isometry groups.

3.5 Comparing with the Complement of the Graph

As can be seen from Section 3.4, the theory of quantum automorphism groups of
graphs is still in its infancy. We now provide some basic results on the link between
G∗
aut(Γ) and G∗

aut(Γ
c). Note that while we have

Aut(Γ) = Aut(Γc) and G+
aut(Γ) = G+

aut(Γ
c
)

for all graphs Γ (using εΓc = A− εΓ for the adjacency matrices, with A ∈ Mn({1}) the
matrix ûlled with units, and uA = A = Au by relation (3.2)), we may have

G∗
aut(Γ) /= G∗

aut(Γ
c
),

for instance, when Γ is the complete graph; see Example 3.3.

Lemma 3.4 If G∗
aut(Γ) ⊆ G∗

aut(Γ
c), then G∗

aut(Γ) = Aut(Γ).
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Proof Relation (3.5) in C(G∗
aut(Γ

c)) implies that u ik and u j l commute in
C(G∗

aut(Γ)) whenever (i , j) ∉ E and (k, l) ∉ E. Together with relations (3.3), (3.4),
and (3.5) in C(G∗

aut(Γ)), this yields commutativity of all generators.

Lemma 3.5 If G∗
aut(Γ

c) = G+
aut(Γ

c), then G∗
aut(Γ) = Aut(Γ).

Proof We have G∗
aut(Γ) ⊆ G+

aut(Γ) = G+
aut(Γ

c) = G∗
aut(Γ

c) and apply Lemma 3.4.

_e next lemma shows that the quantum automorphism groups of a graph without
loops does not change if we add those.

Lemma 3.6 Let Γ = (V , E) be a ûnite graph without loops. Consider Γ′ = (V , E′)
with E′ = E ∪ {(i , i), i ∈ V}. _e following hold:
(i) G+

aut(Γ) = G+
aut(Γ

′),
(ii) G∗

aut(Γ) = G∗
aut(Γ

′).

Proof For (i), we use εΓ′ = 1+ εΓ , where 1 is the identity matrix in Mn({0, 1}). _us,
uεΓ = εΓu is equivalent to uεΓ′ = εΓ′u.
For (ii), all we need to check is that u i s(e j)u ir(e j) = u ir(e j)u i s(e j) is fulûlled in

C(G∗
aut(Γ)) for all i ∈ V , e j ∈ E, which is true due to relation (3.1).

3.6 Quantum Automorphism Groups on Four Vertices

For a small number of vertices of undirected graphs, a complete classiûcation of
G∗
aut(Γ) and G+

aut(Γ) is possible. For n ∈ {1, 2, 3}, we have C(S+n) = C(Sn), hence
Aut(Γ) = G∗

aut(Γ) = G+
aut(Γ). For n = 4, we now provide a complete table for graphs

having no loops. We restrict to undirected graphs in order to keep it simple. We need
the following lemma to compute the quantum automorphism groups.

Lemma 3.7 Let Γ = (V , E) be a ûnite graph with V = {1, . . . , n} and let e j ∈ E. Let
q ∈ V with s−1(q) = ∅. For the generators of C(G+

aut(Γ)), we have

uqs(e j) = 0 = us(e j)q .

Proof By relations (3.2) and (3.4), we get

uqs(e j) = uqs(e j)(
n

∑
i=1

u ir(e j)) =
n

∑
i=1

uqs(e j)u ir(e j) = 0,

because (q, i) ∉ E for all i ∈ V . Likewise, we get us(e j)q = 0.

In the following, D4 denotes the dihedral group deûned as

D4 ∶= ⟨x , y ∣ x2
= y2

= (xy)4 = e⟩,

H+
2 denotes the hyperoctahedral quantum group deûned by Bichon in [6], and Z2

denotes the cyclic group Z/2Z. _e quantum group Ẑ2 ∗Z2 = (C∗(Z2 ∗ Z2), u) is
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understood as the compact matrix quantum group with matrix

⎛
⎜
⎜
⎜
⎝

p 1 − p 0 0
1 − p p 0 0
0 0 q 1 − q
0 0 1 − q q

⎞
⎟
⎟
⎟
⎠

,

where C∗(Z2 ∗ Z2) is seen as the universal unital C∗-algebra generated by two pro-
jections p and q. Recall that Aut(Γ) = Aut(Γc) and G+

aut(Γ) = G+
aut(Γ

c), where Γc

is the complement of Γ within the category of graphs having no loops. Parts of the
following table were also computed in [2, 6].

_eorem 3.8 Let Γ be an undirected graph on four vertices having no loops and no
multiple edges. _en we have the following table:

Γ Γc Aut(Γ) G∗
aut(Γ

c) G∗
aut(Γ) G+

aut(Γ)

(1)
●

●

●

●

●

●

●

●
@@�� S4 S4 S+4 S+4

(2)
●

●

●

●

●

●

●

●
@@ Z2 ×Z2 Z2 ×Z2 Ẑ2 ∗Z2 Ẑ2 ∗Z2

(3)
●

●

●

●

●

●

●

●
@@ Z2 Z2 Z2 Z2

(4)
●

●

●

●

●

●

●

●
D4 D4 H+

2 H+
2

(5)
●

●

●

●
�� ●

●

●

●
@@ S3 S3 S3 S3

(6)
●

●

●

●

●

●

●

●
Z2 Z2 Z2 Z2

Proof For every row of the table, we compute G+
aut(Γ), and we show that G+

aut(Γ) =
G∗
aut(Γ). We then obtain G∗

aut(Γ
c) by using Lemma 3.5. We label the points of the

graphs as follows:

●

●

●

●
1 2

3 4 .

(1) Obvious, see Example 3.3.
(2) Let (u i j)1≤i , j≤4 be the generators of C(G+

aut(Γ)). Lemma 3.7 yields

u31 = u32 = u41 = u42 = u13 = u23 = u14 = u24 = 0.

Using relations (3.2), we deduce that

u =

⎛
⎜
⎜
⎜
⎜
⎜
⎜
⎝

u11 1 − u11 0 0
1 − u11 u11 0 0
0 0 u33 1 − u33

0 0 1 − u33 u33

⎞
⎟
⎟
⎟
⎟
⎟
⎟
⎠

.
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_us, G+
aut(Γ) = Ẑ2 ∗Z2 . Since u i jukl = uklu i j holds for (i , k), ( j, l) ∈

{(1, 2), (2, 1)} in C(G+
aut(Γ)), we get G∗

aut(Γ) = G+
aut(Γ).

(3) Lemma 3.7 yields

u14 = u24 = u34 = u41 = u42 = u43 = 0.

_is implies that G+
aut(Γ) ⊆ S+3 = S3; thus, G+

aut(Γ) is commutative, and hence
G+
aut(Γ) = G∗

aut(Γ) = Aut(Γ) = Z2.
(4) Let ∆ and ∆′ be the comultiplication maps of G+

aut(Γ) and H+
2 , respectively. We

ûrst show that these two quantum groups coincide as compact quantum groups,
i.e., there is a ∗-isomorphism

φ∶C(H+
2 ) Ð→ C(G

+
aut(Γ))

such that ∆′ ○ φ = (φ ⊗ φ) ○ ∆.

Step 1: _e map φ exists and we have ∆′ ○ φ = (φ ⊗ φ) ○ ∆.
From εu = uε we get

u =

⎛
⎜
⎜
⎜
⎜
⎜
⎜
⎝

u11 u12 u13 u14

u12 u11 u14 u13

u31 u32 u33 u34

u32 u31 u34 u33

⎞
⎟
⎟
⎟
⎟
⎟
⎟
⎠

.

Deûne v11 ∶= u11 − u12, v12 ∶= u13 − u14, v21 ∶= u31 − u32, and v22 ∶= u33 − u34. One
can compute that v i j , i , j = 1, 2 fulûll the relations of C(H+

2 ), and with the universal
property we get a *-homomorphism φ∶C(H+

2 ) → C(G+
aut(Γ)). Since ∆

′ ○ φ = (φ⊗
φ) ○ ∆ also holds, we get that G+

aut(Γ) is a quantum subgroup of H+
2 .

Step 2: _e map φ is a ∗-isomorphism.
Let (v i j)i , j=1,2 be the generators of C(H+

2 ). Deûne

u11 ∶= u22 ∶=
v2
11 + v11

2
, u12 ∶= u21 ∶=

v2
11 − v11

2
,

u13 ∶= u24 ∶=
v2
12 + v12

2
, u14 ∶= u23 ∶=

v2
12 − v12

2
,

u31 ∶= u42 ∶=
v2
21 + v21

2
, u41 ∶= u32 ∶=

v2
21 − v21

2
,

u33 ∶= u44 ∶=
v2
22 + v22

2
, u34 ∶= u43 ∶=

v2
22 − v22

2
.

One can show that the (u i j)1≤i , j≤4 fulûll the relations of C(G+
aut(Γ)). _e universal

property now gives us a *-homomorphism φ′∶C(G+
aut(Γ)) → C(H+

2 ) and φ′ is the
inverse of φ and vice versa.

Step 3: We have G+
aut(Γ) = G∗

aut(Γ).
We have seen in Step 1 that

u11 = u22 , u12 = u21 , u13 = u24 , u14 = u23 ,
u31 = u42 , u32 = u41 , u33 = u44 , u34 = u43
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and therefore we get

u i jukl = u2
kl = uklu i j

for all (i , k), ( j, l) ∈ E. _us, G+
aut(Γ) = G∗

aut(Γ).
(5) We conclude as in (3).
(6) Some direct computations using εu = uε and relations (3.2) show

u =

⎛
⎜
⎜
⎜
⎜
⎜
⎜
⎝

u33 1 − u33 0 0
1 − u33 u33 0 0

0 0 u33 1 − u33

0 0 1 − u33 u33

⎞
⎟
⎟
⎟
⎟
⎟
⎟
⎠

.

_us G+
aut(Γ) is commutative.

4 Proof of the Main Result

We now prove the main result of this article (see Section 1) for a ûnite graph Γ with
vertices V = {1, . . . , n} and edges E = {e1 , . . . , em} having no multiple edges.

Remark 4.1 We deûne the quantum symmetry group QSym(C∗(Γ)) of C∗(Γ) to
be the maximal compact matrix quantum group G acting on C∗(Γ) by α∶C∗(Γ) →
C(G) ⊗ C∗(Γ) and β∶C∗(Γ) → C(G) ⊗ C∗(Γ) as deûned in the statement of our
Main _eorem. We thus have to show that G+

aut(Γ) acts on C∗(Γ) via α and β (see
Sections 4.1 and 4.2) and that it is maximal with these actions (see Section 4.3).

4.1 Existence of the Maps α and β

In order to prove that

α∶C∗(Γ) Ð→ C(G+
aut(Γ)) ⊗ C

∗
(Γ)

p i z→ p′i ∶=
n

∑
k=1

u ik ⊗ pk , 1 ≤ i ≤ n

se j z→ s′e j ∶=
m

∑
l=1

us(e j)s(e l )ur(e j)r(e l ) ⊗ se l , 1 ≤ j ≤ m

deûnes a ∗-homomorphism, all we have to show is that the relations of C∗(Γ) hold
for p′i and s′e j . We can then use the universal property of C∗(Γ). _e proof for the
existence of β is analogous.

4.1.1 The p′i are Mutually Orthogonal Projections.

Obviously, p′i = (p
′
i)
∗ holds. Moreover, using pk p l = δkl pk and relations (3.1), we

have

p′i p
′
j =

n

∑
k , l=1

u iku j l ⊗ pk p l =
n

∑
k=1

u iku jk ⊗ pk = δ i jp′i .
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4.1.2 The s′e j are Partial Isometries with (s′e j)
∗s′e j = p′r(e j).

Using s∗e l se i = δ i l pr(e i) (see Section 2.3) and relations (3.1), we have

(s′e j)
∗s′e j =

m

∑
l , i=1

ur(e j)r(e l )us(e j)s(e l )us(e j)s(e i)ur(e j)r(e i) ⊗ s∗e l se i

=
m

∑
i=1

ur(e j)r(e i)us(e j)s(e i)ur(e j)r(e i) ⊗ pr(e i) .

By relations (3.3), we have ur(e j) j′us(e j)i′ur(e j) j′ = 0 for (i′ , j′) ∉ E. _is yields

m

∑
i=1

ur(e j)r(e i)us(e j)s(e i)ur(e j)r(e i) ⊗ pr(e i) =
n

∑
i′ , j′=1

ur(e j) j′us(e j)i′ur(e j) j′ ⊗ p j′ .

Using relations (3.2), we obtain∑n
i=1 us(e j)i′ = 1, and thus

(s′e j)
∗s′e j =

n

∑
i′ , j′=1

ur(e j) j′us(e j)i′ur(e j) j′ ⊗ p j′ =
n

∑
j′=1

ur(e j) j′ ⊗ p j′ = p′r(e j) .

4.1.3 We Have ∑ j∶s(e j)=v s
′
e j(s

′
e j)

∗ = p′v for s−1(v) ≠ ∅.

Using relations (3.1), we get for v ∈ V with s−1(v) /= ∅:

∑
j∈{1,. . . ,m}
s(e j)=v

s′e j(s
′
e j)

∗
= ∑

j∈{1,. . . ,m}
s(e j)=v

m

∑
i , l=1

uvs(e l )ur(e j)r(e l )ur(e j)r(e i)uvs(e i) ⊗ se l s
∗
e i

=
m

∑
l=1

∑
i∈{1,. . . ,m}
r(e i)=r(e l )

uvs(e l )( ∑
j∈{1,. . . ,m}
s(e j)=v

ur(e j)r(e l ))uvs(e i) ⊗ se l s
∗
e i .

Now,

∑
j∈{1,. . . ,m}
s(e j)=v

ur(e j)r(e l ) = ∑
q∈V
(v ,q)∈E

uqr(e l ) ,

and for q ∈ V with (v , q) ∉ E, we have uvs(e l )uqr(e l ) = 0 by relations (3.4). _us, for
any l ∈ {1, . . . ,m}, we have using relations (3.2)

uvs(e l ) ∑
q∈V
(v ,q)∈E

uqr(e l ) = uvs(e l ) ∑
q∈V

uqr(e l ) = uvs(e l ) ,

and hence

∑
j∈{1,. . . ,m}
s(e j)=v

s′e j(s
′
e j)

∗
=

m

∑
l=1

∑
i∈{1,. . . ,m}
r(e i)=r(e l )

uvs(e l )uvs(e i) ⊗ se l s
∗
e i .
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Since Γ has no multiple edges by assumption, r(e i) = r(e l) and s(e i) = s(e l) imply
that e i = e l . We thus infer, using relations (3.1) that

∑
j∈{1,. . . ,m}
s(e j)=v

s′e j(s
′
e j)

∗
=

m

∑
l=1

uvs(e l ) ⊗ se l s
∗
e l

Now, for V ′ ∶= {q ∈ V ∣ s−1(q) /= ∅}, we have, using the relations in C∗(Γ),
m

∑
l=1

uvs(e l ) ⊗ se l s
∗
e l = ∑

q∈V ′

∑
l∈{1,. . . ,m}
s(e l )=q

uvq ⊗ se l s
∗
e l = ∑

q∈V ′

uvq ⊗ pq

Since we know that uvq = 0 for q ∉ V ′ by Lemma 3.7, we ûnally conclude that

∑
j∈{1,. . . ,m}
s(e j)=v

s′e j(s
′
e j)

∗
=

n

∑
q=1

uvq ⊗ pq = p′v .

_is settles the existence of α.

4.2 The Map α is a Left Action and β is a Right Action.

We only prove this claim for α, the proof for β being analogous.

4.2.1 (∆⊗ id) ○ α = (id⊗α) ○ α Holds and α is Unital.

Using relations (3.3), this is straightforward to check.
It remains to show that

S ∶= span α(C∗(Γ))(C(G+
aut(Γ)) ⊗ 1)

is dense in C(G+
aut(Γ)) ⊗ C∗(Γ), which we will do in the sequel.

4.2.2 The Elements 1⊗ p l , 1⊗ se l and 1⊗ s∗e l are in S.

Using relations (3.1) and (3.2), we infer

S ∋
n

∑
i=1
α(p i)(u i l ⊗ 1) =

n

∑
i=1

n

∑
j=1

u i ju i l ⊗ p j =
n

∑
i=1

u i l ⊗ p l = 1⊗ p l .

Moreover, for e l ∈ E we get, using relations (3.1) and V ′ ∶= {v ∈ V ∣ s−1(v) /= ∅},

∑
v∈V ′

∑
j∈{1,. . . ,m}
s(e j)=v

α(se j)(ur(e j)r(e l )uvs(e l ) ⊗ 1)

= ∑
v∈V ′

∑
j∈{1,. . . ,m}
s(e j)=v

(
m

∑
k=1

uvs(ek)ur(e j)r(ek)ur(e j)r(e l )uvs(e l ) ⊗ sek)

= ∑
v∈V ′

⎛

⎝
∑

k∈{1,. . . ,m}
r(ek)=r(e l )

uvs(ek)( ∑
j∈{1,. . . ,m}
s(e j)=v

ur(e j)r(e l ))uvs(e l ) ⊗ sek
⎞

⎠
.
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We proceed in a similar way as in Step 4.1.3. By relations (3.4), we know that
uqr(e l )uvs(e l ) = 0 for (v , q) ∉ E. _us, by relations (3.1) and (3.2) and using that Γ
has no multiple edges, we obtain

∑
v∈V ′

∑
j∈{1,. . . ,m}
s(e j)=v

α(se j)(ur(e j)r(e l )uvs(e l ) ⊗ 1)

= ∑
v∈V ′

⎛

⎝
∑

k∈{1,. . . ,m}
r(ek)=r(e l )

uvs(ek)(
n

∑
q=1

uqr(e l ))uvs(e l ) ⊗ sek
⎞

⎠

= ∑
v∈V ′

( ∑
k∈{1,. . . ,m}
r(ek)=r(e l )

uvs(ek)uvs(e l ) ⊗ sek)

= ∑
v∈V ′

uvs(e l ) ⊗ se l .

Finally, Lemma 3.7 yields uvs(e l ) = 0 for v ∉ V ′. Hence, using relations (3.2),

S ∋ ∑
v∈V ′

∑
j∈{1,. . . ,m}
s(e j)=v

α(se j)(ur(e j)r(e l )us(e j)s(e l ) ⊗ 1) =
n

∑
i=1

u i s(e l ) ⊗ se l = 1⊗ se l .

Deûne V ′′ ∶= {v ∈ V ∣ r−1(v) /= ∅}. Similar to the computations above, we get

S ∋ ∑
v∈V ′′

∑
j∈{1,. . . ,m}
s(e j)=v

α(s∗e j)(us(e j)s(e l )ur(e j)r(e l ) ⊗ 1) = 1⊗ s∗e l .

4.2.3 If 1⊗ x , 1⊗ y ∈ S, then also 1⊗ xy ∈ S.

_e remainder of the proof of Step 4.2 consists in general facts for actions of compact
matrix quantum groups.

We can write 1⊗ x ∈ S and 1⊗ y ∈ S as

1⊗ x =
l

∑
i=1
α(z i)(w i ⊗ 1), 1⊗ y =

k

∑
j=1
α(t j)(v j ⊗ 1)

for some z i , t j ∈ C∗(Γ) and w i , v j ∈ C(G+
aut(Γ)). _erefore,

1⊗ xy =
l

∑
i=1
α(z i)(w i ⊗ 1)(1⊗ y) =

l

∑
i=1
α(z i)(1⊗ y)(w i ⊗ 1)

=
l

∑
i=1

k

∑
j=1
α(z i t j)(v jw i ⊗ 1) ∈ S.

4.2.4 S is dense in C(G+
aut(Γ)) ⊗ C∗(Γ).

Summarizing, we get that 1 ⊗ w ∈ S for all monomials w in p i , se j , s∗e j , 1 ≤ i ≤ n,
1 ≤ j ≤ m. Since α is unital, we also have

C(G+
aut(Γ)) ⊗ 1 ⊆ α(C∗(Γ))(C(G+

aut(Γ)) ⊗ 1) ⊆ S.
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We conclude that S is dense in C(G+
aut(Γ)) ⊗ C∗(Γ), which settles Step 4.2.

4.3 The Quantum Group G+
aut(Γ) Acts Maximally on C∗(Γ)

For proving the maximality, let G = (C(G), u) be another compact matrix quantum
group acting on C∗(Γ) by α′∶C∗(Γ) → C(G) ⊗ C∗(Γ) and β′∶C∗(Γ) → C(G) ⊗
C∗(Γ) in the way G+

aut(Γ) acts on C∗(Γ) via α and β. We want to show that there is a
*-homomorphism C(G+

aut(Γ)) → C(G) sending generators to generators. _us, we
need to compute that the generators u i j of C(G) fulûll the relations of C(G+

aut(Γ)).

4.3.1 The Relations (3.1) Hold in C(G).

_e equation
n

∑
k=1

u ik ⊗ pk = α′(p i) = α′(p i)
∗
=

n

∑
k=1

u∗ik ⊗ pk

yields u i j = u∗i j a�er multiplying from the le� with 1⊗ p j . We also have

n

∑
i=1

u jiuki ⊗ p i =
n

∑
i , l=1

u jiukl ⊗ p i p l = α′(p j)α′(pk) = δ jkα′(p j) =
n

∑
i=1
δ jku ji ⊗ p i ,

from which we infer u jiuki = δ jku ji . Using β′, we also obtain u i ju ik = δ jku i j .

4.3.2 The Relations (3.2) Hold in C(G).

From
n

∑
k=1

1⊗ pk = 1⊗ 1 = α′(1) =
n

∑
i=1
α′(p i) =

n

∑
k=1
(

n

∑
i=1

u ik) ⊗ pk

we deduce∑n
i=1 u ik = 1, and likewise∑n

i=1 uki = 1 using β′.

4.3.3 The Relations (3.3) Hold in C(G).

Using s∗e l se t = δ l t pr(e l ) (see Section 2.3) and relations (3.1) in C(G), we obtain for any
j,

n

∑
q=1

ur(e j)q ⊗ pq = α′(pr(e j)) = α
′
(s∗e j se j)

=
m

∑
l ,t=1

ur(e j)r(e l )us(e j)s(e l )us(e j)s(e t)ur(e j)r(e t) ⊗ s∗e l se t

=
m

∑
l=1

ur(e j)r(e l )us(e j)s(e l )ur(e j)r(e l ) ⊗ pr(e l ) .

Multiplication by 1⊗ pk yields

ur(e j)k = ∑
l∈{1,. . . ,m}
r(e l )=k

ur(e j)kus(e j)s(e l )ur(e j)k .
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If r−1(k) = ∅, then ur(e j)k = 0, and hence us(e j)iur(e j)k = ur(e j)kus(e j)i = 0 for all
i ∈ V .

Otherwise, if r−1(k) /= ∅, we use relations (3.1) and (3.2) in C(G) and get

∑
l∈{1,. . . ,m}
r(e l )=k

ur(e j)kus(e j)s(e l )ur(e j)k = ur(e j)k = u2
r(e j)k =

n

∑
i=1

ur(e j)kus(e j)iur(e j)k ,

and therefore

∑
i∈V
(i ,k)∉E

ur(e j)kus(e j)iur(e j)k = 0.

Since

ur(e j)kus(e j)iur(e j)k = (us(e j)iur(e j)k)
∗us(e j)iur(e j)k

holds, the above is a vanishing sum of positive elements, and hence each summand
vanishes. _is yields us(e j)iur(e j)k = 0 for all (i , k) ∉ E.

4.3.4 The Relations (3.4) Hold in C(G).

_e argument is analogous to the one for proving relations (3.3) when replacing α′ by
β′.

_e proof of the main theorem is complete.

Remark 4.2 Let Γ be a ûnite graph with n vertices V = {1, . . . , n} and m edges
E = {e1 , . . . , em}. In [5], Bichon showed thatG∗

aut(Γ) is the quantum symmetry group
of Γ in his sense, where

βV ∶C(V) Ð→ C(G∗
aut(Γ)) ⊗ C(V), g i z→

n

∑
k=1

uki ⊗ gk ,

βE ∶C(E) Ð→ C(G∗
aut(Γ)) ⊗ C(E), f j z→

m

∑
l=1

us(e l )s(e j)ur(e l )r(e j) ⊗ f l ,

deûne actions of G∗
aut(Γ) on C(V) and C(E), respectively. _ose actions inspired us

to deduce what an action of a compact matrix quantum group on C∗(Γ) should look
like. However, note that edges in the commutative C∗-algebra C(E) of continuous
functions on E are represented as projections unlike in the case of C∗(Γ). _ere-
fore, the quantum symmetry group of C∗(Γ) is G+

aut(Γ) rather than G∗
aut(Γ). On the

other hand, if we consider the quotient of C∗(Γ) by the relations se = s∗e , its quantum
symmetry group is G∗

aut(Γ). Indeed, selfadjointness of se yields
m

∑
l=1

us(e j)s(e l )ur(e j)r(e l ) ⊗ se l = α(se j) = α(se j)
∗
=

m

∑
l=1

ur(e j)r(e l )us(e j)s(e l ) ⊗ se l ,

from which we obtain relations (3.5) by multiplication with (1⊗ s∗e i ) from the le�.
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