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Quantum Symmetries of Graph C*-algebras
Simon Schmidt and Moritz Weber

Abstract. The study of graph C* -algebras has a long history in operator algebras. Surprisingly, their
quantum symmetries have not yet been computed. We close this gap by proving that the quantum
automorphism group of a finite, directed graph without multiple edges acts maximally on the cor-
responding graph C*-algebra. This shows that the quantum symmetry of a graph coincides with
the quantum symmetry of the graph C*-algebra. In our result, we use the definition of quantum
automorphism groups of graphs as given by Banica in 2005. Note that Bichon gave a different defi-
nition in 2003; our action is inspired from his work. We review and compare these two definitions
and we give a complete table of quantum automorphism groups (with respect to either of the two
definitions) for undirected graphs on four vertices.

Introduction

Symmetry constitutes one of the most important properties of a graph. It is captured
by its automorphism group

Aut(T):={0 €S, |oe=¢e0}CS,,

where T = (V,E) is a finite graph with n vertices and no multiple edges, ¢ «
M, ({0,1}) is its adjacency matrix, and S, is the symmetric group. In modern math-
ematics, notably in operator algebras, symmetries are no longer described only by
groups, but by quantum groups. In 2005, Banica [1] gave a definition of a quantum
automorphism group of a finite graph within Woronowicz’s theory of compact matrix

quantum groups [20]. In our notation, G, (T) is based on the C*-algebra

C(Gu(I))

aut

= C(S))(ue = eu)
= C*(uij,i,jzl,...,n ‘ Uij = u:, = “%jaZuil =1= Zulj’RBan);
1 1

where S} is Wang’s quantum symmetric group [18] and Rp,, are the relations

Z Uik€kj = zfikukj-
k k
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Earlier, in 2003, Bichon [5] defined a quantum automorphism group G, (T) via

aut

C(Gaue(D)) =
C*(u,-j,i,j =L..n|uj=uj=uf, y Uy =1= ZulstBic)7
1 1

where Rg;. are the relations
; Uik€kj = ; EikUkjs  Us(e)s(f)Ur(e)r(f) = Ur(e)r(f)Us(e)s(f) for e, f € E,

and r:E - V and s: E — V are range and source maps, respectively. We immediately
see that
Aut(T) € G (T) € GI(T)

aut

holds, in the sense that there are surjective *-homomorphisms:

C(Giu(I) — C(Gu(I)) —  C(Auy(I))

oy — Ui — (gHgij)

Relatively little is known about these two quantum automorphism groups of graphs,
and we refer the reader to Section 3.4 for an overview on all published articles in this
area.

Graph C*-algebras in turn are well-established objects in operator algebras. They
emerged from Cuntz and Krieger’s work [8] in the 1980’s and have become one of the
most important classes of examples of C*-algebras; see, for instance, Raeburn’s book
for an overview [15]. Given a finite graph T’ = (V, E) the associated graph C*-algebra
C*(T) is defined as

C*(T) := C"(pv,ve V,se,e €E| py=pi=pi, pypw=0forv#w,
;8¢ = Pr(e)s Z SeS, = Py if s7'(v) # @).

e€E
s(e)=v

A natural question is then: what is the quantum symmetry group of the graph C*-
algebra, and is it one of the above two quantum automorphism groups of the underly-
ing graphs? The answer is that it is given by the one defined by Banica. Note however,
that Bichon’s definition has its justification in other contexts, such as in [4, 6] or in
the recent work by Speicher and the second author [16]. Moreover, Bichon’s work [5]
inspired the formulatation our main theorem; see also Remark 4.2.

1 Main Result

Intuitively speaking, our main result is that the quantum symmetry of a finite graph
without multiple edges coincides with the quantum symmetry of the associated graph
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C*-algebra. In other words, the following diagram is commutative.

. I'—C*(T)
finite graphs graph C*-algebras

m ww*(r»

quantum symmetry groups

More precisely, we have the following result.

Main Theorem  Let T be a finite graph with n vertices V = {1,...,n} and m edges
E ={ey,..., en} having no multiple edges. The maps

@ C*(I) — C(Gy (1)) ® C*(D),

n

Pi— D Uik ® ks 1<i<n,
k=1
m

Se > 2 Us(ey)s(en)Ur(ey)r(er) ® Ser 1<j<m,
I=1

and
B:C*(T) — C(Gu(T)) ® C*(T),

n
pi— D Uki ® ks 1<i<n,
k=1
m
Se; — Zus(e,)s(e]—)ur(e,)r(e]—) ® Se;» 1<j<m

I=1

define a left and a right action of GJ,,(T') on C*(T), respectively. Moreover, whenever
G is a compact matrix quantum group acting on C*(T') in the above way, we have
G < G}(T). In this sense, the quantum automorphism group G, (T) of T is the

aut
quantum symmetry group of C*(T); see also Remark 4.1.

We also provide some tools for comparing and dealing with the two definitions of
quantum automorphism groups of graphs, G}, (T) and G}, (T'), notably depending
on the complement I'° of T; see Section 3.5. Moreover, we provide a list of all Aut(T),
G} (T) and G} (T) for undirected graphs I on four vertices, having no multiple

edges and no loops; see Section 3.6.
2 Preliminaries

2.1 Graphs

We fix some notation for graphs used throughout this article. A graph T = (V,E) is
finite, if the set V of vertices and the set E of edges are finite. We denote by r:E — V
the range map and by s: E — V the source map. A graph is undirected if for every e € E,
thereis a f € E with s(f) = r(e) and r(f) = s(e); it is directed otherwise. Elements
e € E with s(e) = r(e) are called loops. A graph without multiple edges is a directed
graph where there areno e, f € E, e # f, such that s(e) = s(f) and r(e) = r(f). For
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a finite graph T = (V,E) with V = {1,..., n}, its adjacency matrix ¢ € M, (Ny) is
defined as ¢;; = #{e € E | s(e) = i,r(e) = j}. Here Ny = {0,1,2,...}. Throughout
this article we restrict to finite graphs having no multiple edges.

IfT = (V, E) isadirected graph without multiple edges, we denote by I'“ = (V, E")
the complement of T', where E' = (V x V)\E. Within the category of graphs having
no loops, the complement I'¢ is defined using E' = (V x V)\(Eu {(i,i); i € V}).

2.2 Automorphism Groups of Graphs

For a finite graph T = (V, E) without multiple edges, a graph automorphism is a bi-
jective map o: V' — V such that (¢(i),0(j)) € E if and only if (i, j) € E. In other
words, €5(i)o(j) = 1 if and only if &;; = 1. The set of all graph automorphisms of '
forms a group, the automorphism group Aut(T'). We can view Aut(T') as a subgroup
of the symmetric group S, if I has n vertices:

Aut(T)={0 €S, |oe=¢e0}CS,.
2.3 Graph C~-algebras

The theory of Graph C*-algebras has its roots in Cuntz and Krieger’s work [8] in 1980.
Nowadays, it forms a well-developed and very active part of the theory of C* -algebras;
see [15] for an overview or [9] for recent developments. For a finite, directed graph
I = (V, E) without multiple edges, the graph C*-algebra C*(T) is the universal C*-
algebra generated by mutually orthogonal projections p,, v € V and partial isometries
Se, € € E such that

(i) s7se = pr(e) foralle € E,
(il) Py = Yeepis(e)=v Sess forevery v e Vwith s7'(v) # @.
It follows immediately that s;s; = 0 for e # f and 3",y p, = 1hold true in C*(T).

2.4 Compact Matrix Quantum Groups

Compact matrix quantum groups were defined by Woronowicz [19,20] in 1987. They
form a special class of compact quantum groups; see [13,17] for recent books. A com-
pact matrix quantum group G is a pair (C(G), u), where C(G) is a unital (not neces-
sarily commutative) C*-algebra that is generated by u;j, 1 < i, j < n, the entries of a
matrix u € M, (C(G)). Moreover, the *-homomorphism A: C(G) - C(G) ® C(G),
Uij = Yjo Uik ® ug; must exist, and u and its transpose u' must be invertible.

Example 2.1 Consider the quantum symmetric group S;: = (C(S}), u), as defined
by Wang [18] in 1998. It is the compact matrix quantum group given by

C(SH) = c*(u,-,-

n n
_k 2 1 ..
uij—u,-j—uij,zuil—1—zu”foralllgz,]§n).
=1 =1

One can show that the quotient of C(S;;) by the relations that all #;; commute is
exactly C(S,). Moreover, the symmetric group S,, can be viewed as a compact matrix
quantum group S, = (C(S,),u), where u;;:S,, - C are the evaluation maps of the
matrix entries. This justifies the name “quantum symmetric group”
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If G = (C(G),u) and H = (C(H),v) are compact matrix quantum groups with
u e M,(C(G)) and v € M,(C(H)), we say that G is a compact matrix quantum
subgroup of H if there is a surjective *-homomorphism from C(H) to C(G) map-
ping generators to generators. In this case we write G ¢ H. For example, S, € S;.
The compact matrix quantum groups G and H are equal as compact matrix quantum
groups, writing G = H, if wehave G ¢ Hand H ¢ G.

2.5 Actions of Quantum Groups

Let G = (C(G), u) be a compact matrix quantum group and let B be a C*-algebra. A
left action of G on B is a unital *-homomorphism a: B -~ C(G) ® B such that

(i) (A®id)ca=(id®a)oa,

(i) «(B)(C(G)®1) islinearly dense in C(G) ® B.

A right action is a unital *-homomorphism f: B - C(G) ® B with
(i) ((FoA)®id))opf=(id®p)op,

(i) PB(B)(C(G) ®1) islinearly dense in C(G) ® B,

where F is the flip map:

F:C(G)®C(G) > C(G)®C(G), a®b~b®a.

Note that in some articles (for instance in [18]), the property (ii) is replaced by
(ii") (e®id)oa=1id,
(iii") there is a dense *-subalgebra of B such that « restricts to a right coaction of the
Hopf *-algebra on the *-subalgebra.

One can show that (ii") and (iii’) are equivalent to (ii); see [14].
2.6 Quantum Symmetry Group of » Points

According to Wang’s work [18], we know that S (from Example 2.1) is the quantum
symmetry group of n points in the sense that

(i) S; acts from the left and right on
C*(p-epu | pi=pi = ph Y p1=1)
1

by a(p;) := Yiq uik ® px and B(p;) := S, uki ® pr, respectively,
(ii) S, is maximal with these actions; i.e., any other compact matrix quantum group
with actions defined as a and f3 is a compact matrix quantum subgroup of S;.

See also [11] for similar questions around quantum symmetries.

3 Quantum Automorphism Groups of Graphs

Wang’s work in the 1990’s was the starting point of the investigations of quantum sym-
metry phenomena for discrete structures (within Woronowicz’s framework). Note
that n points can be viewed as the totally disconnected graph on n vertices. A decade
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later, Banica and Bichon extended Wang’s approach to a theory of quantum automor-
phism groups of finite graphs. In the sequel, we restrict our attention to finite graphs
having no multiple edges.

3.1 Bichon’s Quantum Automorphism Group of a Graph
In 2003, Bichon [5] defined a quantum automorphism group as follows.

Definition 3.1 LetT = (V,E) be a finite graph with n vertices V = {1,...,n}
and m edges E = {e1,...,en}. The quantum automorphism group G (T) is the
compact matrix quantum group (C(G},,(T)),u), where C(G},,(T)) is the universal
C*-algebra with generators u;j, 1< i, j < n and relations

B wij=uj, ik = Okt Wjitlki = Ojkji, 1<i,j,k<n,
(B2 Ywuu=1=> u;, 1<i<n,
=1 =1
(3.3) Us(ej)iltr(ej)k = Ur(ej)kUs(ej)i = 0, ej € E, (i: k) ¢E,
(3:4)  Uis(e;)Ukr(ej) = Ukr(e;)Uis(e;) = 05 ej€E,(i,k) ¢ E,
(3:5) Us(ep)s(en) tr(ep)r(er) = Ur(ejyr(er) Us(e;)s(er)> ej el € E.
In Bichon’s original definition, there is actually another relation that is implied by
the others:
m m
(3.6) IE; Us(er)s(ep) Ur(en)ries) = 1= IE; Us(ep)s(en) r(ep)r(er): ejeE

Indeed, relations (3.6) are implied by relations (3.2), (3.3), and (3.4):
; Us(er)s(ep) Yr(enr(e;) = ;1 Hig(ey) k(o) = Z; tistep) ( kZl kr(ey)) =1

3.2 Banica’s Quantum Automorphism Group of a Graph
Two years later, Banica [1] gave the following definition.

Definition 3.2 LetT = (V, E) be a finite graph with n vertices and adjacency matrix
e € M, ({0,1}). The quantum automorphism group G/ (T') is the compact matrix
quantum group (C(G;(T)),u), where C(G/ . (T)) is the universal C*-algebra with
generators u;j,1 < i, j < n and relations (3.1), (3.2) together with ue = eu, which is

nothing but 3>y uirexj = Xy ixtix;-
3.3 Link Between the Two Definitions

It is easy to see ([10, Lemma 3.1.1] or [16, Lemma 6.7]) that Banica’s definition can be
expressed as

C(Gyu(T)) = C*(u;j | relations (3.1)-(3.4) hold).
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We thus have
Aut(T) € Gy (T) € Gy (T)

in the sense of compact matrix quantum subgroups; see Section 2.4. Equality holds
if C(G},(T)) and C(G;,(T)) are commutative. Moreover, note that (see Example
2.1):

C(S,) = C*(u;j | relations (3.1) and (3.2) hold).
Example 3.3 LetI be the complete graph (i.e., E = V x V). Then
Aut(T) = Gy (T) = Su,  Glu(T) =S,
For its complement I'“ (i.e., E = &), we have
Aut(T) =S, Gou(T) = G (T°) = S,
3.4 Review of the Literature on Quantum Automorphism Groups of Graphs

At the moment there are only few articles about quantum automorphism groups of
graphs. Some results are the following. In [6], Bichon defined the hyperoctahedral
quantum group and showed that this group is the quantum automorphism group of
some graph. Banica computed the Poincaré series of G (') for homogenous graphs
with less than eight vertices in [1]. Banica, Bichon, and Chenevier considered circu-
lant graphs having p vertices for p prime in [3]. They proved that G} ,(T) = Aut(T)
if the graph T does fulfill certain properties. Banica and Bichon investigated G, (T)
for vertex-transitive graphs of order less or equal to eleven in [2]. They also computed
G, (T) for the direct product, the Cartesian product, and the lexicographic product
of specific graphs. Chassaniol also studied the lexicographic product of graphs in
[7]. In her Ph.D. thesis [10], Fulton studied undirected trees I' such that Aut(T) =
Ty x Ly % - - x Ly, where we have k kopies of the cyclic group Z, = Z/27. She proved
that Aut(T) = G (T) = GJ(T) for k =1and Aut(T') # G,(T) = GJ,,(T) for k > 2.
See also [4,12] for links to quantum isometry groups.

3.5 Comparing with the Complement of the Graph

As can be seen from Section 3.4, the theory of quantum automorphism groups of
graphs is still in its infancy. We now provide some basic results on the link between
G}, (T) and G, (T°). Note that while we have

aut

Aut(T) = Aut(T°) and Gl (T) = G, (T9)

for all graphs I’ (using ere = A — er for the adjacency matrices, with A € M, ({1}) the
matrix filled with units, and uA = A = Au by relation (3.2)), we may have

G:ut(r) ?é G:ut(rc)>

for instance, when I' is the complete graph; see Example 3.3.

Lemma 3.4 If G}, (T) € G}, (T°), then G}, (T) = Aut(T).
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Proof Relation (3.5) in C(G;,(T¢)) implies that u; and uj commute in
C(G},(T)) whenever (i, j) ¢ E and (k,1) ¢ E. Together with relations (3.3), (3.4),
and (3.5) in C(G},(T)), this yields commutativity of all generators. [ |

Lemma 3.5 IfG},(T°) = G5, (T°), then G} (T) = Aut(T).

Proof We have G;,(T) ¢ G}, (T) = G/,(T°) = G},.(T°) and apply Lemma 3.4.

The next lemma shows that the quantum automorphism groups of a graph without
loops does not change if we add those.

Lemma 3.6 LetT = (V,E) be a finite graph without loops. Consider I’ = (V,E’)
with E' = Eu{(i,i),i € V}. The following hold:

(1) aut(r) Gaut(r/)’
(11) G:ut(r) Gaut(r,)'

Proof For (i), we use erv = 1+ ¢r, where 1 is the identity matrix in M, ({0,1}). Thus,
uer = eru is equivalent to uer = er/u.

For (ii), all we need to check is that w5, Uir(e;) = Uir(e;)Uis(e;) 1 fulfilled in
C(G;,(T)) forall i € V, e; € E, which is true due to relation (3.1). [ |

3.6 Quantum Automorphism Groups on Four Vertices

For a small number of vertices of undirected graphs, a complete classification of

G;.(T) and G, (T) is possible. For n € {1,2,3}, we have C(S;) = C(S,), hence
Aut(T) = G;,(T) = G£,(T). For n = 4, we now provide a complete table for graphs
having no loops. We restrict to undirected graphs in order to keep it simple. We need
the following lemma to compute the quantum automorphism groups.

Lemma 3.7 LetT = (V,E) be a finite graph with V = {1,...,n} and let ej € E. Let
g € V with s™(q) = @. For the generators of C(G},(T)), we have

Ugs(e;) = 0= Us(e;)q-

Proof By relations (3.2) and (3.4), we get
tgs(ep) = gs(ep( Zl irgep) = Zl Ugs(e) ir(e;) = 05
i= i=
because (g,1) ¢ E forall i € V. Likewise, we get u(,;)q = 0. [ |

In the following, D4 denotes the dihedral group defined as

Dy =(x,y|x* =y = (xy)" = o),

Hj denotes the hyperoctahedral quantum group defined by Bichon in [6], and Z,
denotes the cyclic group Z/2Z. The quantum group Z, * Z, = (C*(Zy * Z,), u) is
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understood as the compact matrix quantum group with matrix

p 1-p 0 0
1-p p 0 0

0 0 q 1-¢g

0 0 1-¢g q
where C*(Z, * Z,) is seen as the universal unital C*-algebra generated by two pro-
jections p and g. Recall that Aut(T) = Aut(T°) and G/ (T) = G}, (T°), where I'*
is the complement of I' within the category of graphs having no loops. Parts of the
following table were also computed in [2,6].

>

Theorem 3.8 Let T be an undirected graph on four vertices having no loops and no
multiple edges. Then we have the following table:

I Au(l)  Gou(T) G Guu(D)

[ ] [ ]
w > IE S, S St St

o o — —

(2) & ZZ X Zz ZZ X Zz Zz * ZZ Zz * Zz
[ L

o[ oz Z A 7
oo

) '] o D, Hf  Hj
o ©®

O Z N S S 55
©[]1]] = 7, Z, Z,

Proof For every row of the table, we compute G}, (T'), and we show that G}, ,(T) =

G2, (T). We then obtain G, (I'°) by using Lemma 3.5. We label the points of the
graphs as follows:

(1) Obvious, see Example 3.3.
(2) Let (uij)1<i,j<4 be the generators of C(G;(T)). Lemma 3.7 yields

U3l = U3y = Ug) = Ugp = Uz = Upz = Uyg = Uy = 0.

Using relations (3.2), we deduce that

Uun 1- un 0 0
1- Uun un 0 0
u=
0 0 Uss 1- Uss
0 0 1- Uiz Ussz
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Thus, G, (T) = Z,*Z,. Since ujjug; = ugu;; holds for (i,k),(j,1) «
{(1,2),(2,1)} in C(G . (T)), we get Gy (T) = Gy (T).
(3) Lemma 3.7 yields

Ul = Uzg = U3zg = Ugg = Ugp = Ug3 = 0.

This implies that G}, (T) ¢ S7 = S3; thus, GJ,,(T) is commutative, and hence
Giue(T) = Gl (1) = Au(T) = 7.

(4) Let A and A’ be the comultiplication maps of G,,,(T') and Hj, respectively. We
first show that these two quantum groups coincide as compact quantum groups,

i.e., there is a *-isomorphism

¢: C(H; ) — C(Giu(T))

aut
suchthat A" o ¢ = (9 ® ¢) 0 A.

Step 1: The map ¢ exists and we have A’ o ¢ = (¢ ® ¢) o A.
From eu = ue we get

Un Uiz Uiz Uig
Up Un Uiy Uz
Uzl U3z U3z U3y
Usp U3l U3g U33

Define vy; := uy — t1z, V12 = U1z — Uig, Va1 = U31 — U3, and vy = U3z — uzg. One
can compute that v;;, i, j = 1, 2 fulfill the relations of C(H; ), and with the universal
property we get a *-homomorphism ¢: C(H; ) - C(G;,(T)). Since A’o ¢ = (¢ ®

@) o A also holds, we get that G/ (T) is a quantum subgroup of H;.

aut

Step 2: The map ¢ is a *-isomorphism.
Let (vi)i,j-1,2 be the generators of C(Hj ). Define

2 2
. . Vi1 + V1 . . Vi1 — Vi
Un = Uz = > > Uz = Up1 = 72 >
2 2
- - Vip T V12 - - V2 — V12
Uiz = Upg = 72 > Ulg = U3 = 72 >
2 2
. L Vi + Vo1 . . V51— Va
U3 = Uygp = 5 Uqy = U3 2= -5
2 2
- . Vi, + V22 - - Vyy = V22
U3z = Ugq = 72 > U3g 1= Uyg3 = 72

One can show that the (u;;) 1<, j<4 fulfill the relations of C(G;,;(T)). The universal

aut
property now gives us a *-homomorphism ¢’: C(G/,(T)) — C(Hj ) and ¢’ is the
inverse of ¢ and vice versa.

Step 3: We have G/ (T) = G, (T).
We have seen in Step 1 that

Un = Uzp, Uip = Upl, U1z = U4,  Uig = U3,

U3l = Ugp, U3y = Uy, U3z = Ugyg, U3g = Uy3
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and therefore we get
UijUgl = Uy = Ukilij
forall (i,k), (j,1) € E. Thus, G},,(T) = G;,(T).

aut aut
(5) We conclude as in (3).
(6) Some direct computations using eu = ue and relations (3.2) show

Ussz 1- Uss 0 0
1- Ussz Uss 0 0
u=
0 0 Uss 1- Uiz
0 0 1- Ussz Uss
Thus G, (T) is commutative. [ |

4 Proof of the Main Result

We now prove the main result of this article (see Section 1) for a finite graph I' with
vertices V = {1,...,n} and edges E = {ey, ..., e, } having no multiple edges.

Remark 4.1 We define the quantum symmetry group QSym(C*(T)) of C*(T) to
be the maximal compact matrix quantum group G acting on C*(T) by a: C*(T) —
C(G) ® C*(T') and B:C*(T) - C(G) ® C*(T) as defined in the statement of our
Main Theorem. We thus have to show that G, (T') acts on C*(T') via a and f (see
Sections 4.1 and 4.2) and that it is maximal with these actions (see Section 4.3).

4.1 Existence of the Maps « and j3

In order to prove that

a: C*(I) — C(Gyy(T)) ® C*(T)

n
pi > =) Uik ® Prs 1<i<n
k=1
m
/ .
Sej T Se; = D Us(ep)s(en) Ur(ep)r(er) ® Sers I<j<m
=1

defines a *-homomorphism, all we have to show is that the relations of C*(T') hold
for p; and s, . We can then use the universal property of C*(I'). The proof for the
existence of f3 is analogous.

4.1.1 The p’ are Mutually Orthogonal Projections.

Obviously, pi = (p})* holds. Moreover, using pxp; = 8k px and relations (3.1), we
have

n n
Pipi= D wiktji ® pkpr = ) iktjk ® px = 84jpi.
k=1

k,1=1
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4.1.2 The s;, are Partial Isometries with (s;,)*s; = p,r(e,-)'

Using s} s.i = 0i1Pr(e;) (see Section 2.3) and relations (3.1), we have

m
(S,ej)*sgj = ZZ ur(ej)r(el)us(ej)s(el)us(e,-)s(e,-)ur(ej)r(ei) ® SZ,Se,-

,i=1

m
= D Ur(e))r(en) Us(ey)s(en) Ur(ep)r(es) ® Pr(er)-
i=1

By relations (3.3), we have u, () jrths(e;)irthr(e;)j» = 0 for (i’, ") ¢ E. This yields

Z; Ur(ej)r(en) Us(ey)s(e) Hr(ejr(er) ® Pr(e) = 2 1”r(e,-)j'“s(e,-)i'“r<e,->j' ®pj-
i= i’,j'=

Using relations (3.2), we obtain }./"; u(,,)i» = 1, and thus

n n
A A A
(56,)7Se; = D a(ep)jrths(ep)ittn(ey)i ® Py = ), Ur(ep)it @ P = Priey)-
i’,j’=l j/=1

4.1.3 We Have ¥ .(.)-, st (s¢,)" = p), for s7'(v) # .

Using relations (3.1), we get for v € V with s™'(v) # @:

Do Se(se) = X thas(entres)rien) Urer(en) Bs(er) @ SeiS,

je{l,...,m} je{1,...om} i,1=1
s(ej)=v s(ej)=v
= Z Z uvs(e,)( Z ur(ej)r(el))uvs(ei) ®5e15;-

I=1 ie{1,...,m} je{l,...,m}

r(ei)=r(er) s(ej)=v
Now,

D Urepren = 2, Ugr(e)

je{l,...,m} qev

S(epv (v2)<E

and for g € V with (v, q) ¢ E, we have u,(.,ytgr(c,) = 0 by relations (3.4). Thus, for
any ! € {1,..., m}, we have using relations (3.2)

Ups(er) D, Ugr(er) = Hvs(er) D Uaqr(er) = Us(er)»
qeVv qev

(v,q)€E

and hence

Z Slej(sfej)* = z Z Uys(e))Uvs(es) ®5e15:i~
je{l,...,m} I=1 ie{1,...,m}
s(ej)=v r(ei)=r(er)
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Since T has no multiple edges by assumption, r(e;) = r(e;) and s(e;) = s(e;) imply
that e; = e;. We thus infer, using relations (3.1) that

m
VAN *
Z Sej(sej) = Z uVS(el) ® 531561
je{1,...,m} I=1

s(ej)=v

Now, for V' := {q € V | s7'(q) # @}, we have, using the relations in C*(T),

m
IZ”VS(ez) ® S¢,5,, = Z Z Upg ® S¢S, = Z Uyg ® Pyg
-1

qeV’ le{l,...,m} qev’

Since we know that u,, = 0 for g ¢ V' by Lemma 3.7, we finally conclude that

n
Z szj(sfaj)* =Z“vq®pq=p;'
q=1

This settles the existence of «.
4.2 The Map a is a Left Action and §3 is a Right Action.

We only prove this claim for «, the proof for 8 being analogous.

4.2.1 (A®id)oa = (id®a) o a Holds and « is Unital.
Using relations (3.3), this is straightforward to check.
It remains to show that
8 = spana(C*(I))( C(G1(I)) ®1)

is dense in C(G;,(T')) ® C*(T), which we will do in the sequel.

aut
4.2.2 The Elements 1® p;,1®s,, and 1 ® s}, are in 8.

Using relations (3.1) and (3.2), we infer

8> th(pi)(uil ®1) = ZZuUuil ®pj= Zuil ®pr =11 p;.
i=1

i=1 i=1 j=1

Moreover, for e; € E we get, using relations (3.1) and V' := {v € V | s7'(v) # &},

Z Z “(Sej)(ur(e,-)r(el)uvs(el) ® 1)
veV’ je{l,...,m}

=2 X }(kZ_luvs(ekwr(ej)r(ek)W(e,-)r(e,)”vs(e,)®Sek)

= Z ( Z , uvs(ek)( ) Z }ur(Ej)r(e,)) uvs(el) ® Sek) .
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We proceed in a similar way as in Step 4.1.3. By relations (3.4), we know that
Ugr(er)Uvs(e;y = 0 for (v,q) ¢ E. Thus, by relations (3.1) and (3.2) and using that T
has no multiple edges, we obtain

> a(se;) (Ur(eyyr(er) Uvs(er) ©1)
veV’ je{l,...,m}

g
g

uVS(ek)( Z uqf(el)) uVS(el) ® Sek)
ke{1,...,m} q=1

r(ex)=r(er)

) ( D Hys(en) ys(er) ®Sek)
veV’\ ke{l,...,m}
r(ex)=r(er)

2. Hys(er) ® Sey-
veV’

Finally, Lemma 3.7 yields Uys(e;) =0 for v ¢ V'. Hence, using relations (3.2),

n
§3 2, 20 alse) (rerients(epysten ®1) = X is(er) ® e =105,
veV’ je{l,...,m} i=1
s(ej)=v

Define V" := {v € V| r"}(v) # @}. Similar to the computations above, we get
§3 2 20 alsg)us(eps(entir(enr(en ®1) = 1@,

veV" je{l1,...,m}
s(ej)=v

423 If19x,1®9 yeS§, thenalso1® xy € 8.

The remainder of the proof of Step 4.2 consists in general facts for actions of compact
matrix quantum groups.
We can write 1@ x e Sand 1® y € S as

I k
1®x =Y a(z;)(w;®1), 1®y:Z(x(tj)(vj®l)
j=1

i=1
for some z;,tj € C*(T') and w;, v; € C(G;,(T)). Therefore,

I !
loxy=Y a(z)(wi®)(1®y) = a(z;)(1® y)(w; ®1)

i=1 i=1

1 k
= D a(zit)(viwi ®1) €8,

i=1 j=1

4.2.4 Sisdensein C(G}(T))® C*(T).

aut

Summarizing, we get that 1® w € § for all monomials w in pj,se;,s;,1 < i < n,
1 < j < m. Since « is unital, we also have

C(Giu(T)) ®1ca(C*(I)) (C(Gi(T)) ®1) € 8.
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We conclude that 8 is dense in C(G,,(T')) ® C*(T), which settles Step 4.2.

aut

4.3 The Quantum Group G/, (T) Acts Maximally on C*(T)

aut

For proving the maximality, let G = (C(G), u) be another compact matrix quantum
group acting on C*(T') by «”:C*(T') - C(G) ® C*(T') and ":C*(I') - C(G) ®
C*(T) in the way G/ (T') acts on C*(T) via o and 3. We want to show that there is a

aut
*-homomorphism C(G/(T)) - C(G) sending generators to generators. Thus, we

need to compute that the generators u;; of C(G) fulfill the relations of C(G;(T)).

4.3.1 The Relations (3.1) Hold in C(G).

The equation
D ik ® pi = o (pi) = o' (pi)" = ) iy ® pi
k=1 k=1

yields u;; = u;; after multiplying from the left with 1® p;. We also have

Doujiki ® pi = Y ujitikr ® pipr = &' (pj)a’ (pr) = S’ (pj) = D Sjkuji ® pis
i=1 i,l=1 i=1

from which we infer uj;uy; = 8jxu;j;. Using ', we also obtain u;ju;; = 8jxu;;.

4.3.2 The Relations (3.2) Hold in C(G).

From
Yiepi=1el=a'(1) =Y a(pi) = 2 ( Yuu) ® pi
k=1 i1 k=1 ol

we deduce Y7 u; =1, and likewise Y7 uy; = 1 using 8.

4.3.3 The Relations (3.3) Hold in C(G).

Using s} se, = 011 Py (c,) (see Section 2.3) and relations (3.1) in C(G), we obtain for any
j)

Z:I Ur(ej)g ® Pq = ‘x,(pr(e,-)) = “,(Szjsej)
q=
m
= ur(Ej)r(el)uS(ej)S(el)us(ej)S(E:)uf(ej)r(et) ® S:,Se[
I,t=1
m
= IZ: Ur(ej)r(er)Us(ej)s(er) Yr(ej)r(er) @ Pr(er)-
=1
Multiplication by 1 ® py yields

Ur(epk = {Z Ur (e kUs(e;)s(er) Ur(e;)k-
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If r1(k) = @, then Ur(e;)k = 0, and hence ug(e)yithr(e;)k = Ur(e;)kUs(e;)i = 0 for all
ieV.
Otherwise, if ™! (k) # @, we use relations (3.1) and (3.2) in C(G) and get

n
2
Do UrepkUs(epsten Mr(epk = Ur(epk = Up(eyk = D Ur(ej kls(ep)ithr(ey)ko
16{1 ..... m} i=1
r(er)=k

and therefore

Z ur(ej)kus(ej)iur(ej)k =0.

ieV

(i,k)¢E

Since

Ur(ej)kUs(e;)iltr(e)k = (uS(Ej)iur(Ej)k)*uS(Ej)iur(Ej)k
holds, the above is a vanishing sum of positive elements, and hence each summand
vanishes. This yields u(,,)itr(c,)x = 0 forall (i,k) ¢ E.

4.3.4 The Relations (3.4) Hold in C(G).

The argument is analogous to the one for proving relations (3.3) when replacing o’ by
ﬁl

The proof of the main theorem is complete. ]

Remark 4.2 Let T be a finite graph with n vertices V = {1,...,n} and m edges
E ={ey,...,em}. In[5], Bichon showed that G}, (T) is the quantum symmetry group
of I in his sense, where

ByiC(V) — C(Go(T) ®C(V), g 3 s ® goo

k=1
m
PriC(E) — C(GL(T) @ CE).  fi— D thstesteprtenriep @ fi
-1
define actions of G;;,;(T') on C(V') and C(E), respectively. Those actions inspired us
to deduce what an action of a compact matrix quantum group on C*(T') should look
like. However, note that edges in the commutative C*-algebra C(E) of continuous
functions on E are represented as projections unlike in the case of C*(T). There-
fore, the quantum symmetry group of C*(T) is G/, (T) rather than G}, (T'). On the

other hand, if we consider the quotient of C*(T') by the relations s, = s, its quantum
symmetry group is G,,(T'). Indeed, selfadjointness of s, yields

IZ:us(e,-)s(el)ur(ej)r(el) ® S¢, = (X(Se}.) = (X(Sej)* = IZ:ur(ej)r(e,)us(e,-)s(el) ® Se;»
=1 =1
from which we obtain relations (3.5) by multiplication with (1® s, ) from the left.
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