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Summary

It is known that to every proper homogeneous Lorentz transformation
there corresponds a unique proper complex rotation in a three-dimensional
complex linear vector space, the elements of which are here called "rotors".
Equivalently one has a one-one correspondence between rotors and self-
dual bi-vectors in space-time (w-space). Rotor calculus fully exploits this
correspondence, just as spinor calculus exploits the correspondence between
real world vectors and hermitian spinors; and its formal starting point is
the definition of certain covariant connecting quantities rAkl which trans-
form as vectors under transformations in rotor space (r-space) and as
tensors of valence 2 under transformations in w-space. In the present paper,
the first of two, w-space is taken to be flat. The general properties of the
rA*i a r e established in detail, without recourse to any special representation.
Corresponding to any proper Lorentz transformation there exists an image
in r-space, i.e. an ^-transformation such that the two transformations
carried out jointly leave the xAkl numerically unchanged. Nevertheless, all
relations are written in such a way that they are invariant under arbitrary
^-transformations and arbitrary r-transformations, which may be carried
out independently of one another. For this reason the metric tensor a.AB

in r-space may be chosen arbitrarily, except that it shall be non-singular
and symmetric. A large number of identities involving the basic quan-
tities of the calculus is presented, including some which relate to com-
plex conjugated rotors rAkl, xAg. The properties of the tensor equiva-
lents of some simple irreducible rotors are investigated, after which the
r-image of improper Lorentz transformations is considered. Since sym-
metric spinors of valence 2 are also in one-one correspondence with self-
dual w-tensors one can also establish a direct correspondence between
simple rotors and symmetric spinors of valence 2 by means of appropriate
connecting quantities; and simple relations exist between the three kinds
of connecting quantities now in hand. Finally, a particular representation
is presented in detail. In a subsequent paper this work will be extended to
curved w-spaces.
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1. Introduction

The manifest covariance of physical laws is assured when they are
exhibited as equations between vectors and tensors in world-space, that
is to say in Minkowskian or Riemannian space-time, as the case may be.
In saying this the phenomenon of intrinsic spin has been disregarded.
If the latter are to be taken into account one has to introduce additionally
the vectors and tensors of a two-dimensional linear complex vector space,
those objects being collectively called "spinors". One further requires cer-
tain connecting quantities between world-tensors and spin-tensors, namely
the Pauli matrices or their generalizations. These matrices transform in
a certain way under transformations in world-space on the one hand,
and in spin-space on the other; and when the world space x is flat the two
kinds of transformations may be so geared to each other as to ensure the
numerical invariance of the connecting matrices (e.g. Corson 1953). The
reason for this state of affairs is ultimately group-theoretical: it arises from
the homomorphism of the proper homogeneous Lorentz group and the two-
dimensional unimodular group. In curved z#-space one cannot in general
find an s-image of any given ^-transformation so as to maintain the func-
tional form of the o*'"; not, at any rate, unless the w-space has some kind
of symmetry. This feature aside, spinor calculus in flat w-space extends
naturally to curved w-space; and this extension finds its most beautiful
^expression in the work of Infeld and van der Waerden (1933).

Now, the proper homogeneous Lorentz group is isomorphic with the
three-dimensional proper complex orthogonal group (e.g. Jordan, Ehlers
and Kundt 1960); and just as there is a one-one correspondence between
hermitian s-tensors of valence two and real w-vectors, so self-dual w-
tensors can be brought into one-one correspondence with the vectors of a
three-dimensional complex linear vector space. Such a space I shall call
"rotor-space" or more often simply r-space; its vectors are "rotors" or
r-vectors, its tensors r-tensors. (The name "rotor" is perhaps not very
attractive but one may think of a rotor as being naturally connected with
the "orbital rotation" of a particle, — i.e. it represents its relativistic
angular momentum, — just as a simple spinor is connected with intrinsic
spin, i.e. its "intrinsic rotation". Again, a general infinitesimal rotation in
w-space is directly determined by a rotor; cf. the end of Section 4a). Then
the object of the present work is to develop a rotor-calculus which is closely

1 For reasons which will become clear later world-space will hereafter generally be
referred to as w-space, and world vectors and tensors will be called !f-vectors and ai-tensors
respectively. Spin-space will similarly be referred to as .s-space, so that spinors will be s-
vectors or s-tensors, as the case may be. The connecting matrices ar*/"' are thus at the same
time ai-vectors and hermitian .s-tensors of valence 2. Linear transformations in w-space and
s-space can no\» be called ^-transformations and ^-transformations respectively.
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analogous to the two-spinor calculus though in principle quite independent
of it. The two main stages of this development are (i) rotor-calculus in flat
10-space, (ii) rotor-analysis in curved w-space.

Considerations involving r-space have in recent years played an
important part in the local classification of gravitational fields (e.g. Petrov
1962). Moreover, rotors have, in one guise or another, been considered
previously by many authors. Thus Peres (1962), who quotes earlier refer-
ences, calls them "three-component spinors". Andrews (1964) introduces
three skew-symmetric 4 x 4 matrices for the purpose of writing Maxwell's
equations as a single matrix equation in which the electromagnetic field
tensor is replaced by a rotor. Using a special representation for these matrices
he derives commutation relations for them by explicit numerical calculation.
To go over to curved w-space he introduces orthonormal tetrads: a procedure
which has a historical precedent in the context of spinor equations. Kur-
§unoglu (1961) discusses rotors with a view to introducing them explicitly
into the theory of elementary particles. Synge (1964) has recently reviewed
some aspects of the theory of euclidean complex three-spaces, whilst two
complex 3 x 3 matrices are introduced by Rastall (1964) in a paper dealing
with a characterization of space-time. At any rate, as far as I am aware,
the theory of r-spaces appears to have been dealt with in a somewhat
piecemeal and often ad hoc manner, a situation which the present work is
intended to remedy.

With regard to notation and terminology, in as far as it concerns
tensor calculus in general, I shall usually follow Schouten (1954); whilst
in the context of spinor calculus I shall closely follow Infeld and van der
Waerden (1933). In particular ze>-indices will be in small Roman type
(range 1, • • •, 4), and s-indices in small Greek type (ranges 1,2 and 1,2
respectively. As for r-indices, these will be denoted by capital Roman type
(ranges 1, 2, 3 and i, 2, 3 respectively).

In rough outline the plan of this paper is as follows. The basic "tensor-
rotors", or connecting matrices, TAM are defined in Section 2, and an ar-
bitrary symmetric non-singular metric tensor «.AB in r-space is introduced.
Then r-indices as well as w-indices can be juggled freely and a preliminary
set of relations obeyed by TAM is derived. Finite and infinitesimal proper
Lorentz transformations and their r-images are the subject of Section 3.
After this, the integrability conditions on the Lorentz group are used in
Section 4 to obtain more general relations, obeyed by the basic rotors,
in particular their commutation relations. Given some linear (homogeneous)
transformation AAA', in r-space one can consider also quantities which
transform under the transformation AAA', complex conjugate to this, and
so one is naturally led to complex conjugated rotors (Section 5). A sizeable
collection of miscellaneous identities involving the TAM and TAM is presented
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in Section 6. All these, like those of Sections 2, 4 and 5 are covariant under
arbitrary transformations in w-space and r-space: where these transforma-
tions can be carried out independently of one another, i.e. the transformation
in a>-space need not be accompanied by its image in r-space. There is often
a certain formal resemblance between the general relations of the rotor
calculus on the one hand, and of the spinor calculus on the other. The
spinor identities in question may be found in an earlier paper (Buchdahl
1962), which will hereafter be referred to by the letter S. Section 7 revolves
about the question of the character of the ro-tensor equivalents of some
irreducible r-tensors. Improper Lorentz transformations are considered
in Section 8. Spinors appear for the first time in Section 9, where basic
"spinor-rotors" 'kAy.v are introduced to establish a direct link between
simple rotors and symmetric spinors of valence 2; and a number of formal
relations involving the XA/W are obtained. In Section 10 a specific represen-
tation ("standard representation") is chosen for the first time, and the
standard representatives of various quantities are exhibited in explicit
form, i.e. as matrices with specific numerical elements. This section ends
with some brief comments on the relation between the forms of certain
specific representations and the canonical forms of the electromagnetic
field tensor.

2. The connecting matrices TAM

(a) Let eklmn be the contravariant numerical J-density of Levi-Civita,
and define the tensor

(2.1) eklmn = (—g)-ie
klmn,

where g is the determinant of the metric tensor (of signature —2). Strictly
speaking e*lmB is a w-tensor rather than a true tensor on account of the
fact that one agrees always to take the positive square root of —g. However,
for the time being only proper transformations will be considered, so that
the distinction just drawn is irrelevant. If fkl is a skew-symmetric tensor,
let its dual *fkl be defined by

(2.2) t /« = _ ! « » « / » „ .

Note that the dual is more often defined without the factor —i on the
right of (2.2). Then if

(2.3) rflmn = g*l*>g'>li

the tensor

(2.4) F» = I T " - - / - .

is self-dual, i.e.
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ipkl _ pkl

The definition (2.2) evidently entails the involutory nature of the operation
of forming the dual. Now

(2-5) fjhlmnVmnM = 0.

where a bar denotes complex conjugation. The self-duality of Fkl may
therefore be expressed in the form

(2.6) ?lmnFmn = 0.

The correspondence between self-dual tensors and rotors will now be
exhibited in the form

(2-7) Fkl = \xAkA
A,

where j>A is contravariant rotor, and the three connecting matrices are
skew-symmetric,

(2.8) rA(kl) = 0.

An explicit distinction is being drawn between covariant and contravariant
r-indices since it is not necessary that the metric of r-space should have
the form diag (+1, + 1 , +1).

The right hand member of (2.7) is self-dual for every §A, so that,
recalling (2.6),

(2.9) VklmnrAmn=0,

i.e. each xAmn is self-dual. Explicitly

(2.10) rAkl = -\ieklmnxA™,

whence

7 0 , , v rAkmrB
lm = -\ehmMel*ttxA

9'xBli
{ ' - Id1'* x *«x

The generalized Kronecker delta in the right is a determinant of simple
Kronecker deltas and so one arrives at

(2-12) T(/
mrBUm = ^ r ^ x ^ .

On account of its self-duality Fkl gives rise to only one quadratic invariant
FklF

kl. Likewise, if one introduces a non-singular but otherwise arbitrary
symmetric tensor xAB into r-space, <f>A gives rise to just one quadratic in-
variant <f>A<f>A. These two invariants are now to be identified, so that

(2-13)

https://doi.org/10.1017/S1446788700004882 Published online by Cambridge University Press

https://doi.org/10.1017/S1446788700004882


[6] On rotor calculus, I 407

The contravariant metric f-tensor is defined in the usual way by

(2.14)

(2.12) now reads.

(2.15)

Transvection of (2.7) with xBkl then inverts this relation, i.e.

(2.16) </>* = ^ ' F n .

Now insert (2.16) in (2.7) and use (2.4). One sees that

must vanish for arbitrary /". It follows that

(2-17) rAhlx
A

mn = 2Vklmn,

since, by (2.10),

(2-18) riklmnT
Akl = 2x*mn.

(b) Contemplate now the r-tensor

(2.19) fABC = rAlelrB
kmrcr-

Then, in view of (2.15),

fBAC = (_TAklrBkm + 2xABdlJrCm = -fABC,

In the same way one shows easily that fABC is skew-symmetric in its second
pair of indices also. In other words, fABC is completely skew-symmetric
and must therefore be a scalar multiple of the e-tensor in r-space, i.e. of

(2.20) eABC = oc-MBC,

where
a = det ctAB.

Thus now
jABC _ fgABC^

where / is a scalar. To determine it, form the invariant

(2.2i) fABCfABc = e/2 = tofnvtnrvr:.

n view of (2.17). One easily confirms that

(2-22) i7",.W = fV^1™'-

The right hand member of (2.21) then reduces to
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= 96,
whence

/2 = 16.

The sign of / may at this stage be chosen freely and I take

(2.23) / = —4.

Thus one now has the relation

(2.24) ^ * ' T B
i m T c , m = -4eABC,

and by transvecting this throughout with rCtt one obtains

(2.25) V*im«TmnAB = - 2eAB^rCkl,

where
It) ao\ Turn _ [m _ n]f
\*-40) •» AB — rA »XB •

3. Lorentz transformations

(a) Let a>-vectors and r-vectors undergo the transformations

(3.1) 'uk

(Exceptionally the kernel-index notation is not being used here in order
to avoid the appearance of a large number of mixed Kronecker deltas of
the type <5*v and dA

A>.) The transformations inverse to those which appear
in (3.1) will be denoted by the corresponding lower case kernel symbols.
Then

(3-2) 'rAkl = AB
AL"kL\tBnn.

Now if Uk is a Lorentz transformation then AB
A is its "r-image" if

(3.3) 'rAkl = rAkl.

From (3.2) and (3.3) one then has

(3-4) AB
A = \VJ\xAklx

Bm\

Hence under these joint w- and r-transformations

(3.5) '*AB = A°AAD
B xCD = &ln"MlkJWtrAUrBM.

where (2.17) has been used. Now recall that lk
m is a Lorentz transformation,

so that the gkl ( = diag (—1, — 1 , — 1 , +1)) are numerically invariant, i.e.

(3.6) lk
mllngmn = g"1-

(3.5) therefore becomes
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(3.7) '*AB = ^

Since (—g)l = 1 here, one has

« * " " ^ « ^ / A = ie"1"9 d e t l"t = ie
say. However, a proper Lorentz transformation is characterized by the
condition 1 = 1 , and so (3.7) becomes

(3-8) 'xAB = bf^TjuaTsn = <tAB,

by (2.17) and (2.13). The ctAB thus remain numerically invariant, which
shows explicitly that AB

A, as given by (3.4) is indeed an orthogonal trans-
formation in r-space; and it is not difficult to see that it must be proper,
i.e. a rotation.

(b) When the Lorentz transformation is infinitesimal write

(3.9) L\ = d\-(o\, A*A = dB
A+yB

A, co(kl) = 0.

Then (3.4) at once yields

(3-10) Y
BA = h>m«TmnAB>

so that, of course, y(AB) = 0; (see also eq. (4.11)).

4. Commutation relations and defining relation for TAM

(a) In any representation of the Lorentz group the infinitesimal
transformation

is represented by (Cf. Corson 1953, p. 11)

(4.1) l+f»Tfl.
where T,t are the representative matrices of the six infinitesimal trans-
formations. They must satisfy the integrability conditions on the Lorentz
group

(4-2) [Tkl, r m n ] = 4g[n[fcr,]m].

Comparison of (4.1) with (3.10) shows that

(4-3) Tkl = TklA
B.

For the time being it suffices to use the contracted form

(4-4) Tlk"Tl]n=~Tkl

of (4.2), obtained from it by transvection with g'B. In view of (4.3) this
becomes 2

• Symmetrizing and anti-symmetrizing brackets always act on only one kind of indices
the character of which is determined by that of the indices next to the brackets and within
them.
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(4-5) V/rNC=-V.

On the left there appears the sum of products of r-matrices, four at a time,
and in each such product the index B is repated, so that (2.17) may be
used. Thus, for instance

r n B T T C l /~ , _ m—Ctn _i_ „ _ in C m
, . - \ * A lnB ~ ?VltmlnrAk r T'/lminM * j

* ' ' „ - tm-C n £_ n-C \

But

(4-6) V,mlnrctn =
on account of (2.10), and

VkmlnrA T t ~ 86*J °A Vklmn1 A ~t~l klA — tk>

where (2.13) alone has been used. Inserting (4.6) and (4.7) in (4.5) that
part of the latter which is skew-symmetric in k and I reduces to
—2TklA

c-\-^r]klmnT
mn

A
c. (4.4) therefore finally gives rise to

(4-8) VklmnT
mnAB = 0.

j-mnAB j s ̂ hus also self-dual. This may now be combined with (2.25) to
give the explicit commutation relation for the r-matrices

(4-9) T V * = -e*BCrCkl.

One may further combine this with (2.15):

(4-10)

(4.10) may be looked upon as a defining relation for the r-matrices.
It is of interest to note that (3.10) and (4.9) together give

(4-11) y A B = \eABCxCmno>mn = eABCcoc,

say; so that the image of an infinitesimal Lorentz transformation is a
rotation in /--space, characterized by the infinitesimal rotor a>c.

(b) So far only the contracted concomitant (4.3) of (4.2) has been
used. One may now insert (4.9) into the full integrability conditions (4.2), i.e.

(4-12) Tkl TmnBC—Tmn TklBC = 4g|-n[fcT,]m-j c .

The first term on the left becomes

e eBCFrDktr mn = dCFrDklx mn = rCklx mn—2r]klmnd c.

There follows the relation

(4-13) fV1,,
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5. Complex conjugate rotors

If <f>A is any rotor then the rotor complex conjugate to it will be denoted
by <f>Al and if <f>A transforms according to

<f>A' = AA
A'<t>A

then <f>A transforms according to

(5.1)

where

(5.2)

More generally there will be r-tensors with any number of dotted and
undotted indices. In particular one has r-tensors of valence 2, FAB say;
and FAB is hermitian if

(5.3) rAB = rBA.
Given any relation between r-tensors, the complex conjugate relation is
obtained by dotting all undotted indices and omitting the dot from all
previously dotted indices. (All this is quite familiar from spinor calculus.)

To begin with, consider the hermitian r-tensor

(5.4)

On account of (2.10)

Hence

(5.5) TAB = 0.

A tensor which frequently occurs is the following:

(5.6) fklAB = xAkmxBlm.

md according to (5.5) it is trace-free. Moreover, using (2.10),

rAklrB — l&kist A irBpq
T T mn — —pJmnpqT: st* ™.

Writing the Kronecker delta as a determinant of simple Kronecker deltas
is usual, there follows

(5-7)

in particular, transvecting throughout with gln,

[5-8) f[U\AB = 0,

io that (tkiAB is not only trace-free but is also symmetric in w-space, or
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hermitian in r-space, (cf. Section lOd). The relation (5.7) may now be
used to exhibit the outer product (no indices paired) of an undotted and
a dotted r-matrix in terms of such products once contracted, i.e. in terms
of ^hlAB- For this purpose transvect (5.7) throughout with \ieklpq and use
(2.10). One gets at once

If this be combined by (5.7) one obtains the desired relation at once, viz.

(5-9) TAklTBmn = — t

6. Miscellaneous identities

(a) In this section some identities are derived which are useful in
reducing expressions containing products of a large number of r-matrices
to tractable form. Consider therefore first the product of three such matrices
with all but two w-indices paired. Thus when all r-indices are undotted
one gets, on repeatedly using (4.10),

(6.1)

Now let one of the r-indices be dotted. Then

and that is as far as one can go. Note, however, that

(6.3) TAkiTBmlrcmk = 0.

If on the left the second r-index had been dotted instead of the first one
can still proceed in this way, first using (5.8). The cases of two or three
dotted r-indices are covered by the identities complex conjugate to (6.2)
and (6.1) respectively.

Next consider products of four r-matrices. When all r-indices are
undotted one may simply transvect (6.1) throughout with TDSH- Once
again using (4.10) one obtains

/f l .> rAkirBmlTCmnrDsn = {<*-AB<*-CD—
(6.4)

sh

In particular

(6.5)
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When one r-index is dotted nothing much can be achieved: in effect all
one can do is to transvect (6.1) with Tfow. Note, however, that

(6.6) rAkixB
mlrcmnrt)kn = 0.

When two r-indices are dotted one gets

In particular

(6.8)

(b) Different kinds of identities arise when one considers transvection
of products of T-matrices with the e-tensors. Thus consider

As a next step write ifej" as a determinant of simple Kronecker deltas.
One is left with fourteen separate terms involving the product of two
r-matrices. Two of these terms may be reduced by means of (2.13), and
another eight by means of (4.10). The end result of all this is

(6.9) ekl

In much the same way one obtains

(6.10) eMmnePlstTAkpiBlq =

Now replace the dummy index C on the right of (6.9) by some other symbol
md transvect throughout with rcms^Dnt- After some reduction one obtains
the result

(6.11) ehlmnePistrAhprBiqrcmsT:Dnt = — 2±*A(B*CD)-

Suppose now that the four r-indices all have the same fixed value J. Then,
bearing (2.1) in mind, the left hand member of (6.11) is simply
-24g-1detT/A/. Thus

(6.12) det xju = g{*jjY.

(c) An argument analogous to that used at the beginning of Section
2b may also be used in «>-space. Thus the expression rA[kitBmn] is com-
pletely skew-symmetric in its w-indices so that one has

rA[kirB
mn-} = ekimnfAB,

where fAB is an r-tensor. By transvection with eklmn it follows that

(6.13)
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If one writes this out in full one easily convinces oneself that it may be
written in the equivalent form

(6.14) T ( ^ [ / T B ) W M ] = —\}a.ABekimn

7. Tensor equivalents

The correspondence, or equivalence, of rotors <f>A on the one hand and
self-dual w-tensors Fkl on the other is basic to the present calculus. Both
<f>A and Fkl are irreducible, and likewise there will correspond to any ir-
reducible r-tensor an irreducible w-tensor. A general r-tensor 0AB of valence
2 (both indices undotted) gives rise to the irreducible tensors 0 (= 0C

C),
6[AB], 0iAB)—\<*-AB®> with 1, 3 and 5 distinct (complex) components respec-
tively. The scalar 6 is of no interest here, and this is true also of the skew
tensor O^BI since this is not essentially distinct from the vector eABC0AB.
This leaves only the symmetric trace-free tensor

V-*-) ™AB =

to be contemplated. It defines a ^-tensor of valence 4:

M o\ f X.T-A ~B fit
\>-zl lklmn — i ~ klT mn^AB-

This relation is reversible, and one has

\>-A) &AB — ±TA rB lklmn-

From (7.2)
t = 0 t = 0 t = t

**[im»] = 0. glmhimn = 0-

The first and second of these follow from (2.8), the third from the symmetry
of @AB< the fourth and fifth from (7.14) and (2.15) respectively, bearing
in mind in each case that &AB is both symmetric and trace-free. Accordingly
tklmn has all the algebraic properties of the conformal curvature tensor of
Riemannian geometry.

Let sklmn be any tensor of valence 4 of which it is required only that it
be skew-symmetric in the first and in the second pair of indices. Then one
defines its right dual and left dual as

\'-°) s klmn — — t t e m n sklvq> bklmn — f16JM bpqmn-

Its "double dual" is then

tot _ l g VQg »<c

Manipulating as usual on the right (as after eq. (6.10) for instance) one
gets
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(7-6) V f c l m n == sklmn+4:g[k[m§nV

where

(7.7) skl = skl-ykls
n

n, skl = sn
kln.

It follows incidentally that sklmn is self-double dual if and only if the con-
traction §kl vanishes. In the case of the tensor of eq. (7.2) one has at once

(7-8) t klmn = tklmn = tklmn,

because of (2.10). This is consistent with (7.6) since tklmn is entirely trace-
free.

Amongst rotors of valence 2 it remains to consider those with just
one dotted index %AB say, and it suffices to take QAB as hermitian. Then,
since according to (5.8) T^iAB is hermitian, symmetric and trace-free, the
w-tensor

(7.9) tM

is real, symmetric and trace-free. The inverse relation is

(7.10) d^B = %fhlABtkh

on account of (6.8). It may be noted that the tensor

(7.H) tklmn =

is only superficially more general that the tensor tkl in the sense that it
expresses itself in terms of tkl and the metric tensor alone. This follows at
ince from (5.9), because of which (7.11) becomes

(7-12) tklmn = -fjklP[mtnf.

One may contemplate r-tensors of valence greater than 2, for example
i completely symmetric trace-free tensor of valence 3. This has in general
L0—3 = 7 distinct components. The w-tensor equivalent, defined in
inalogy with (7.2), is of valence 6, and it has rather complicated symmetries,
flowever, this is not the place to go further with these questions.

8. Improper Lorentz transformations

An improper Lorentz transformation ( / = —1) cannot have as its
mage a linear transformation in r-space. It is instructive to see what
vould be the formal consequences in Section 3a if one inadvertently ignored
he condition / = 1 there. It suffices to consider inversions:
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where m is fixed on the right. Then (3.4) becomes

* . «
(8.2)

= ^ - T ^ T " 4 = 0,

in view of (2.13) and (4.10); and this is absurd.
The appropriate r-transformation associated with an improper Lorentz

transformation is antilinear, i.e. in place of the second member of (3.1)
the associated transformation of a rotor <f>A is

(8.3) '+A = ABA*B-

On the right there appears the rotor <f>B whose components are the complex
conjugates of those of <f>B; but the index B remains undotted. Any other
barred rotor is defined analogously. Then one has in place of (3.4)

(8-4) A'A = ni'.V"",

and this is the explicit form of the r-image of the improper Lorentz trans-
formation. As for a.AB, one gets an equation just like (3.7) except that
the sign of the second term in the brackets is reversed. This just makes
up for the change in sign of I and therefore

'*AB = *AB

again.

9. Rotor-spinors

In the spinor calculus one is familiar with so-called tensor-spinors,
i.e. covariant quantities which possess both s-indices and w-indices and
so transform as tensors under transformations in s-space and transformations
in w-space, whether these be complex or not. The analogous quantities
in the rotor'calculus are those which have both r-indices and w-indices.
The most important of these are of course the basic matrices rAtl, which
are the analogues of the Pauli matrices ert^.

Now on the one hand the preceding work arises out of the one-one
correspondence between self-dual w-tensors and rotors, whilst on the other
hand there is a one-one correspondence between self-dual u>-tensors and
symmetric s-tensors of valence 2. Thus one may also contemplate the
formal consequences of the one-one correspondence between rotors <f>A and
symmetric spinors f^v, — thus closing the circle, as it were. (See also the
remarks following eq. (9.13).) The basic rotor-spinors (connecting matrices)
will be denoted by XA/a, so that
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(9.1) <f>A = i W " .
with

(9.2) XAi/ir] = 0.

Together with (9.1) one has (2.7) or its inverse (2.16), and the connecting
equation between fM, and Fkl, i.e.

(a jj\ p. = As. //»»
\v-°) x kl — TZ^kl/ivl

or its inverse

(9.4) /„, = S"l""Fkl,

(cf. 5, Section 2). Insert (9.3) in (2.16) and compare with (9.1). Then,
since XAjlv and Skl/iy are symmetric, it follows that

(9-5) XAf9 = \rA
mnSmn)ty.

Each of the connecting matrices may thus be exhibited as a transvection
of those of the other two types, i.e.

and

(9.7) rAkl = XA"'Skl/iy.

Various identities obeyed by the XA/ty may now be obtained by using those
obeyed by the other two kinds of connecting matrices. Thus, using (2.17)
and the identity

(9 8) S^P'S = 2Sa d^

it follows from (9.5) that

/Q n\ i XAaP = 2*5a ft@

By means of this (9.1) may be inverted, viz.

(9-10) /„„ = XAliA
A-

Again, inserting (9.7) in (4.10) it follows without much difficulty that

V"-1J-J AApvABv — 7^yctABieABCA /iv>

if use be made of the identity S (2.18), i.e.

(9.12) S>"»Sktafi =

The identity

(9.13) A"X*'* =
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follows similarly from (4.13). These examples will suffice to illustrate the
general procedure.

Despite the many formal analogies between the identities of this section
and those derived earlier it is apparent that the XA)IV are intrinsically less
interesting that the ak^v and the rAkl. Thus there can be no relations analogous
to those of Section 5 since no transvections can be formed of XA/Ir with a
conjugated quantity kBp<r. Furthermore, given an infinitesimal Lorentz
transformation, the infinitesimal operators acting on the indices of XA/IV

are already known, so that no new infinitesimal operators arise: at best
one might define

in analogy with TktAB and Skl/tv. With (9.11) and (4.9) one has at once

(9-15) A^B = \Sm%vTmnAB>

which on inversion gives

(9.16)

so that A/iyAB is the direct connecting link between the infinitesimal spinor
and rotor operators.

10. Standard representation

(a) All relations hitherto considered have been arrived at without
the aid of any particular representation of the various matrices involved.
However, for purposes of calculation or for other reasons it is sometimes
convenient to have the explicit form of these available in some particular
representation. One such representation, hereafter called "standard
representation", will now be examined, the metric tensors being taken as

(10.1) gkl = rjkl = di^g(-l, - 1 , - 1 , +1), oĉ s = diag (1, 1, 1).

(See also Subsection (d) below). Evidently one need not distinguish now
between covariant and contravariant r-indices, and they will therefore all
be written as subscripts, though the summation convention will be retained
for them. Furthermore, in this section indices u, v, w shall take values
1, 2, 3 only: and since only a particular representation is under consideration
one can contemplate the formal appearance of a quantity such as sAklm

for instance, in which the fact that indices are apparently associated with
different vector spaces is to be regarded as irrelevant. In other words,
though in a general context, A would strictly speaking go over the range
I, II, III and k over 1, • • •, 4, I, II, III are here not to be distinguished
from 1, 2, 3.
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The infinitesimal transformations of the 3-dimensional group of spatial
rotations in the representation of the group by itself (eq. Corson 1953,
p. 43) give a particular choice of TmAB, viz.

TavAB = -2d»[Ad°B],

bearing (4.3) in mind. Then, because of (4.9),

(10-2) TAuv = —faABcTuvBC = eAuv

Now in view of (2.9) one can always write

(10.3) rAkl = rjklmnPA
mn,

where pA
mn is skew-symmetric in the superscripts but otherwise arbitrary.

In particular

— PAuv l

In the present instance, comparing this with (10.2) it follows that

PAuv = eAuv> PAui ~ 0,

and these may be combined into

(10.4) p A k , = eAkli.

Standard representation (SR) is then that representation in which (granted
(10.1)) the rAkl are given by (10.3), (10.4). Explicitly,

(10.5) rAav = eAutt, rAui = idA
u.

Writing these out fully in matrix form, (cf. Corson 1953, p. 99)

(10.6)

(0 0 0 0\ /0 0 —1 0\ / 0 1 0 0\

o o i o j _ / o o o o \ / - l o o o
o - l o o ' p2kl - I i o o o f ' p3kl - I o o o o
0 0 0 0/ \0 0 0 0/ \ 0 0 0 0/

0 0 0 A /O 0 — 1 0\ / 0 1 0 ON
_ 0 0 1 0 1 _ / 0 0 O i l - 1 0 0 0

T i « - | 0 - 1 0 0 l t | B ' l 0 0 0 ' T 3 1 1 " 0 0 0
k-» 0 0 0/ \ 0 - * 0 0/ \ 0 0 - » 0/

A special Lorentz transformation
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then has the image
/I 0 0 \

(10.8) ^ = 0 y iuy\,
\0 — iuy y J

whereas a spatial rotation through the angle 6 about the a^-axis has th
image

( cos 0 sin 0 0\
—sin 0 cos 0 0 I .

0 0 1/

The TklAB are effectively given by (10.6), on account of (4.9). Th
^kiAB o n the other hand remain to be evaluated. They may be exhibits
either as symmetric 4 x 4 matrices or hermitian 3 x 3 matrices (cf. th
remark following eq. (5.8).) The first choice gives

- _
i 2 ~

'0 1 0 0\
1 0 0 0
0 0 0 -i

^0 0 - t 0/

0 0 0-i\ / - I 0 0 0>
f . - \ 0 0 1 0 \ * _ / 0 - 1 0 0
J 2 3 - | 0 1 0 0 ' J 3 3 ~ l 0 0 1 0

,-i 0 0 0/ \ 0 0 0 - 1 ;

whilst Tfo, f$lt T& follow from the second, third and fifth of these b;
complex conjugation.

(b) It may be noted that the introduction of pAkl through (10.3) i
hardly useful in the general case. Thus, even in a representation other thai
SR the pAkl might be real. Then if a.AB is also real one easily infers fror
(4.10) that

V 1 U 1 1 ; PAhlPB — Za-AB> e

and

Yet one can easily convince oneself that in general the reality of the pAl

will be destroyed under a coordinate transformation. Thus under th
coupled infinitesimal transformations (3.9), (3.10) one finds (if pAkl i
real) that

(10.13) I m ('PAkl) = ^omnemnJ>ae
ABCpBklPc^,

which will in general fail to vanish. In particular, if/ for example, om
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takes SR on the right, one sees that the p A k l will remain real only if the
lorentz transformation is simply a spatial rotation.

It may be mentioned in passing that the p A k l define a symmetric
tensor

•(10.14) C« = $PA*mPAr-

In SR it has the components

(10.15) C« = tolwVw = diag ( - 1 , - 1 , - 1 , 0),

which under an arbitrary Lorentz transformation Lm
k becomes

(10.16) 'Cw = r,kl-L\L\.

(c) The term SR may be extended to cover some standard form of
the basic s-tensors. The following will be adopted:

/X(° !\ _ /X( ° *\
air - V2 I x 0 1 . V - V 2 I _,• 0 1 .

(10.17)

which are exactly those of Infeld and van der Waerden (1933). Then the
S*1^ are

- * ( J J).
which satisfy the conditions of self-duality

(10.19) W . S - " = 0-

In view of (10.19) and (10.3), (9.5) becomes

(10-20) XAllv = p^ m n 5 m V-

Because of (10.4) one therefore has at once

(d) Since, for any (fixed) A rAkt is a skew-symmetric tensor, the
problem of choosing some standard representation is formally equivalent
to investigating canonical forms of the electromagnetic field tensor, as
set out at length by Synge (1958) for instance. It is hardly necessary to
go into detail here. It suffices to remark that the analogue of the energy
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momentum tensor is TtlAA (any A), whilst the invariants of the field are
combined into OLAA. The eigenvalues of xAM are ±(—<x.AA)b, each of these
appearing twice, and the "null field" corresponds to ctAA — 0.

It will be observed that if the canonical tensors Frt, FTt* given by
Synge (eq. (98), p. 336) be combined into the self-dual tensor Fr,-\-iFT*
(Synge's notation), and due allowance is made for the use of an imaginary
time coordinate one gets the consistent result that

(10.22) Frs+iFr*^Tlrt

provided one formally sets H1-\-iE1 = 1. The metric of r-space chosen above
of course implies the absence of null rAkl, With a choice of the r-metric
in which one or more of the ctAA are zero, one would of course have to
adopt some alternative SR. Suppose, for the sake of illustration, that
one took as a new SR that obtained from the one above by the transfor-
mation

(10.23) AB
A = 0

so that then

(10.24) '*AB =

Then, in particular

'T2 =

Taking E2 = 1 in Synge's canonical tensors in the null case (eq. (97) p.
336), one arrives at the harmonious correspondence

(10.25) Fra+iFr*^'r2r,.

In this sort of way a variety of results established by Synge can be tran-
scribed into the present context.

11. Concluding remarks

At this point the development of the rotor calculus in flat w-space
may be broken off since the stage is adequately set for its generalization
to curved te>-spaces, i.e. Riemann or Weyl spaces, a task to be undertaken
in a second paper (Buchdahl 1966). Once this generalization has been
achieved various special topics which might already have been treated
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above can be dealt with more generally, or more conveniently; and here
duality rotations may serve as a suitable example.

Finally, I should like to express my warmest thanks to Dr. Mark
Andrews for a number of stimulating and informative discussions, without
which this work would most likely never have been done.

Note added in proof: Since the manuscript of this paper was completed
Professors Debever and Cahen have kindly drawn my attention to their
work involving r-space; see, for example, Debever, R., Cahier de Phys.,
168-169, 303.
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