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CLIFFORD SEMIGROUPS AND MONOTONICITY

T.E. HAYS

A semigroup S is said to be monotone if its binary operation is

a monotone function from S x S into 5 . This paper utilizes

some of the known algebraic structure of Clifford semigroups,

semigroups which are unions of groups, to study topological

Clifford semigroups which are monotone. It is shown that such

semigroups are preserved under products, homomorphisms, and,

under certain conditions, closures. Necessary and sufficient

conditions for monotonicity of groups, paragroups, bands, compact

orthodox Clifford semigroups, and compact bands of groups are

developed.

1. Introduction

Considerable work has been done in recent years on the structure of

semigroups which are the unions of groups. The portion of this work that

is of interest to this paper is that of Clifford and Preston [2], Petrich

[7], and Leech [6]. We will utilize these algebraic results to study

topological semigroups which are the unions of groups, known as Clifford

semigroups, and on which the binary operation is a monotone function. We

show that such semigroups are preserved under products, homomorphisms, and

compact closures. We also develop necessary and sufficient conditions for

certain Clifford semigroups to be monotone. We show, for example, that

compact orthodox Clifford semigroups are monotone if and only if the
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naximal subgroups are connected and the subsemigroup of idempotents is

monotone.

2. Notation and terminology

Throughout this paper the term "semigroup" unless otherwise specified,

will mean topological semigroup. Our standard references will be Clifford

and Preston [2], Petrich [7], and Hocking and Young [4]. Definitions of

undefined terms may be found in these references.

DEFINITION 2.1. A function / : X + Y , where X and Y are

spaces, is monotone if / (y) is a connected subset of X for each y

in Y .

DEFINITION 2.2. A semigroup S is monotone if the binary operation

on S is a monotone function from S * S into 5 .

The standard Green's equivalence relations, H and J , will be

defined as in Petrich [7]. The corresponding equivalence classes will be

denoted by H{s) and J{s) , where s is an element of the semigroup.

It is well known that J is an algebraic congruence on a Clifford

semigroup and that each J-class is algebraically a completely simple

semigroup or equivalently, a paragroup (see Clifford and Preston [2],

Theorem h.6 and p. U6).

3. Preservation of monotonicity

In this section we focus our attention on the preservation of

monotonicity of Clifford semigroups under products, homomorphisms, and

compact closures.

THEOREM 3.1. Let S. be a semigroup for each i in the set I .
Is

Then the product semigroup S = XS. is monotone if and only if S. is

monotone for each i in I .

Proof. Let m. denote the binary operation of 5. for each i in

I and m denote the operation on 5 . Letting (s.) denote an element

of 5 and, defining / ,
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), [u.]) - ((*.,«.)) .

It is clear that the range of f is appropriate and that / is a

homeomorphism onto. Thus it follows that the domain of / is connected if

and only if m. [s .) is connected for each i in J , that is, S is

monotone if and only if each S. is monotone.

THEOREM 3.2. Let f : C •* S be a homomorphism of the monotone

Clifford semigroup C onto the semigroup S . Then S is a monotone

Clifford semigroup.

Proof. That S is algebraically a Clifford semigroup is well known

and easily checked. Let y be an element of S with y in H(e) ,

e = e and let B = [x in C : fix) = y] . Consider the following set

x /) ">£ (x) • It is straightforward to show that this set is

precisely m~ (y) . Note that if fix) = y then fig) = e where x is

in Hig) with g = g . Thus (y, e) is in (/ * /) "V. ix)\ for each x

in B and thus m~o iy) is connected, that is, 5 is monotone.

THEOREM 3.3. If C is a monotone Clifford subsemtgroup of the

compact semigroup T , then C* is monotone, where * denotes closure.

Proof. Showing that C* is a Clifford semigroup is again a straight-

forward algebraic and topological argument. Let y be in C* with y in

Hie) , e = e and suppose st = y with s in Hiu) , t in Hiv) , and

2 2
w = u , v = u . Since s and t are in C* we can assume without

loss of generality that there are nets (s.) and [t.) in C which

converge to s and t respectively. The function 2?(x) = / if and only

if x is in Hif) is continuous (see Hoffmann and Mostert, [5], p. hk).

Thus the net ff(e.t.) converges to e . Considering the set

lim sup m~ (s.t.) , we see that this set is connected (see Hocking and
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Young [43, p. 101) and contains (s, t) and {e, y) since for each i ,

[s •, t.) and (E(s.t.), s .t.) are in m~ [s -t.) . The result will be

established if we show that this lim sup is a subset of m~A(y) .

Suppose (w, x) is in lim sup m~c [s.t.) with wx t y . Since the binary

operation on C* is continuous, there exist open sets W, X , and V with

W in W , x in X , and y in V , respectively, such that

WX n V = 0 . Since [s.t.) converges to y , it is eventually in V .

However, W x X is open in C* x C* containing (w, x) and thus meets

mr (s.t.) for confinally many £ , contrary to WX n V = 0 . Thus we must

have wx = y and (u, a:) in mZ+iy) .

REMARK. Theorems 3.2 and 3.3 are known to be true for other

categories of monotone semigroups (see Hays, [3]) and it is a conjecture of

the author that they are true for arbitrary monotone semigroups.

4. Monotone Clifford semigroups

In this section we investigate conditions that are imposed on a

Clifford semigroup by the operation being monotone and also consider

sufficient conditions for monotonicity.

THEOREM 4.1. Let C be a monotone Clifford semigroup. Then

(i) C is oonneatedy

(ii) J{e) is a monotone completely simple semigroup for each

e in E{C) } and

(Hi) H(e) is connected for each e in E(C) .

Proof, (i). Let x and y he elements of C and consider

m \xyxy) • By the monotonicity of the operation the set is connected and

thus so is the set P m~ {xyxy) join P^rT (xyxy) , P1 and P^ are the

projection maps from C x C into C . Noting that x is in the former

set and that y is in the latter set, we have established that C is

connected.
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(ii). Let e be in E(C) . Then by the known structure of C ,

J(e) is a completely simple semigroup. To establish that it is monotone,

let x and y be elements of J{e) with x in H{u) , y in H(v) ,

xy in #(2) , and w, v , and 2 in £(C) . Then by the monotonicity of

C , m^ {xy) is a connected subset of C x C and thus the set

Uus, tv) : (s, t) is in /n~ (xy)V

is a connected subset contained in J(e) x c7(e) containing (x, y) , and

(xy, 2) . Noting that ustv = xy for each (s, t) in m̂ , (xy) , we have

that J{e) is monotone.

(Hi). From (££,1 and (i) , J(e) is connected and since

H{e) = eJ{e)e , it follows that H{e) is connected.

EXAMPLE. Letting J be the unit interval under min-multipli'cation,

S = I x {0, 1} , M be the ideal {(0, 0), (0, l)} . Then S/M is a

connected Clifford semigroup with H(e) = J(e) connected for each

idempotent in S/M , but S/M is easily seen not to be monotone.

COROLLARY 4.2. A group is monotone if and only if it is connected.

COROLLARY 4.3. Every compact group can be imbedded in a compact

monotone group.

In the material that follows a paragroup, denoted by [X, G, Y] ,

will be defined as in Hoffmann and Mostert [5], This result will be used

in the establishment of Theorem U.10.

THEOREM 4.4. A paragroup [X, G, Y] is monotone if and only if it

ie connected.

Proof. The necessity is clear by Theorem k.l. To show the

sufficiency, let (x, g, y) be an element of the paragroup. Letting m

denote the binary operation, it is straightforward to demonstrate that

m (x, g, y) is the set

{((x, s, y), [u, (u, M ) " ^ " 1 ^ , y}) : (v, u) is in Y x x and s is in G] .

Defining the function F from X x G x Y into m~ (x, g, y) by

F{(u, S, V)) = ((x, s, u), [u, (v, u)~ s~ g, y)) it is easily seen that F
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is continuous and onto. The connectedness of X x G x Y and continuity of

F imply that m (x, g, y) is connected and thus establishing the result.

COROLLARY 4.5. The minimal ideal of a compact connected semigroup is

monotone.

Proof. It is well known and straightforward to verify that the

minimal ideal of a compact connected semigroup is connected. It then

follows from Hoffmann and Mostert ([5], p. 16) that this minimal ideal is

also a paragroup. The result then follows from Theorem k.h.

DEFINITION 4.6. A band B is a semigroup with each element

idempotent. A band will be called left-upper connected if {y : xy = x]

is connected for each x in the band. Similarly, a band will be called

right-upper connected if {y : yx = x} is connected for each element x

in the band. A semilattice, an abelian band, will be called upper-

oonnected if {y : xy = x} is connected for each element x in it.

THEOREM 4.7. A band B is monotone if and only if it is left and

right upper-connected.

Proof. Suppose 5 is monotone. Then for x in B , m (x) is

connected and thus so are the sets P m (x) and VJU (X) . Noting that

'P m (x) is precisely the set {y : yx = x} and that P~m (x) is like-

wise the set {y : xy = x} , the necessity is established. Now suppose

that B is left and right upper-connected. Then uv = x implies that u

is an element of {y : yx = x} and V is an element of {y : xy = x} .

These sets being connected imply that i{zu, vy) : zx = x and xy = x} is a

connected subset of m~ (x) containing (M, V) and (xu, Vx) . Further-

more, the set {(x3, yx) : zx = x and xy = x} is connected and contains

{xu, vx) and (x, x) . Noting that

xzyx = {xy)zy{zx) = x(yz)(yz)x = xyzx = x ,

this latter set is also contained in m (x) . Thus (u, u) and (x, x)

lie in a connected subset of m (x) . Since (u, v) was arbitrary in

m (x) , m (x) is connected and the band is monotone.

EXAMPLE. Let 5 be a non-trivial set endowed with left trivial
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multiplication and the discrete topology. Then B is right-upper

connected but not left-upper connected and is, of course, not monotone.

The following result is immediate from the previous theorem and the

definition.

COROLLARY 4.8. A semilattice is monotone if and only if it is upper

connected.

We now turn our attention to bands of groups and orthodox Clifford

semigroups. It is in this area that most of the algebraic progress seems

to have been made (see Clifford [7]).

DEFINITION 4.9. A Clifford semigroup C is orthodox if its set of

idempotents, E(C) , is a subsemigroup.

THEOREM 4.10. Let C be an orthodox Clifford semigroup. If E(C)

is monotone and H(e) is connected for each e in E(C) , then C is

monotone.

Proof. Let x be in H(u) , y in H(v) , and xy in H(z) with

u, V, z in E(C) . Then E(C) monotone implies by Theorem h.J that the

sets R = {w : wz = z} and L - {t : zt = z} are connected. Thus the set

B = {(wx, yt) : w in R and t in L} is connected with (x, y) and

(zx, yz) in B and wxyt = wz(xy)zt = z(xy)z = xy . Since E(C) is

monotone, it can be seen that E[j(z)) is connected by observing that if

e is in E[J(Z)) , then the following set D given by

P2m-^c)(ez)\z

is a connected subset of E[J(Z)) containing e and z . Letting

X = E[j(z))z and Y = zE[j(z)) , then it is known that J(z) is

algebraically isomorphic to the paragroup [X, H(z), Y] , where

a(s, t) = st , under the mapping / defined by f(s, g, t) = sgt (see

Clifford and Preston, [2], p. 9*0. The mapping is easily seen to be

continuous, thus, by Theorems k.k and 3.2, J(z) is monotone. Hence

B u mTl >(xj/) is a connected subset of mr (xy) containing (x, y) and
a \Z } 0

(xy, z) . Hence C is monotone.

The following example indicates that while the above conditions are

sufficient, they are not necessary.
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EXAMPLE. Let R be the non-negative reals under multiplication.

Then R is a locally compact monotone Clifford semigroup with connected

maximal groups, but E(R ) is discrete and hence not monotone.

In the compact case, however, we have the following result.

THEOREM 4.11. Let C be a compact orthodox Clifford semigroup.

Then C is monotone if and only if E(C) is monotone and H(e) is

connected for each e in E(C) .

Proof. The sufficiency follows from the previous theorem. The

necessity of H{e) being connected for each e in E(C) is just Theorem

U.I. To show that E{C) is monotone, we show that the sets R and L

defined as R = {y : yx = x] and L = {y : xy = x] are connected for each

x in E{C) , and then apply Theorem U.7 to obtain the result. Since C

is assumed to be monotone, m (x) is connected and thus P m (x) is a

connected subset of C . Since the mapping E : C •*• E{C) defined by

F(s) = f if and only if s is in H{f) with j = f , is continuous (see

Hofmann and Mostert, [5], p. UU), F P m" (x) I is a connected subset of

E{C) which is easily seen to be precisely the set R . Similarly

(x)\ is & a n d connected. Thus E(C) is monotone.

EXAMPLE. Let I be the unit interval under min-multiplication,

S = J x {-1, l) , and M be the ideal {(0, -1), (0, l)} . Then S/M is

a compact orthodox Clifford semigroup with E(S/M) monotone and H(e)

disconnected for each idempotent different from 0 , and, of course, S/M

is not monotone.

For the final result of the paper we focus our attention on bands of

groups. There were algebraically characterized by Leech [6].

DEFINITION 4.12. A compact semigroup C is a band of groups if the

H-relation is a congruence on C and C/H is a band.

THEOREM 4.13. A compact band of groups C is monotone if and only

if C/H is monotone and the maximal subgroups of C are connected.

Proof. Let C be monotone. Then the necessity follows immediately

from Theorems 3.2 and U.I. For the sufficiency, suppose that C/H is

monotone and the maximal subgroups of C are connected. Let a and b
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be elements of C/H . Then m_.w(ai) is a connected subset of

C/H x c/H . Defining F : C/H •+ E(C) by F(e) = 1 , the identity of

n (e) where n is the natural map from C onto C/H , i t is easily seen

that F is continuous. Thus (F x F)\m~ lU{ab)\ is a connected subset of
I C/H J

C x C . Consider the mapping G from (F x f)L"^H(afe) into C * C

defined by the following, <?(l , 1 ) = (l x, yX ) where x and y are
eg eg

fixed elements of s ( l ) and ffllj,) > respectively. This mapping is also

continuous and the range of G will be a connected subset of mn {xy)

since the following relationship holds:

1 xy\ = 1 1 xyl 1 = 1 xyl = xy .
e a g e eg * eg g eg a eg

Furthermore, the range of G contains the elements (a;, y) and

(l x, yl ) with the la t ter element also contained in rn
l](-, }(xy) . Thus

there is a connected subset of m« (xy) containing (x, y) and

(l , xy) , that i s , C is monotone.
eg

REMARKS. The example following Theorem U.l l i s an example of a

compact connected band of groups C such tha t C/H i s monotone with the

maximal subgroups of C nearly a l l disconnected. The example following

Theorem U.I has connected maximal subgroups with C/H not monotone.
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