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1. Introduction. In [9] the authors initiated the study of identities satisfied
by finitely presented Rees quotients of free inverse semigroups. It was proved [9,
Section 5] that a semigroup from that class satisfies a nontrivial semigroup identity
if and only if its growth is polynomial. Key ingredients were a graphical technique
due to Ufnarovsky [10], [11], Adjan’s identity for the bicyclic semigroup [1], and the
fact (easily deduced from [8]) that the bicyclic and free monogenic inverse semigroups
satisfy the same semigroup identities. By contrast, however, an example was given in
[9, Section 4] of a semigroup from that class that has exponential growth yet satisfies
a nontrivial identity in signature with involution. In this paper we examine principal
Rees quotients of free inverse semigroups; that is, Rees quotients by a principal ideal.
We show that up to isomorphism

S = 〈a, b | ab = 0〉

(regarded as a presentation as an inverse semigroup with zero) is the unique member
of this class that is not trivial or monogenic with zero yet satisfies a nontrivial identity
in signature with involution. Of course S has exponential growth (since a and b−1

generate a noncyclic free subsemigroup), but S does not contain any nonmonogenic
free inverse subsemigroups.

2. Preliminaries. We assume familiarity with the basic definitions and elemen-
tary results from the theory of inverse semigroups that can be found in any of [2],
[3], [4] or [6]. We denote the free semigroup, free inverse semigroup and free group
over an alphabet A by FA, FIA and GA, respectively. Equality in free semigroups will
be denoted by ◦ . Recall that a word w is reduced if w does not contain xx−1 as a
subword for any letter x ∈ A ∪ A−1. If w ∈ FA∪A−1 then we denote by w the reduced
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word equivalent to w in GA. Without causing confusion we shall identify elements of
FIA and GA with words over the alphabet A ∪ A−1. Then the mapping w �→ w induces
a homomorphism from FIA to GA. Denote by [u, v] the commutator uvu−1v−1.

Recall that elements of FIA may be regarded as birooted word trees (introduced in
[5]), the terminology and theory of which are explained in [3]. (See also [9, Section 2].)
If u and v are elements of FIA, then the word tree of u is a subtree of the word tree of
v if and only if v may be expressed as a product of elements, one of whose factors is u,
in which case we say that u divides v. Any reference to Green’s relation J will be with
respect to FIA. Note that two words over A ∪ A−1 are J -related if and only if their
word trees are identical.

The following lemma can be verified easily using Reilly’s criterion [7, Theorem 2.2].

LEMMA 2.1. If ε, δ, ν, η ∈ {±1} and ε 	= ν or δ 	= η then aεbδ and aνbη freely generate
an inverse subsemigroup of FI{a,b}.

Denote by 〈u, v〉 the inverse subsemigroup of FIA generated by elements u and v.
The next lemma follows easily by inspection of word trees.

LEMMA 2.2. Suppose that a and b are letters from A, that ab divides a word c in FIA

and that c divides elements from each of 〈ab−1, a−1b〉, 〈ab, ab−1〉 and 〈a−1b, ab〉. Then
c J ab.

An identity in signature with involution is an equation of the form

P = Q (1)

where P and Q are words (also called terms) from the free semigroup FV∪V−1 , where V =
{ x1, . . . , xn } is some finite alphabet (of variables). We say that an inverse semigroup
S satisfies this identity if the equality (1) holds in S when each side is evaluated after
substituting arbitrary elements of S for x1, . . . , xn. We call the identity (1) trivial if it is
satisfied by all inverse semigroups, nontrivial otherwise. By [7, Corollary 2.7] the free
inverse semigroup FI2 on two generators contains a copy of the free inverse semigroup
on countably infinitely many generators, so that any identity satisfied by FI2 must be
satisfied by all inverse semigroups. Thus if FI2 embeds in an inverse semigroup S, then
S cannot satisfy any nontrivial identity in signature with involution.

3. Principal Rees quotients. In this section we prove a sequence of lemmas
culminating in a theorem which gives an identity in signature with involution satisfied
by the semigroup S = 〈a, b | ab = 0〉. We then prove that S is unique amongst the class
of nontrivial nonmonogenic principal Rees quotients of free inverse semigroups that
satisfy any such identity.

Throughout, denote by X the subsemigroup of S generated by a and b−1. It is
clear that multiplication in S of words from X is simply concatenation, so that a and
b−1 are free generators of X .

LEMMA 3.1. Let w be a nonempty reduced word that is nonzero in S. Then w ◦ w−1
1 w2

for some w1, w2 ∈ X1.

Proof. Observe that ab = b−1a−1 = 0 in S. Let u be any reduced word that is
nonzero in S. (i) If u begins with a or b−1, then u ∈ X . (ii) If u ends with a−1 or b, then
u−1 ∈ X . Thus we may suppose that w does not begin with a or b−1 and does not end
with a−1 or b, for otherwise the conclusion of the lemma holds trivially. If w does not
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contain b−1, then w ◦ vaθ , for some positive integer θ and some word v ending with b,
so that aθ , v−1 ∈ X and the claim of the lemma follows. Suppose then that w contains
b−1, so that w ◦ uv, for some u not containing b−1 and v beginning with b−1. Then
v ∈ X . Also u does not end with b since w is reduced. Either u ends with a−1, in which
case u−1 ∈ X and we are done, or u ends with a. In the latter case u ◦ u0aθ , for some
θ > 0 and u0 ending with b, whence u−1

0 , aθ v ∈ X and again the claim of the lemma
follows, completing the proof.

LEMMA 3.2. Let u, v be nonempty reduced words such that u, v ∈ X and uv−1 	= 0
in S. Then either u is a suffix of v or v is a suffix of u. In particular, if u and v have the
same length, then u ◦ v.

Proof. If u and v end with different letters, then without loss of generality
u ◦ u0a, v ◦ v0b−1, for some u0, v0, so that uv−1 ◦ u0abv0 = 0 in S, a contradiction.
Hence u and v end with the same letter so that there is a nonempty maximal suffix
x ∈ X such that u ◦ u0x, v ◦ v0x, for some u0 v0 in X1. Suppose that u0 and v0 are both
nonempty. Then u0v

−1
0 	= 0 in S, because u0v

−1
0 divides uv−1. Hence, from above, u0

and v0 end with the same letter, contradicting the maximality of x. Hence either u0 or
v0 is empty, and the lemma is proved.

LEMMA 3.3. Let u and v be nonempty reduced words in X such that the commutator
[u, v] is nonzero in S. Then uv ◦ vu.

Proof. Observe that uv and vu are nonempty reduced words of the same length
lying in X , and (uv)(vu)−1 	= 0 in S. Hence uv ◦ vu by Lemma 3.2.

LEMMA 3.4. Let w be a reduced word such that w2 	= 0 in S. Then w ◦ w−1
1 w2w1 or

w ◦ w−1
1 w−1

2 w1, for some w1, w2 ∈ X.

Proof. By Lemma 3.1, w ◦ u−1v, for some u, v ∈ X . Then vu−1 is a divisor of w2

and so is nonzero in S. By Lemma 3.2, either u is a suffix of v or v is a suffix of u, and
the conclusion of the lemma follows.

LEMMA 3.5. Suppose that u ∈ X, v ◦ x−1
1 x2x1, for some x1, x2 ∈ X, and vu2vu−1v−1

is nonzero in S. Then uv ◦ vu.

Proof. Certainly ux−1
1 is nonzero in S since it divides vu2vu−1v−1. Hence, by

Lemma 3.2, either u is a suffix of x1 or x1 is a suffix of u. Suppose first that x1 ◦ yu, for
some y ∈ X . Certainly yuy−1 is nonzero in S since it also divides vu2vu−1v−1. Hence,
by Lemma 3.2 again, y is a suffix of yu and so yuy−1 ∈ X . Further vu2vu−1v−1 is divided
by yu2y−1x2yu−1y−1x−1

2 , which in turn is divided by yuy−1x2yu−1y−1x−1
2 , since y is a

suffix of yu. Hence [yuy−1, x2] is nonzero in S, so that yuy−1x2 ◦ x2yuy−1, by Lemma 3.3.
It follows that uv ◦ vu. Suppose now that u ◦ u0x1, for some u0 ∈ X . Then u2vu−1v−1

is divided by [x1u0, x2], so that the latter is nonzero in S. Hence x1u0x2 ◦ x2x1u0, by
Lemma 3.3. It follows again that uv ◦ vu, and the lemma is proved.

LEMMA 3.6. Let u, v ∈ S and suppose that each of

vu2v(uv2u)−1, (vu2v)−1uv2u, v−1u2v−1(uv−2u)−1, (v−1u2v−1)−1uv−2u

is nonzero in S. Then uv ◦ vu.

Proof. Without loss of generality we may suppose that u and v are reduced.
Certainly u2 and v2 are nonzero in S so that, by Lemma 3.4, either u or u−1 ◦ w−1

1 w2w1

https://doi.org/10.1017/S0017089503001228 Published online by Cambridge University Press

https://doi.org/10.1017/S0017089503001228


266 D. EASDOWN AND L. M. SHNEERSON

and either v or v−1 ◦ w−1
3 w4w3, for some w1, w2, w3, w4 ∈ X . The four expressions

listed in the hypothesis of the lemma are permuted by interchanging u with u−1 or
v with v−1. Hence, without loss of generality we may suppose that u ◦ w−1

1 w2w1 and
v ◦ w−1

3 w4w3. Certainly uv 	= 0 in S, and so w1w
−1
3 , being a divisor of uv, is nonzero

in S. Hence, by Lemma 3.2, w1 is a suffix of w3 or w3 is a suffix of w1. Suppose that
w3 ◦ w5w1, for some w5 ∈ X . Put u0 ◦ w2 and v0 ◦ w−1

5 w4w5. Then v0u2
0v0u−1

0 v−1
0 	= 0 in

S since it divides vu2v(uv2u)−1. Hence, by Lemma 3.5, u0v0 ◦ v0u0, so that

uv ◦ w−1
1 u0v0w1 ◦ w−1

1 v0u0w1 ◦ vu,

and we are done. The case in which w3 is a suffix of w1 follows from the previous case
because vu2v(uv2u)−1 is inverted by interchanging u and v, and the proof is complete.

THEOREM 3.7. S = 〈a, b | ab = 0〉 satisfies the identity

PQ = QP (2)

where

P = P(x, y) = [yx2y, x−1y−2x−1]

and

Q = Q(x, y) = [y−1x2y−1, x−1y2x−1].

Proof. Let u, v ∈ S. If P(u, v) or Q(u, v) is zero in S then (2) holds trivially when
u, v are substituted for x, y respectively. Suppose that P(u, v) and Q(u, v) are nonzero
in S. In particular

vu2v(uv2u)−1, (vu2v)−1uv2u, v−1u2v−1(uv−2u)−1, (v−1u2v−1)−1uv−2u

are all nonzero in S, so that uv ◦ vu, by Lemma 3.6. Hence P(u, v) and Q(u, v) are
empty so that P(u, v) and Q(u, v) are idempotents and thus commute. Hence (2) holds
when u, v are substituted for x, y respectively, and the theorem is proved.

THEOREM 3.8. Let T = 〈A | c = 0〉, for some word c over A ∪ A−1. Then T satisfies
a nontrivial identity in signature with involution if and only if T is trivial, monogenic with
zero or isomorphic to 〈a, b | ab = 0〉.

Proof. The ‘if part’ is immediate by Theorem 3.7. Suppose that T satisfies
a nontrivial identity in signature with involution. In particular T contains no
nonmonogenic free inverse subsemigroup. Suppose A contains at least 3 distinct letters
a1, a2, a3. Then each of 〈a1, a2〉, 〈a1, a3〉 and 〈a2, a3〉 is a nonmonogenic free inverse
subsemigroup of FIA so that each contains an element divided by c. But by inspection
this is impossible. Hence A has at most 2 letters. If A has 1 letter then S is trivial or
monogenic with zero. Suppose finally that A = {a, b}. If c is J -equivalent to a single
letter, then S is monogenic with zero. Suppose that c is not J -equivalent to a single
letter. Without loss of generality we may suppose that a2 or ab divides c. By Lemma 2.1,
the inverse subsemigroups 〈ab−1, a−1b〉, 〈ab, ab−1〉 and 〈a−1b, ab〉 are free of rank 2, so
that c must divide elements from each of them. It is impossible however that a2 divides
an element of 〈ab, ab−1〉. Hence ab divides c, and so, by Lemma 2.2, c J ab, and T is
isomorphic to 〈a, b | ab = 0〉, completing the proof.
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