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A FINITE FORM FOR THE WRAPPED POISSON DISTRIBUTION
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Abstract

We give a finite form for the probability mass function of the wrapped
Poisson distribution, together with a probabilistic proof. We also describe
briefly its connection with existing results.
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If N has a Poisson distribution, then we say that M = N mod k has a wrapped Poisson
distribution on {O, 1, ... ,k -I}. Levy (1939) and Mardia (1972) use an equivalent form, the
distribution of (Nlk) mod 1 on {O, 11k, ... , (k -1)lk}.

The probability mass function for the wrapped Poisson distribution can readily be written in
terms of infinite sums. The main aim of the current paper is to express these probabilities in a
finite form, which appears to be previously unpublished (Blackwell (1990)). We indicate two
approaches to the proof of this result.

Theorem. Let N have the Poisson (A) distribution. The corresponding wrapped Poisson
distribution on {O, 1, ... , k - I} has probabilities given by

(1)

(2)

Pr (N mod k = n)
1 k-l . .

=-exp (-A) L exp «(o~A)(OknJ
k j=O

=!exp (-A) 'i1

exp (A cos (OJ))cos (Onj + hin (OJ)) (n = 0, ... ,k -1),
k j=O

where (J = 21&Ik, and (Ok = cos (J + i sin (J is a complex kth root of unity.

Proof. Using the fact that the quantities in the theorem are probabilities, and hence real,
the complex expression (1) can readily be rewritten in the form (2), involving only real
functions. Therefore it is sufficient to prove (1).

One approach to the proof of (1) is via the kth-order hyperbolic functions, given by

00 An + m k

J~(A) = L (k = 1 2 .... n = °... k - 1)
m=o(n+mk)! '" , , .
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These arise in the solution of the differential equation (dky /dxk) - Y = 0; see Kaufman (1955)
for a bibliography. There is a known finite form for JZ(·),

n _ 1~l j -nj
h(),) - k f:'o exp (Wk),)Wk .

Thus we have

Pr(Nmodk=n)= L Pr(N=n+mk)
m=O

= exp (-A)JZ(A)
1 k-l . .

=-exp(-A) L exp(w'kA)W;nJ,
k j=O .

as required.
Although Levy mentions the special case k = 2 of the theorem, in which J~(A) = cosh (A)

and J~(A) = sinh (A), the general connection between the wrapped Poisson distribution and
the higher-order hyperbolic functions does not appear to have been made before.

An alternative, probabilistic proof runs as follows. Consider the continuous-time Markov
chain {X(t); t ~ O} which cycles through the states {O,···, k - 1}, so that the only
permissible transitions are from state j to state j + 1, j = 0, ... , k - 2, and from state k - 1 to
state 0. Let all permissible transitions have transition rates equal to A, and X(O) = o. Since the
number of transitions up to time t has the Poisson (At) distribution, the distribution of X(l) is
just the wrapped Poisson distribution on {O, ... ,k - I} with rate A.

The generator Q of {X(t)} is circulant, so we can readily obtain the eigenvalues of Q,
which are A(~ -1), j = 0, ... , k -1, and the corresponding left and right eigenvectors
(Bellman (1960), Lancaster (1969)). By standard results (e.g. Karlin and Taylor (1975), p.
152) we can then calculate the probabilities

1 k-l . .

Pr (X(l) = n) = - exp (-A) L exp (W~A)W;nJ (n = 0, 1, ... , k -1),
k j=O

as required.
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