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We derive a macroscopic model for biofilm formation in a porous medium reactor to investig-

ate the role of suspended bacteria on reactor performance. The starting point is the mesoscopic

one-dimensional Wanner–Gujer biofilm model. The following processes are included: hydro-

dynamics and transport of substrate in the reactor, biofilm and suspended bacteria growth in

the pore space, attachment of suspended cells to the biofilm, and detachment of biofilm cells.

The mesoscopic equations are up-scaled from the biofilm scale to the reactor scale, yielding

a stiff system of balance laws, which we study numerically. We find that suspended bacteria

and attachment can have a significant effect on biofilm reactor performance.
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1 Introduction

Bacteria form a large domain of prokaryotic microorganisms that can be found through-

out the natural world. A bacterial biofilm is a layered aggregate formed by bacteria that

become attached to each other or a submersed surface. Due to their complex structure,

biofilms can adapt to many different environments, including living tissue, indwelling

medical devices, natural aquatic systems, and food processing plants [3, 7, 22]. A charac-

teristic feature of bacterial biofilms is their ability to encase themselves in extracellular

polymeric substances (EPS), which provide both mechanical protection and protection

against antimicrobials [1, 3, 10, 22].

Biofilms are inherently multi-scale structures. Individual cells form the microscale (∼ 1

micron), biofilm colonies represent the mesoscale (∼10–1, 000 microns); the macroscale
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(> 1 cm) is the scale of biofilm reactors and environmental system where biofilms form.

Inside the biofilm, physical, chemical, and biological processes occur on very different

characteristic time-scales [26]. Processes related to the change in volume of the biofilm

(growth, decay, detachment) are much slower (104–107 seconds) than the processes related

to substrate-mass balance (diffusion, convection, reaction), which occur on the order of

10−3 − 103 seconds [26, 34]. A commonly adapted approach to deal with these time-scale

discrepancies is to assume the system to be in quasi-steady state [26, 34]. On the other

hand, no common strategy for the spatial multiscale properties exists. In many instances,

macroscale models are formulated for the reactor and mesoscale models are simply

embedded in an ad hoc fashion. Such models, if they require a full numerical resolution of

the mesoscale model can become computationally expensive, wherefore often simplified

empirical or heuristic relationships are used to replace them, e.g. for substrate fluxes

between the biofilm colonies and the aqueous phase in the reactor.

Biofilms often form in saturated porous media, such as soils, or certain technical reactors,

such as sand filters of packed bed reactors, which prompts the need for the development

of models for such an environment. Biofilms are often used in the environmental industry

to contain spilled contaminants from entering nearby water sources through plugging

the pore channels [31]. Other applications for subsurface biofilms include the following:

subsurface remediation, oil recovery, and ground water protection [21, 32]. In this case,

biofilms sustain growth in the pore space of a porous medium. In these systems a growth

substrate travels through the porous medium and biomass is produced through the

consumption of such substrate. As the biofilm forms on the substratum, different factors

influence its behaviour. One factor that affects the structure of the biofilm is detachment.

In traditional models, whether they be continuously stirred tank reactors (CSTR) or plug

flow reactors (PFR), mass can become detached from the surface due to a variety of

different factors [1, 3, 17, 22].

Biofilm detachment is a complex process by which multiple mechanisms are involved.

The detachment process mediates biofilm accumulation, affects long-term behaviour of

the biofilm [3], and contributes to the production of suspended flocs [23], and down-

stream colonization [30]. Throughout the biofilm modelling literature several different

detachment rates have been proposed and their effect on the formation of a biofilm has

been investigated. Common mesoscopic detachment descriptions consist of a constant

detachment rate, detachment rate proportional to biofilm thickness, and detachment rates

that depend on hydrodynamic shear forces. It was found in [3] that the mesoscopic

detachment expression may affect the biofilm’s ability to establish itself and whether or

not the biofilm will clog the channel. However, when mesoscopic models are upscaled

to the reactor scale (macroscale) the mesoscopic detachment description may affect the

macroscopic model. When the porous medium is far from clogging, the authors in [1]

found that the mesoscopic detachment rate that depends on bulk flow hydrodynam-

ics behaved quantitatively like the constant detachment rate and had an effect on the

macroscopic reactor. However, the shear dependent detachment rate behaved like the

proportional attachment rate and vanished in the macroscopic limit causing no effect

on the macroscopic model. Under conditions where the porous medium was close to

the clogging state, the bulk flow hydrodynamics detachment rate behaved more like the

shear force detachment rate and caused the detachment rate to blow up [1]. The findings
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in [1] allow future models to simplify their detachment expression based on the reactor

regime.

Another factor to consider is the contribution of suspended bacteria to both biofilm

formation and consumption of substrate. The results in [22], in the case of a CSTR, indic-

ate that suspended biomass is more efficient at substrate removal than attached biomass,

as they are exposed to bulk flow substrate concentrations, whereas in biofilms bacteria in

inner layers can experience substrate limitations. By considering suspended bacteria two

issues arise [22]. First, the interaction between the biofilm and the suspended bacteria must

be described. We model the interaction between the biofilm and the suspended bacteria

by two generic functions that represent attachment and detachment processes. Second,

the suspended biomass must be characterized. We describe the suspended bacteria similar

to attached biomass and not individual planktonic cells, i.e. we implicitly assume that

detached biomass is present in the form of small flocs. This characterization allows for

suspended biomass to be modelled using the same growth parameters as biofilm biomass.

An important aspect of our study is to determine how incorporating a reattachment

process at the mesoscale (the actual biofilm scale on the order of 100 micrometre to mm)

contributes to macroscale model (the scale of the reactor, on the order of cm to m). Such

attachment and reattachment of suspended biomass is considered an important aspect of

the biofilm growth cycle [30]. Throughout the biofilm literature, biofilm attachment is not

well understood [22]. Models where attachment of suspended bacteria is neglected can

only simulate a reactor where a biofilm is already established, they cannot simulate and

study potential formation of a biofilm inside a clean reactor. In many cases, attachment

of suspended bacteria is included in the model [4, 17, 22]; however, attachment functions

are primarily chosen out of mathematical convenience. In [17], the authors study a simple

Freter model, where a fraction of cells are able to adhere to the surface; however, this

fraction is a decreasing function of wall occupancy. In [22], a reactor scale CSTR model

is formulated and attachment is assumed to occur at a constant rate, i.e. attachment is

proportional to the amount of suspended bacteria. By first formulating a mesoscopic model

with attachment, we can investigate whether or not attachment affects the macroscopic

reactor.

To investigate the effects of mesoscopic processes on the macroscopic reactor, we up-

scale our porous medium biofilm model from the mesoscale to the macroscale. Upscaling

techniques, in the form of volume/spatial averaging, have been used in a variety of studies

over the last decade, with emphases ranging from biofilm growth, pore scale transport,

biofilm performance, to CO2 sequestration in porous media [1, 9, 15, 18, 36]. By upscal-

ing the biofilm model, characteristics of the mesoscale model can more accurately be

incorporated in the macroscale model, rather than by directly formulating a macroscale

model, as in [17,22]. Moreover, macroscopic model parameters can be naturally expressed

in terms of the mesoscopic parameters [36]. Existing multiscale studies of biofilms tend

to focus on the correct treatment of substrate transport at the expense of making sim-

plifications to biofilm growth processes. An alternative is to start with a one-dimensional

mesoscopic biofilm model and couple it with a macroscopic transport equation for the

reactor, similar to [1].

A seminal one-dimensional mesoscopic biofilm model was introduced by [35] and has

been the basis for most biofilm engineering applications over the past few decades [34]. The
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model consists of a mass balance based on conservation principles. Here, the underlying

assumptions are that (i) the biofilm covers the substratum in a homogeneous layer, (ii)

the biofilm is stratified, i.e. its properties change only in the direction perpendicular to

the substratum, (iii) the biofilm is incompressible; thus, biomass production is translated

1:1 into expansion of the biofilm, and (iv) the flux of substrate into the biofilm follows

Fick’s first law [35]. These substrate fluxes are typically computed based on a steady-state

assumption, based on time scale disparity. In the original model, specific assumptions of

microbial growth were avoided, which allows the model to be adapted to any rate law or

empirical formula that may be applicable to the problem at hand.

Our starting point is the traditional one-dimensional Wanner–Gujer biofilm model

[35]. Mesoscopic processes included in the model are biomass production, substrate

degradation, cell death, and biofilm detachment similar to [1, 3, 22]. Unlike the model

described in [9] that assumes all interfaces are static resulting in biofilm growth translating

to an increase in biomass density, but not biofilm thickness, we assume in accordance with

traditional 1-D biofilm models that the biofilm density remains constant but thickness

increases.

In a recent study that investigated the effect of mesoscopic detachment expressions on

the macroscopic reactor [1], a major limiting assumption was made regarding suspended

bacteria. It was assumed that after biomass becomes detached from the reactor wall, it is

immediately washed out from the reactor. This assumption may be valid at most if the

flow velocity is high enough and the reactor small enough. However, suspended bacteria,

to some extent, are always present in biofilm reactors [22]. At lower flow velocities,

biomass that becomes detached may have the ability to reattach to the substratum further

down the flow channel. In this study, we introduce suspended bacteria and attachment of

suspended bacteria to the biofilm and investigate the effects on the reactor performance.

Overall the objectives of this study are to (a) develop a model for the formation of

a biofilm in a porous medium, (b) investigate the role of suspended bacteria, and (c)

determine the effects of attachment of suspended bacteria to the biofilm layer on the

solution of the system and on overall reactor performance.

The derivation of equations begins with a compartmentalizing process on the mesoscale.

The macroscale model is then constructed by refining the mesoscale compartmental

description. Underlying here is the assumption that the mesoscopic compartment is

negligibly small compared to the macroscopic system size, wherefore the macroscale

model is obtained by passing the mesoscopic compartment size to zero.

The resulting macroscale model is described by a non-linear convection-reaction equa-

tion in which the parameters of the macroscale model can be inferred from the parameters

of the mesoscale model. Due to complexity of the system, limited knowledge may be ob-

tained through analytical techniques. Here, we employ a numerical method for solving a

system of non-linear hyperbolic partial differential equations and investigate the effects

of parameters on solutions.

In [33], the starting point for the simulation of biofilm growth in a porous medium was

similar to ours, in that in main flow direction a sub-division in mesoscopic compartments

is carried out; however, the transition to the continuous limit was not made. Instead,

in [33], a simulation of the growth process consisted of the simulation of a small finite

number of such mesoscopic compartments.
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2 Mathematical model

2.1 Model assumptions

We consider biofilm growth in a homogeneous porous medium with a well-defined primary

flow direction. A growth promoting substrate and suspended bacteria are transported in

the pore space by convection and substrate is consumed to promote biomass growth both

on the substratum and in the bulk liquid. As the biofilm changes thickness, biomass can

become detached from the biofilm and enter the aqueous phase; vice versa, biomass from

the aqueous phase is able to (re-)attach to the biofilm. We assume that the flow rate

through the porous medium is kept constant.

To derive a mathematical model for the biofilm growth process on the macroscale, the

following mesoscopic assumptions are made:

(1) The porous medium can be described by parallel, non-communicating flow channels

of width ε [L] [16]. The flow in these channel is driven by specifying the reactor

flow rate.

(2) In the flow direction, the flow channels are compartmentalized by breaking them

down into small segments of length ε [L] each, cf. Figure 1.

(3) We assume, for simplicity, that the porous material is homogeneous, i.e. the pore

space is the same for each compartment of size ε× ε.

(4) In each compartment, biofilm can form in the pore space, where the walls of the flow

channel form the substratum. Biofilm growth is described by a 1-D biofilm model,

i.e. we assume that in each compartment of size ε× ε the biofilm is homogeneous.

We use the Wanner–Gujer 1-D biofilm model, i.e. assume that the biomass density

in the biofilm is constant and that production of new biomass is 1:1 translated into

biofilm expansion [3,22,34]. Similarly, biomass loss is equivalent to a corresponding

biofilm shrinkage.

(5) In addition to biofilm that is attached to the porous material, we account for

suspended bacteria in the aqueous phase, which covers the area of the pore space

not occupied by biofilm. In each compartment of size ε× ε, it is assumed that the

suspended biomass is completely mixed in the aqueous phase and that the volume

occupied by suspended biomass is negligible, i.e. suspended biomass is dissolved

in accordance with [8, 12, 22]. Transfer of biomass between the biofilm and the

aqueous phase takes place as a consequence of detachment and attachment.

(6) We assume that attachment process of suspended biomass to the substratum is the

same process as the attachment of suspended biomass to an existing biofilm colony,

i.e. we do not consider properties of the biofilm when describing the attachment

process.

(7) A non-reproducing growth limiting substrate is added to the reactor at the upstream

boundary. In the aqueous phase, we assume the growth limiting substrate to be

completely mixed. In the biofilm, the substrate diffuses from the biofilm/water

interface into the inner layers, i.e. perpendicular to the main flow direction of the

reactor. In the biofilm phase, the substrate is utilized by biofilm bacteria for growth;

in the aqueous phase, utilized by suspended bacteria.
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Figure 1. Representation of the macroscopic reactor (bottom) with macroscopic compartmentaliz-

ation (top left) and mesoscopic cells of size ε× ε (top right). Each cell contains a pore void fraction

p and biofilm λε forms on both of the boundary walls. To obtain the macroscopic description, ε is

passed to the continuous limit, ε → 0, i.e. the mesoscopic cell is reduced to a point.

(8) The flow rate in each channel of width ε is the same and remains constant. Biofilm

growth narrows the flow path, i.e. under the assumption of a constant flow rate,

can lead to faster local flow velocities. Growth limiting substrate and suspended

biomass are transported by convection in the flow channels.

The macroscopic model is obtained from the mesoscopic model by refining the com-

partments and taking ε to the continuous limit, ε → 0. A representation of both the

macroscopic and mesoscopic model can be seen in Figure 1.

2.2 Governing equations

2.2.1 Substrate concentration in the biofilm and substrate flux between aqueous phase and

biofilm

Substrate inside the biofilm is transported by Fickian diffusion in the z -direction, perpen-

dicular to the main flow direction of the reactor, and is consumed by bacteria for growth.

We invoke the standard time-scale argument from biofilm modelling that substrate diffu-

sion and utilization are much faster than biofilm growth, which allows a quasi-steady-state

assumption for the substrate [34]. If λε [L] is the thickness of the biofilm, then the sub-

strate concentration c(z) [M · L −2] in the biofilm is given by the solution of the two-point

boundary value problem

D
d2c

dz2
=

X∞
Yλ

f(c),
dc

dz
(0) = 0, c(λε) = C, 0 < z < λε, (2.1)
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where D [L 2 · T −1] is the diffusion coefficient of the substrate in the biofilm, X∞
[M · L −2] is the biomass density in the biofilm, and C [M · L −2] is the substrate

concentration in the completely mixed aqueous phase. In the quasi-steady model (2.1),

the bulk concentration C in the aqueous phase is treated as a constant; however, it is

time dependent on the reactor scale. Here, all masses are expressed in gCOD equivalents,

where gCOD refers to the amount of oxygen required for the chemical reaction to

take place, as is common in biofilm modelling [28]. Yλ [-] is the yield coefficient that

indicates the amount of biomass produced from a mass unit of substrate, e.g. expressed

in gCODbiomass/gCODsubstrate. The function f(c) [T −1] describes the consumption rate

of substrate by biomass inside the biofilm layer. This could be the first-order or Monod

kinetics, i.e.

fL(c) =
μλ

κλ
c or fM(c) =

μλc

κλ + c
, (2.2)

where μλ [T −1] is the per capita growth rate for the biofilm. In the case of Monod

kinetics, κλ [M · L −2] is the concentration at which the biofilm attains half-maximal

growth. The first-order kinetics is a special case of Monod kinetics for C � κλ. The flux

Jε [M · L −1 · T −1] of substrate into the biofilm is computed from c(z) as

Jε(C, λε) := D
dc

dz

∣∣∣
λε
. (2.3)

2.2.2 Mesoscopic biofilm model in the pore space

The biofilm thickness in the ith ε-cell λεi is determined from a mass balance for biofilm

growth, detachment, and re-attachment of bacteria. In our initial model formulation,

we use a generic detachment expression d̂ [T−1] and a generic attachment expression ã

[L · T−1] for the ith ε-cell, both of which we make more precise later.

Our basic assumption is that across the biofilm, the biomass density is constant at X∞
and that newly produced biomass leads directly to an expansion of the one-dimensional

biofilm with velocity ν [L ·T−1]. Following [1,22], this biomass velocity ν at location z in

the biofilm is obtained as the integral of the biomass production rate

ν(z, t) =

z∫
0

(f(ci(ξ)) − kd) dξ, (2.4)

where kd [T−1] is the biomass death rate and ci = ci(z) is the substrate concentration

in the ith ε-cell at location z in the biofilm according to (2.1). The time-dependency of

ν stems from the fact that the substrate concentration in the aqueous phase, C = C(t),

changes with time. It enters (2.1) via the boundary condition, whence the integrand is

time-dependent as well.

Thus, the one-dimensional biofilm thickness in the ith cell evolves according to

dλεi
dt

= ν(λε(t), t) − d̂λεi + ã,

https://doi.org/10.1017/S0956792518000189 Published online by Cambridge University Press

https://doi.org/10.1017/S0956792518000189


A simple model of biofilm growth in a porous medium 1117

or

dλεi
dt

=

λεi∫
0

f(ci)dz − kdλ
ε
i − d̂λεi + ã. (2.5)

Here, it is important to note that we consider the detachment process to take place at the

biofilm/aqueous interface only, as is common in 1-D biofilm modelling, see [34], but has

also been applied in 2D models, e.g. [11], rather than using a volumetric detachment rate

as in [24]. Underlying here is the notion that there is no detachment from the inner layers

of the biofilm.

Integrating (2.1) once and using (2.3), we can write the integral on the right hand side

in terms of the substrate flux as

λεi∫
0

f(ci(z))dz =
Yλ

X∞
D
dci

dz

∣∣∣
λεi

=
Yλ

X∞
Jε
i (Ci, λ

ε
i ).

In order to write all balance equations in terms of COD equivalents, we convert

thickness to bacterial mass (expressed in terms of gCOD equivalents), by multiplying by

the relative biofilm density X∞ and the length of the compartment ε. Using η := Yλ/X∞,

equation (2.5) can be rewritten as

εX∞
dλεi
dt

= εX∞ηJε
i (Ci, λ

ε
i ) − εX∞kdλ

ε
i − εX∞d̂λεi + εX∞ã. (2.6)

The substrate concentration in the aqueous phase is given by

d(ViCi)

dt
= εQCi−1 − εQCi − 2εJε

i (Ci, λ
ε
i ) −

1

Yu

g(Ci)UiVi, (2.7)

where εQ [L][L · T−1] is the flow rate in a channel of thickness ε. The flow rate in each

channel is obtained under the assumption that the global flow rate Q through the entire

reactor of width H [L] remains constant and is divided evenly across each channel of

width ε. In (2.7), Vi [L 2] is the volume of the aqueous phase, which is a function of

compartmental size ε and biofilm thickness λεi , namely

Vi = ε(εp− 2λεi ), (2.8)

where p [-] is the void fraction of the porous medium, see also Figure 1. The first two

terms on the right hand side of (2.7) describe the substrate inflow from the upstream

compartment with concentration Ci−1 and outflow into the downstream compartment with

concentration Ci, respectively. The third term on the right hand side of (2.7) describes

the flux of substrate into the biofilm, which also depends on ε. The fourth term on the

right hand side of (2.7) models the loss of substrate concentration due to reproduction

of suspended biomass in the aqueous phase, where the function g(Ci) [T −1] is a generic

bacterial growth rate function for the ith compartment; Ui [M · L −2] denotes the

concentration of suspended biomass in the aqueous phase. As in the case of bacterial

growth in biofilms, we propose suspended bacteria growth g(C) to be modelled by the
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first-order or Monod kinetics, i.e.

g(C) = gL(C) :=
μuC

κu
or g(C) = gM(C) =

μuC

κu + C
, (2.9)

where μu [T −1] is the per capita growth rate, and κu [M · L −2] is the concentration at

which growth is half-maximal.

Finally, the mesoscopic model is completed by constructing a mass balance that de-

scribes the concentration of suspended bacteria. We have

d(ViUi)

dt
= εQUi−1 − εQUi + 2εX∞d̂λεi − 2âViUi + g(Ci)UiVi, (2.10)

where the first two terms on the right hand side of (2.10) describe the inflow of biomass

from the upstream compartment with concentration Ui−1 and the outflow into the

downstream compartment with concentration Ui. The third term on the right hand side

accounts for detachment from the biofilm and the fourth term for attachment to the

biofilm, where â [T −1] is the attachment rate. The attachment terms in (2.10) and in

(2.6) must be equal, wherefore they are related by ã = âUV/(εX∞). Finally, the fifth term

describes growth of suspended biomass due to substrate concentration.

Using (2.8) along with the mesoscopic equations (2.6), (2.7), (2.10), we obtain

ε
d([εp− 2λεi ]Ci)

dt
= εQ(Ci−1 − Ci) − 2εJε

i (Ci, λ
ε
i ) −

ε

Yu

g(Ci)Ui[εp− 2λεi ], (2.11)

ε
d([εp− 2λεi ]Ui)

dt
= εQ(Ui−1 −Ui) + 2εX∞d̂λεi − 2âε[εp− 2λεi ]Ui

+ εg(Ci)Ui[εp− 2λεi ], (2.12)

εX∞
dλεi
dt

= εX∞ηJε
i (Ci, λ

ε
i ) − εX∞kdλ

ε
i − εX∞d̂λεi

+ âε[εp− 2λεi ]Ui. (2.13)

We non-dimensionalize the biofilm thickness λεi with respect to the compartmental size

ε. Then, λi [-] becomes the fraction of the pore space that is occupied by a biofilm growing

on one of the boundary walls. The non-dimensional variable is given by

λi :=
λεi
ε
, (2.14)

where λi must satisfy

0 � λi <
p

2
. (2.15)

If the second inequality is violated the model breaks down due to clogging of the flow
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channel. Substituting (2.14) into (2.11)–(2.13) finally yields the mesoscopic system:

d([p− 2λi]Ci)

dt
= Q

(
Ci−1 − Ci

ε

)
− 2

Jε
i (Ci, λ

ε
i )

ε
− [p− 2λi]

Yu

g(Ci)Ui, (2.16)

d([p− 2λi]Ui)

dt
= Q

(
Ui−1 −Ui

ε

)
+ 2X∞d̂λi − 2â[p− 2λi]Ui

+ g(Ci)[p− 2λi]Ui, (2.17)

dλi

dt
= η

Jε
i (Ci, λ

ε
i )

ε
− kdλi − d̂λi +

â

X∞
[p− 2λi]Ui. (2.18)

2.2.3 Macroscopic biofilm model

The macroscopic model is derived from the mesoscopic compartment model (2.16), (2.17),

and (2.18) by passing ε → 0, i.e. making the discrete mesoscopic compartments smaller

and smaller, until their spatial extension is negligible on the reactor scale, cf. also Figure 1.

In preparation of this, we first investigate how the substrate flux into the biofilm depends

on ε as ε → 0, for the first-order and Monod kinetics.

Proposition 2.1 Let c(z) be the solution to the two point boundary value problem

d2c

dz2
=

μλ

κλ
c,

dc

dz
(0) = 0, c(λε) = C, 0 < z < λε.

Then the flux of substrate into the biofilm is such that

Jε(C, λεi ) = D
dc

dz
(λε) = O(ε).

Proof Let k := μλ/κλ, then the solution of the boundary value problem is

c(z) = C
e−

√
kz + e

√
kz

e−
√
kλε + e

√
kλε

.

Hence, by differentiation, the flux into the biofilm is given by

Jε(C, λε) = D
dc

dz

∣∣∣
λε

= DC
√
k tanh

(√
kλε

)
.

Using the variable transformation (2.14) and taking the limit as ε → 0, we have

lim
ε→0

J(C, λε)

ε
= lim

ε→0

DC
√
k tanh(ε

√
kλ)

ε
= DCkλ = const;

hence, Jε(C, λε) = O(ε). �

Proposition 2.2 Let c(z) be the solution to the two point boundary value problem

d2c

dz2
=

μλc

κλ + c
,

dc

dz
(0) = 0, c(λε) = C, 0 < z < λε. (2.19)
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Then, the flux of substrate into the biofilm is such that

Jε(C, λε) = D
dc

dz
(λε) = O(ε).

Proof Note that c = 0 is a lower solution for (2.19) and c = C is an upper solution.

Therefore, 0 � c(z) � C from standard comparison theorems for two-point boundary

value problems [6].

We consider now the following auxiliary linear boundary value problems

d2c1

dz2
=

μλc1

κλ + C
,

dc1

dz
(0) = 0, c1(λ

ε) = C,

and

d2c2

dz2
=

μλC

κλ + C
,

dc2

dz
(0) = 0, c2(λ

ε) = C.

From

μλc

κλ + C
�

μλc

κλ + c
�

μλC

κλ + C
,

the comparison theorems in [6] imply

c2(z) � c(z) � c1(z). (2.20)

The upper estimate c1(z) is analogous to Proposition 2.1, but with k := μλ/(κλ +C). Thus,

Jε
1(C, λεi ) = D

dc1

dz
(λε) = DC

√
μλ

κλ + C
tanh

(
μλ

κλ + C
λε

)
,

and, therefore,

lim
ε→0

J1(C, λε)

ε
= lim

ε→0

DC
√

μλ
κλ+C

tanh(ε
√

μλ
κλ+C

λ)

ε
= DC

μλ

κλ + C
λ = const.

Hence, Jε
1(C, λε) = O(ε), as above in Proposition 2.1. The lower estimate c2(z) is

c2(z) =
1

2

μλC

κλ + C

(
z2 − λε

2
)

+ C,

thus by differentiation we obtain

Jε
2(C, λεi ) = D

dc2

dz
(λε) =

DμλCλε

κλ + C
.

Using the variable transformation (2.14) and taking the limit as ε → 0, we have
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lim
ε→0

J2(C, λε)

ε
= lim

ε→0

D μλC
κλ+C

ελ

ε
= D

μλC

κλ + C
λ = const.

Thus, also Jε
2(C, λε) = O(ε).

Moreover, since c1(λ
ε) = c(λε) = c2(λ

ε) = C it follows from (2.20) that

dc2

dz
(λε) �

dc

dz
(λε) �

dc1

dz
(λε).

Therefore, for small enough ε, we find that dc/dz(λε) is bounded from below and above

by two O(ε) functions. By the squeeze theorem, we have, therefore, with the relationship

between substrate flux and gradient (2.3)

Jε(C, λε) = O(ε). �

Remark 2.3 In the above proof, we used that the fluxes of the super- and sub-solution

on the Monod boundary value problem can be estimated from above and below by

evaluations of the Monod equation. In [2] and [19], using very different approaches, such

terms were derived as an approximation of the flux itself under the assumption that the

biofilm is thin. In the simulations of [1], this algebraic approximation of the flux was used

instead of computing it from the two-point boundary value problem (2.1), a simplification

that we remove below.

Similarly, for the upscaling of the mesoscopic model to the macroscale, the behaviour

of the detachment and attachment rates d̂ and â as ε → 0 will be important. Various

detachment rates have been used in the 1-D biofilm modelling literature [3, 22, 27, 29];

on the other hand very little is known about attachment rate functions, which often are

chosen primarily out of mathematical convenience [4, 17, 22]. To account for that, we

formulate our result for generic expressions and choose specific representatives below.

Proposition 2.4 Consider (2.16)–(2.18) with generic detachment rate d̂ = O(εn1 ) and at-

tachment rate â = O(εn2 ) with n1, n2 � 0. Assume the flux into the biofilm is such that

Jε(C, λε) = O(ε). By passing ε → 0 to the continuous limit the macroscopic limit of the

system becomes

∂

∂t

⎛
⎝(p− 2λ)C

(p− 2λ)U

λ

⎞
⎠ +

∂

∂x

⎛
⎝QC

QU

0

⎞
⎠ =

⎛
⎜⎜⎝

−2J(C, λ) − [p−2λ]
Yu

g(C)U

2X∞dλ− 2a[p− 2λ]U + g(C)[p− 2λ]U

ηJ(C, λ) − kdλ− dλ + a
X∞

[p− 2λ]U

⎞
⎟⎟⎠ , (2.21)

where J(C, λ) := lim
ε→0

Jεi (C,λεi )

ε
, d := lim

ε→0
d̂, and a := lim

ε→0
â.

Proof By passing to the continuous limit as ε → 0, we have from (2.16) that

lim
ε→0

Ci − Ci−1

ε
=

∂C

∂x
,
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and similar for Ui. By assumption on Jε(C, λε), d̂ and â, the resulting macroscopic model

is given by (2.21). �

Remark 2.5 Per Propositions 2.1 and 2.2, both linear and Monod kinetics satisfy the flux

assumption in Proposition 2.4.

Remark 2.6 Proposition 2.4 is formulated for a generic detachment rate expression. Several

specific detachment expressions have been used in the biofilm literature, some of which

have been compiled in [1]. In [1], based on a review of earlier published work, four different

mesoscopic detachment expressions, as a function of mesoscopic biofilm thickness λ̃ [L],

were considered and their effect on the macroscopic model via volume averaging was

investigated. The mesoscopic detachment expressions are

d̂1(λ̃) = δ,

d̂2(λ̃) = δλ̃,

d̂3(λ̃) = δ

(
τ

τ0

)ν

, 0 < ν < 1,

d̂4(λ̃) = δτλ̃,

where in each case δ denotes a constant detachment rate coefficient, the dimension of

which may be different in each case. τ = τ(λ̃) denotes the hydrodynamic shear rate (cf. [1]

for its derivation and definition), τ0 is a reference shear rate, and the exponent ν was

derived from experimental observations. In [1], it was found that detachment effects from

d̂2 were negligible in the macroscopic limit; however, for d̂3 and d̂4, the effects of local

hydrodynamic conditions carried over to the macroscale. Furthermore, it was found that

for small λ̃ � εp/2, the model with d̂3 behaved similar to d̂1 and d̂4 behaved like d̂2.

As λ̃ → εp/2 the two detachment expressions that were depended on hydrodynamic

conditions, d̂3 and d̂4, behaved similar, i.e the detachment rates blow up. In this paper, we

investigate our model when λ � εp/2, and therefore select d̂1 as our primary detachment

rate expression, which could also be re-interpreted as d̂3. Then, we have d̂ε = O(ε), i.e. d

in (2.21) is a constant.

To complete the macroscopic model initial conditions on C , U, and λ must be specified,

λ(0, x) = λ0(x), C(0, x) = C0(x), U(0, x) = U0(x), (2.22)

as well as boundary conditions for substrate and suspended biomass on inflow

C(t, 0) = C0(t), U(t, 0) = U0(t). (2.23)

The specific choice of these functions will be stated below where simulation studies are

described.
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2.3 Numerical treatment

We discuss here briefly the numerical treatment for Monod growth kinetics for both biofilm

and suspended bacteria, as this is what we will use in the simulations below. For more

details on the numerical realization and convergence of the implemented method, see [14].

A variable transformation is made first in order to write the system (2.21) in the standard

evolution equation form of balance laws. We introduce the new dependent variables:

S := (p− 2λ)C, W := (p− 2λ)U. (2.24)

Then, the system (2.21), along with the Monod growth kinetics for suspended bacteria

gM(C) given in (2.9), is obtained as

∂

∂t

⎛
⎝ S

W

λ

⎞
⎠ +

∂

∂x

⎛
⎜⎝

QS
p−2λ

QW
p−2λ

0

⎞
⎟⎠ =

⎛
⎜⎜⎜⎝

−2J
(

S
p−2λ

, λ
)
− 1

Yu

μuSW
κu(p−2λ)+S

2X∞dλ− 2aW + μuSW
ku(p−2λ)+S

ηJ
(

S
p−2λ

, λ
)
− (kd + d)λ + aW

X∞

⎞
⎟⎟⎟⎠ . (2.25)

To solve (2.25), we use the Uniformly accurate Central Scheme of Order 2 (UCS2)

proposed in [20]. See Appendix A for a description of the method. UCS2 is an implicit

method that calculates two predictor (intermediate) steps, which are then used to calculate

grid points at the next time step. Since the method is an implicit method, stiffness issues

related to the varying characteristic timescales are avoided. This requires to solve non-

linear systems of three equations for three unknowns in each grid point. We use Newton’s

method for this task. To evaluate the fluxes, the two-point boundary value problem (2.1) is

solved using a single shooting method based on interval bracketing and the Runge–Kutta–

Fehlberg method RKF4(5) [5, 13]. This requires the derivatives of the fluxes J , for which

we do not have an analytic expression. In our implementation they are approximated by

finite differencing.

The method was implemented in C and compiled and tested using GNU and Intel

compilers (gcc version 5.0.0, icc version 17.0.2). Simulations were carried out on a standard

Linux desktop workstation under Ubuntu 16.04. All plots were generated using MATLAB

v. 8.6.0.267246 (R2015b).

In the case of first-order kinetics, which we do not pursue here further, the numerics

simplifies substantially because the two-point boundary problem for the substrate can be

solved analytically and exact expressions for the fluxes are available.

3 Simulation results

In the following sections, we provide simulation results of the system (2.24). Parameter val-

ues for all simulations are given in Table 1 and simulation configurations are summarized

in Table 2.

3.1 A typical simulation

To illustrate the model behaviour, two representative simulations are carried out: in the

first one, the effect of suspended bacteria and attachment is neglected, i.e. the original
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Table 1. Model parameter values used in simulations

Parameter Symbol Value Unit Reference

Substrate inflow concentration C0 1.0 gm−2 Assumed

Suspended bacteria inflow concentration U0 0.0 gm−2 Assumed

Relative biofilm thickness at inflow λ0 0.0025 . . . Assumed

Biomass density X∞ 100.0 gm−2 [34]

Biofilm maximum growth rate μλ 6.0 d−1 [34]

Biofilm half saturation constant κλ 4.0 gm−2 [34]

Biofilm yield coefficient Yλ 0.63 . . . [34]

Suspended bacteria maximum growth rate μu 6.0 d−1 [34]

Suspended bacteria half saturation constant κu 4.0 gm−2 [34]

Suspended bacteria yield coefficient Yu 0.63 . . . [34]

Void fraction p 0.5 . . . Assumed

Biofilm natural cell death rate kd 0.4 d−1 [34]

Detachment coefficient d 0.5 d−1 [1]

Attachment coefficient a Varied d−1 Assumed

Flow velocity Q 0.05 md−1 Assumed

Diffusion coefficient D 10−4 m2d−1 [34]

Reactor length L 0.15 m Assumed

model of [1] is solved; in the second one, they are considered, i.e. the new model (2.21) is

solved.

In these simulations, the initial conditions for substrate concentration, suspended bac-

teria concentration, and relative biofilm thickness are set to constants, C0 = 1.0 [gm−2],

U0 = 0.0 [gm−2], and λ0 = 0.0025 [-], respectively. Along the boundary, these same values

are used for the substrate concentration and the suspended bacteria concentration. To

obtain the relative biofilm thickness along the boundary, the solution of

∂λ

∂t
= ηJ

(
S

p− 2λ
, λ

)
− (kd + d)λ +

aW

X∞

is calculated using the trapezoidal method, which is equivalent to UCS2 in the absence

of convection [20], i.e. it is consistent with the numerical scheme that we use for the

PDE system. S and W are calculated here using the boundary conditions for substrate

concentration and suspended bacteria concentration along with (2.24).

In the following simulations, we investigate the solution to the system while considering

only Monod growth kinetics for both the flux into the biofilm and growth rate of

suspended bacteria.

3.1.1 Simulation without suspended bacteria

In the first simulation, the effect of suspended bacteria is neglected (i.e. μu = 0.0 [d−1]

and a = 0.0 [d−1]) to provide a base case for comparison of our model. This base case

is the model described in [1]. The simulation results are visualized in Figure 2. The

substrate concentration depletes quite rapidly in the inflow region of the reactor, which

https://doi.org/10.1017/S0956792518000189 Published online by Cambridge University Press

https://doi.org/10.1017/S0956792518000189


A simple model of biofilm growth in a porous medium 1125

Table 2. Boundary conditions and altered model parameter values for various simulations

Simulation Boundary conditions Parameter values Results

Illustrative simulation with C0 = 1.0 [gm−2] μ0 = 0.0 [d−1] Section 3.1.1

suspended bacteria and U0 = 0.0 [gm−2] a = 0.0 [d−1] Figure 2

attachment not considered λ0 = 0.0025 [-]

Illustrative simulation with C0 = 1.0 [gm−2] Section 3.1.2

suspended bacteria and U0 = 0.0 [gm−2] a = 0.3 [d−1] Figure 3

attachment considered λ0 = 0.0025 [-]

Comparison between base C0 = 1.0 [gm−2] a = 0.3 [d−1] Section 3.2

model and new model U0 = 10.0 [gm−2] L = 0.05 [m] Figure 4

λ0 = 0.0025 [-]

Effects of suspended C0 = 1.0 [gm−2] a =varied [d−1] Section 3.3

bacteria and attachment U0 = 0.0 [gm−2] L = 0.05 [m] Figure 5

λ0 = 0.0025 [-]

Biofilm formation in C0 = 1.0 [gm−2] a =varied [d−1] Section 3.4

clean bed reactors U0 = 10.0 [gm−2] L = 0.05 [m] Figure 6

λ0 = 0.0 [-]

C0 = 1.0 [gm−2] a =varied [d−1] Appendix B.1

Variable flow rate U0 = 0.0 [gm−2] L = 0.05 [m] Figure B 1

λ0 = 0.0025 [-] Q =varied [gm−1]

Inclusion of suspended C0 = 1.0 [gm−2] a =varied [d−1] Appendix B.2

bacteria death U0 = 00.0 [gm−2] L = 0.05 [m] Figure B 2

λ0 = 0.0025 [-] kdu = 0.4 [d−1]

is consistent with the Iwasaki model for sand filters described in [25]. In the downstream

region, the concentration levels off. The concentration level decreases as time increases.

The concentration profile is reflected in the biofilm thickness.

The biofilm grows near the inlet and stratifies further down the flow channel. In the

downstream region, the biofilm shows net loss, being thinner than at initial time. This is

a consequence of substrate depletion. Low substrate concentrations in the aqueous phase

lead to small substrate fluxes into the biofilm, compared to cell death and biofilm loss

rates, whereas in the inflow region the strong detachment losses into the aqueous phase

are compensated by growth, they dominate in the downstream region.

3.1.2 Simulation with suspended bacteria

In the second simulation, the suspended bacteria compartment is introduced with a growth

rate of μu = 6.0 [d−1] and the effects that suspended bacteria have on the solution to (2.25)

are examined. In this simulation, there are no suspended bacteria added to the channel at
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Figure 2. Simulation of (2.25) with non-linear flux inside the biofilm layer and without suspended

bacteria. Parameter values reported in Table 1. Concentration for original substrate (C) and

transformed variable (S ), as well as relative biofilm thickness are captured throughout the reactor

at different times. Inflow concentration of substrate and suspended bacteria are C0 = 1.0 [gm−2]

and U0 = 0.0 [gm−2], respectively.

the inlet (i.e. U0 = 0.0 [gm−2]), i.e. suspended bacteria concentration stems from biomass

becoming detached from the biofilm. In this simulation, suspended bacteria can attach to

the substratum or the existing biofilm. Suspended bacteria also contribute to substrate

degradation for growth before being washed out of the reactor. In this simulation, we

therefore give up the assumption of [1] that detached biomass is immediately removed.

The results are visualized in Figure 3. Again, the substrate concentration is rapidly

depleted. However, with the introduction of substrate consuming suspended bacteria, this

depletion is faster than in the previous case (cf. Figure 2). Growth of suspended biomass

due to substrate consumption amplifies this effect. Suspended bacteria and attachment also

plays a role in determining biofilm thickness. In Figure 3(e), the relative biofilm thickness

near the end of the flow channel at a given time is larger than the relative biofilm

thickness at the same location when the suspended bacteria is not present (cf. Figure

2(c)). Although suspended bacteria consume substrate, resulting in less substrate further

down the flow channel, there is still a net increase in biofilm thickness due to attachment.
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Figure 3. Simulation of (2.25) with non-linear flux inside the biofilm layer and suspended bacteria.

Parameter values reported in Table 1. Concentration for original substrate (C) and transformed

variable (S ), original suspended bacteria concentration (U) and transformed variable (W ), and

relative biofilm thickness are captured throughout the reactor at different times. Inflow con-

centration of substrate and suspended bacteria are C0 = 1.0 [gm−2] and U0 = 0.0 [gm−2]

respectively.
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In fact, Figure 3(c) illustrates that the suspended bacteria concentration begins to increase

over time leading to higher attachment. We also see that as the substrate nears depletion

(t = 1.0 [d]) there is less net mass exchange from the biofilm into the aqueous phase. Since

suspended bacteria are still able to attach after substrate is depleted, a decreased net loss

results (cf. Figure 3(f)).

Overall, these two simulations illustrate that suspended bacteria and attachment affects

the solution of (2.25). Since suspended bacteria also consume substrate, there is less

substrate available for biomass production in the biofilm. However, attachment can still

allow the biofilm thickness to increase. The role of suspended bacteria is essential to

the proper description of a porous medium biofilm reactor and must therefore not be

neglected.

3.2 Role of suspended biomass in substrate removal

Going forward we refer to the model without suspended biomass and attachment as the

base model, in reference to [1], and the model in which these factors are considered as the

new model, as it has been introduced here first.

In the first comparative simulation of both models, we investigate how the suspended

bacteria and the attachment rate affect the substrate concentration at outflow, the substrate

removal rate, the total biomass in the reactor, and the total reactor biofilm biomass. Here,

the reactor length is fixed to be L = 0.05 [m] and the attachment rate is a = 0.3 [d−1]. In

these simulations the inflow conditions are set to C0 = 1.0 [gm−2], U0 = 10.0 [gm−2], and

there is an assumed biofilm with relative thickness λ0 = 0.0025 [-]. Simulation results are

reported in Figure 4.

In Figure 4(c), the maximum amount of biomass occurs much sooner in the new model,

and at much higher levels, whereas, as seen in Figure 4(a), the substrate concentration

profile is much lower in the new model than the base case. The higher biomass in the

reactor in the new model is reflected by a thicker biofilm, cf. Figure 4(d), although most

of the biomass in the new model is in the suspended phase. Since suspended biomass in

the aqueous phase experiences higher substrate concentrations than the biofilm, it can

grow faster and is more efficient in removing substrate from the reactor despite being

washed out. In this simulation, suspended biomass was added to the system on inflow.

It did have no effect on the base model, but in the new model, it dominated the reactor

performance, with biofilm contributions being nearly negligible. This simulation highlights

the importance of the inclusion of suspended bacteria to substrate removal.

3.3 The role of (re-)attachment of suspended bacteria

We now investigate the effect of attachment on the system described by (2.25) by varying

the attachment rate. The reactor length is set to L = 0.05 [m] and the inflow concentration

for substrate and suspended bacteria are set to C0 = 1.0 [gm−2] and U0 = 0.0 [gm−2],

respectively. Thus, unlike the previous section, we consider now again the case with no

suspended biomass on inflow. The reactor is assumed to have an established biofilm

on the porous fabric with a relative biofilm thickness of λ0 = 0.0025 [-]. The value of

the attachment rate a is increased from 0.0 [d−1] to 1.0 [d−1] by increments of 0.2.
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Figure 4. Comparison of the new model and the base case in a 5 cm reactor. Inflow concentration

of substrate and suspended bacteria are C0=1.0 [gm−2], U0=10.0 [gm−2], respectively. Here, the

reactor is assumed to have an established biofilm with a relative thickness of λ0=0.0025 [-].

In these simulations, when a = 0.0 [d−1] detached biomass does not reattach to the

biofilm; however, detached biomass consumes substrate in the aqueous phase, which is

fundamentally different than the base model where detached biomass becomes inactive.

All other parameter values are listed in Table 1.

Results are reported in Figure 5. An increase in the attachment rate corresponds to a

decrease in suspended biomass and an increase in biofilm biomass. Figure 5(b) illustrates

a significant difference in suspended biomass of 21% between the attachment rates of

a = 0.0 [d−1] and a = 1.0 [d−1]. We also see from Figure 5(c) that the total biomass in the

reactor increases as the attachment rate increases. For the first 0.5 days the value of

the attachment rate does not play a significant role in determining the total biomass in

the reactor. However, after 0.5 days, we see that in simulations with higher attachment

rates, both the amount of total biomass and biofilm biomass are higher. For biofilm

biomass, there is approximately a 17% difference between the cases of no attachment

a = 0.0 [d−1] and an attachment rate of a = 1.0 [d−1], which suggests attachment has

a significant effect on biomass retained in the biofilm. The increase in biofilm biomass

is consistent with a decrease in suspended biomass for corresponding attachment rates.
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Figure 5. The effect of non-linear flux and variable attachment rates on (a) biofilm biomass, (b)

suspended biomass , (c) total biomass, and (d) substrate concentration in a 5 cm reactor. Inflow

concentration of substrate and suspended bacteria are C0=1.0 [gm−2], U0=0.0 [gm−2], respectively.

Here, the reactor was assumed to have an established biofilm with a relative thickness of λ0 =

0.0025 [-]. Parameter values reported in Table 1.

Since the amount of biomass in the biofilm is much larger than the total suspended

biomass (approx. four times larger), the increase in biofilm biomass is larger than the loss

in suspended biomass yielding a net gain in total biomass. It is important to note that

suspended biomass is less than biofilm biomass and biofilm biomass is much less than

the void fraction, i.e. U < λ � p/2. This provides also an a posteriori justification for the

assumption that the volume occupied by suspended bacteria can be neglected.

Figure 5(d) shows that the substrate concentration in the new model is lower than in

the base model without suspended growth and reattachment. We see a 13% difference

in substrate concentration between the cases where suspended bacteria is included with

an attachment rate of a = 0.0 [d−1], and the case where it is neglected, indicating that

neglecting these effects will underestimate reactor performance. In the initial phase, this

seems to be dominated by suspended growth alone, as all attachment rates yield similar

results. After the first 0.5 days, the substrate concentration evolves slightly differently

for different attachment rates, in the sense that higher attachment leads to slightly
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lower substrate concentrations. Additionally, after 1.2 days, we see a 14% difference in

substrate concentration between no attachment a = 0.0 [d−1] and an attachment rate

of a = 1.0 [d−1], suggesting that the attachment rate does significantly contribute to

substrate removal. The effect of varying the attachment rate is more pronounced for the

biomass in the reactor (cf. Figure 5(c)).

Again, we stress that in Figure 5 the case when the attachment rate is a = 0.0 [d−1] is

a fundamentally different case than the base case. When the attachment rate is zero, we

still have suspended bacteria playing a role in the system, i.e. suspended bacteria are not

immediately washed out of the reactor. Thus, unlike the base case, suspended bacteria

still consume substrate to promote growth in the aqueous phase. As seen in Figure 5(d) a

major effect of substrate depletion is given by the presence of suspended bacteria, which

is consistent with the findings in [22]. Furthermore, we find that the attachment process

also contributes significantly to substrate degradation.

We also considered the case when the mesoscopic detachment expression vanishes in

the continuous limit and the macroscopic model (2.21) simplifies to d = 0.0 [d−1]. In

the absence of suspended bacteria on inflow, this simulation configuration simplifies our

model and becomes the model described in [1] while neglecting detachment. With no

suspended bacteria in the reactor, attachment would have no effect and the biofilm would

grow strictly by consuming substrate via the concentration gradient. Adding suspended

bacteria at inflow would mimic the case from Figure 5 when a > d, resulting in an

increased loss to suspended biomass and an increase in the biofilm thickness.

3.4 Applications to clean bed simulations

Finally, we investigate whether or not a biofilm can form inside an empty reactor via

passing growth substrate and suspended bacteria through the reactor. We call an empty

porous medium reactor having no established biofilm on its surface a clean bed.

For this simulation, we rescale our reactor to a length of L=0.05 [m] and assume

the reactor has a clean bed. Growth substrate and suspended bacteria are added at the

inlet with concentrations of C0 = 1.0 [gm−2] and U0 = 10.0 [gm−2], respectively. The

attachment rate is increased from 0.2 [d−1] to 0.8 [d−1] by increments of 0.2 to determine

if higher attachment rates affect biofilm formation. The results are reported in Figure 6.

Figure 6(a) shows that it is possible to promote biofilm growth on a clean bed. At time

t = 1.0 [d−1] even for a low attachment rate of a = 0.2 [d−1], a biofilm with a relative

thickness of λ = 6.1×10−3 [-], which occupies approximately 2.4% of the void fraction, is

established. From Figures 6(c) and (d), we see that as the attachment rate is increased the

biofilm thickness also increased, with the thickest values occurring at the inlet. As time

progresses, the biofilm thickness continues to grow linearly, despite substrate becoming

extremely limited. This limitation is due to the abundance of suspended bacteria that

is constantly being added to the system at the inlet. The suspended bacteria is able to

attach to the biofilm, which causes the biofilm to grow linearly once the substrate becomes

depleted. For the same reason, when the attachment rate is increased, the biofilm thickness

at the end of the flow channel is also increased.

In Figure 6(e), we plot the effect of attachment on substrate concentration at a specific

location in the reactor (0.007 [m]). Despite there being a relatively high concentration
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Figure 6. Simulation of (2.25) on a clean bed (i.e. no established biofilm in the reactor). Inflow

concentration of substrate and suspended bacteria are C0 = 1.0 [gm−2] and U0 = 10.0 [gm−2],

respectively. Multiple attachment rates are used to determine the effect on substrate concentration

and relative biofilm thickness. Parameter values reported in Table 1.

of suspended bacteria in the reactor, we see that substrate is consumed more rapidly at

higher attachment rates. An important feature to note is that the lowest consumption

of substrate occurred when there was zero attachment (a = 0.0 [d−1]). This shows

that although suspended bacteria is capable of removing substrate from the reactor,
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a combination of suspended bacteria and attached bacteria is more efficient [22], as

residence times increase with attachment.

Figure 6(f) illustrates the response of suspended bacteria concentration to increased

attachment rates at a specific location in the reactor (0.007 [m]). We see for higher

attachment rates, suspended bacteria concentration initially decreases. This initial decrease

corresponds to the increase in biofilm thickness. In earlier stages of the simulation, the

biofilm is not very well established, i.e. the relative thickness is still quite small. In this

earlier stage, the increase in suspended bacteria is dominated by suspended growth rather

than detachment due to the fact that detachment is proportional to biofilm thickness. As

time increases and substrate concentration decreases (cf. Figure 6(e)) suspended bacteria

growth becomes limited. Simultaneously, biofilm thickness increases (cf. Figures 6(c) and

(d)) resulting in more detached biomass. Thus, the primary contribution to suspended

bacteria changes from bacterial growth to detachment of biofilm biomass.

These simulations provide insight into the formation of a biofilm on a clean surface

so long as there is sufficient bacteria in the bulk liquid and the attachment rate is large

enough.

4 Discussion

The objectives of this study were to derive a multiscale model for biofilms in porous media

and investigate the effects of suspended bacteria and attachment on the macroscopic

reactor.

By comparing two models, one without and one with suspended bacteria and at-

tachment, we observed a more rapid depletion of substrate concentration. This result is

consistent with other biofilm reactor models, such as the CSTR models in [17, 22]. Sus-

pended biomass is exposed to higher substrate concentrations and therefore has a growth

advantage over biofilm biomass, leading to faster overall growth. Attachment in the model

prevents some of the suspended biomass from being washed out; however, the amount

of suspended bacteria present in the reactor is affected by the flow rate. Attachment

increases bacterial residence time and can lead to thicker biofilms due to deposition. Thus,

biofilm in downstream regions can increase in thickness even if substrate concentrations

are unfavourable for growth in its inner layers.

By increasing the attachment rate, we initially saw no effect on substrate concentration.

As time progressed, we observed variations in the substrate concentration due to the varied

attachment rate. These variations suggest that the mesoscopic attachment expression,

under certain conditions, does significantly affect reactor performance. An increased

attachment rate resulted in less suspended biomass in the reactor and a thicker biofilm

layer.

Additionally, a decrease in substrate concentration strictly due to the inclusion of

suspended bacteria was found as compared to the model that had suspended bacteria

removed. As in [22], for a CSTR, we observed that the amount of suspended biomass

in the system was minor compared to biofilm biomass; however, we saw that suspended

bacteria was relatively more efficient at substrate removal than biofilm biomass. This is

due to the substrate concentration gradient found inside the biofilm. Since inner layers of

the biofilm are subject to small concentrations of substrate, their contribution to substrate
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removal is minimal. Decreasing the biofilm thickness, e.g. as a consequence of detachment,

does not necessarily reduce the thickness of the active layer in the biofilm. An assumption

of this model was to neglect the effect of natural cell death for biomass in the aqueous

phase. An a posteriori investigation into the effect of suspended bacteria death, included

in Appendix B.2, determined that although suspended bacteria death largely effects the

amount of suspended biomass in the reactor, the effect on substrate removal is dampened

and the overall qualitative behaviour remains unchanged. Although suspended bacteria is

more efficient at substrate removal, neglecting wall attached biofilms would over-predict

washout, and thus underestimate reactor performance. This result is in accordance with

the CSTR model of [22].

With suspended bacteria leading to an increased removal of substrate, a re-investigation

into the effects of mesoscopic detachment expressions on the macroscopic reactor may

be appropriate. Simulations in [1] found that the detachment rate coefficient affected the

amount of biomass detached from the biofilm. Moreover, the slight increase in detachment

was found to have only a minor effect on substrate removal. However, the simulations

carried out in [1] neglected suspended bacteria. An increase in biofilm detachment would

lead to an increase in suspended bacteria and possibly affect substrate removal.

When investigating the effect of suspended bacteria and attachment on a clean reactor,

we observed biofilm formation along the reactor walls. Even for small attachment values

(a = 0.2 [d−1]) formation of a biofilm that occupied 2.4% of the void fraction was

possible with the thickest portion of the biofilm occurring at the inlet. We also observed

the effectiveness of only suspended bacteria on substrate consumption (clean reactor with

a = 0.0 [d−1]). We found that suspended bacteria was relatively efficient at removing

substrate; however, suspended bacteria along with biofilm biomass was much more

effective.

Like most models, simplifying assumptions made limit the models ability to accurately

model the described physical system. One limitation of our model is the assumption

that the reactor maintains a constant flow. Underlying here is the implicit assumption

that the biofilm layer is infinitesimally thin and therefore has no effect on fluid flow. In

the above simulations, the relative biofilm thickness never approaches the clogging state

(λ = p/2); thus, hydrodynamic forces are minimal and the model does not break down. An

investigation into the effect of variable specific flow rates was conducted and the results are

reported in Appendix B.1. For larger flow rates, suspended biomass is washed out of the

reactor before they are able attach or contribute to substrate degradation. A consequence

of this result is that the substrate concentration is larger throughout the reactor, which

also allows for a larger biofilm thickness due to substrate availability. We find that

although quantitative results are different for variable specific flow rates, qualitatively the

reactor behaves in the same manner. Alternatively, to overcome this limitation, the model

can be adapted to consider a pressure driven flow field, which may also have implications

on both the attachment and detachment rate expressions. By adapting the model to a

pressure driven flow field, shear dependent attachment/detachment expressions may be

considered. A second limitation of our model results from the assumption that the biofilm

covers the substratum in a homogeneous layer. In reality this is not the case. Biofilms

are very complex and their structure/development may depend on a variety of different

factors such as substrate concentration availability and hydrodynamic conditions.
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5 Conclusion

In this paper, we studied a mathematical model for biofilm formation inside a porous

medium reactor. By including suspended bacteria, we were able to extend the model

outlined in [1] and investigate the effect that attachment and suspended bacteria have on

reactor performance.

Through numerical simulation, we illustrated that the inclusion of suspended bacteria

is essential for the proper description of the porous medium reactor. Suspended biomass

was found to be relatively more efficient at substrate removal than biofilm biomass. This

can be explained by the fact that substrate is more readily available to suspended biomass

than biofilm biomass, where inner layers only have limited access to substrate through a

concentration gradient.

While the specific choice of mesoscopic attachment rate expression may not largely

affect the macroscopic model quantitatively under all conditions, its inclusion is essential

in some cases. For example, it allows for biofilm formation on a clean bed. The inclusion of

suspended bacteria has major implications on reactor performance and biofilm thickness.

Suspended bacteria greatly contribute to the depletion of substrate, causing the reactor

to enter a substrate limiting regime sooner. Although suspended biomass is more efficient

in removing substrate, it is prone to washout. Attachment increases residence time and

mechanical stability of the reactor operation.

This suggests that models of bacterial growth in porous media should include both

biofilm and suspended biomass, as well as detachment and attachment processes.
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Appendix A Discretization of the partial differential equation

To solve the model given by (2.25), we employ the second-order Uniformly accurate

Central Scheme UCS2 for hyperbolic conservation laws that was originally introduced

in [20]. Problems of this type take the form

ut + (f̂(u))x = h(u).

Here, u represents the dependent variable, f̂(u) describes the nonlinear fluxes that are

obtained by passing to the limit, and h(u) describes all reaction terms, i.e.

u =

⎛
⎝ S

W

λ

⎞
⎠ , f̂(u) =

⎛
⎜⎝

SQ
p−2λ

WQ
p−2λ

0

⎞
⎟⎠ , h(u) =

⎛
⎜⎜⎜⎜⎝

−2J
(
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p−2λ

)
− 1

Yu
g

(
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)
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2X∞dλ− 2aW + g
(
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p−2λ
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J

(
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)
− (kd + d)λ + aW

X∞

⎞
⎟⎟⎟⎟⎠ .

In UCS2, the reaction terms are treated implicitly and the transport terms explicitly. The

time step Δt is constrained by

Δt � Δx
(p− 2 maxj(λ

n
j ))

2Q
,

where j is the grid position and Δx is the spatial discretization step of a uniform grid.

UCS2 computes two predictor steps for the reaction terms with time steps Δt/2 and

Δt/3:

u
n+1/2
j = unj −

1

2

Δt

Δx
f′j +

Δt

2
h(u

n+1/2
j ), (A 1)

u
n+1/3
j = unj −

1

3

Δt

Δx
f′j +

Δt

3
h(u

n+1/3
j ), (A 2)

where n is the previous time step, j is the grid position and f′j/Δx is a flux limiter

approximation of the derivative of f. We choose the min-mod function, i.e.

f′j = MM(f̂j+1 − f̂j , f̂j − f̂j−1), (A 3)

with

MM(x, y) =

{
sgn(x)min(|x|, |y|) if sgn(x) = sgn(y),

0 otherwise.
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The predictor steps are used to compute the solution to the system at the next time step

at staggered grid points as a solution of the grid-point local nonlinear algebraic system

un+1
j+1/2 =

1

2
(unj + unj+1) +

1

8
(u′j − u′j+1) −

Δt

Δx

(
f̂(u

n+1/2
j+1 ) − f̂(u

n+1/2
j )

)

+Δt

(
3

8
h(u

n+1/3
j ) +

3

8
h(u

n+1/3
j+1 ) +

1

4
h(un+1

j+1/2)

)
, (A 4)

where u′j is analogous to (A 3). We use for this Newton’s method and compute the Jacobian

using a finite difference approximation. To evaluate the function h, the substrate fluxes J

at the biofilm water interface must be computed. We use a single shooting method for

this, based on Newton’s method and a time adaptive Runge–Kutta–Felhberg RKF5(4)

method. Performance tests and validations for the method for the problem at hand can

be found in [14].

Appendix B Additional sensitivity analysis

In addition to Section 3, an investigation into the effect of variable specific flow rates and

the inclusion of suspended bacteria death was conducted to determine if these parameters

affected the qualitative results of the system.

B.1 Variable flow rate

The results from varying the flow rate are reported in Figure B 1. In these simulations, the

conditions from Figure 5 (i.e. 5 cm reactor, variable attachment rates, C0 = 1.0 [gm−2],

U0 = 0.0 [gm−2]) are re-simulated for different flow rate values, Q = 0.01, Q = 0.025,

Q = 0.05, and Q = 0.1 [md−1].

Simulations indicate that for smaller flow rate values more suspended bacteria remains

in the system. As the flow rate is increased, the wash out rate also increases, resulting in a

decrease in suspended bacteria. When the flow rate is less than Q = 0.5, the attachment rate

becomes more significant in determining the suspended bacteria concentration. Figures

B 1(a) and (c) also illustrate how the flow rate effects the biomass in the system. We see

that there is more biofilm biomass at a higher flow rate. This can be explained by the

fact that biofilm processes are not influenced by the flow rate. Additionally, as the flow

rate is increases and suspended biomass decreases, the amount of substrate remaining

in the system changes (cf. Figure B 1(d)). With less suspended biomass the substrate

concentration near the end of the reactor is larger, allowing the biofilm to continue to

grow. Similar to the results of Figure 5, we see that the value of the attachment rate has

an effect on substrate removal. These results suggest that a variable flow rate will change

the quantitative results; however, qualitatively the overall findings remain unchanged.

B.2 Inclusion of suspended bacteria death

We investigate the effect of suspended bacteria death on the system and determine a

posteriori if the assumption to neglect suspended death is valid. For these simulations

the reactor length is 5 cm, and it is assumed that there are no suspended bacteria in
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Figure B 1. Simulation results for variable flow rate Q in a 5 cm reactor. Initial substrate concen-

tration C0 = 1.0 [gm−2], suspended bacteria concentration, U0 = 0.0 [gm−2], and relative biofilm

thickness λ0 = 0.0025 [-].

the reactor at time t = 0.0 [d]. The initial concentration of substrate is set to C0 = 1.0

[gm−2], and it is assumed there is an established biofilm of relative thickness [gm−2]. The

simulation is run for 1.2 days with different attachment rates. The results are reported in

Figure B 2.

Here, we see that the results from the simulations with suspended bacteria death (Figure

B 2) are qualitatively the same as the results without suspended bacteria death (Figure 5).

Quantitatively, we see a slight reduction in the amount of suspended biomass and biofilm

biomass, resulting in a net decrease in total biomass. However, despite the reduction in

biomass, the effect on substrate removal is minimal. Results indicate a 17% difference

between the cases of attachment a = 0.0 [d−1] and a = 1.0 [d−1] for total biofilm biomass

in the system, a 12% and 13% difference in substrate concentration between the cases

of a = 0.0 [d−1] and the base model and a = 0.0 [d−1] and a = 1.0 [d−1], respectively.

Furthermore, we see a 20% difference in suspended biomass between attachment rates

a = 0.0 [d−1] and a = 1.0 [d−1]. The above differences are consistent with the results

from Figure 5. Thus, we are able to confirm a posteriori that our assumption to neglect

suspended bacteria death does not have a major effect on the solution to the system.
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Figure B 2. Simulation results of (2.21) with suspended bacteria death and various attachment

rates. Initial substrate concentration, C0 = 1.0 [gm−2], suspended bacteria concentration, U0 = 0.0

[gm−2], and relative biofilm thickness, λ0 = 0.0025 [-].

https://doi.org/10.1017/S0956792518000189 Published online by Cambridge University Press

https://doi.org/10.1017/S0956792518000189

