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The evolution of the interfacial instabilities on a smooth and laminar liquid sheet formed
by the oblique impingement of two liquid jets is investigated in the presence of external
acoustic forcing. The forced liquid sheet exhibits different instability patterns, such as
flapping flag, sinuous breakup and vibrating membrane structure, depending on the
forcing frequency. The transition frequencies, where the instability pattern changes, are
obtained using the linear theory of sheet instability and are shown to be increasing
functions of the jet Weber number. These different instability patterns show distinct
growth rate behaviours, which cannot be predicted using a unique theory such as the
conventional linear theory of sheet breakup. The dynamics of liquid sheet breakup in the
presence of forcing is further assessed with the help of established instability theories. Our
measurements show that the sheet thickness distribution plays a major role in dictating the
relative influence of different mechanisms on the instability characteristics. All the results
are finally consolidated to arrive at the instability regime map on the Weber number versus
frequency (We—®) space to serve as a guideline for adopting a suitable modelling approach.
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1. Introduction

Fragmentation of a liquid sheet is the most fundamental process in many liquid
atomization techniques. One such technique is impinging jet atomization in which the
droplets are formed from a planar liquid sheet. When a liquid jet impinges on a flat solid
surface or another liquid jet, an attenuating liquid sheet forms. The breakup of such a
liquid sheet has been a subject of fundamental research for many decades. Pioneering
analysis of such liquid sheets may be found in the works of Savart (1833a,b,c) and
later Taylor (1961). With the use of impinging jet injectors in the combustors of liquid
propellant rocket engines (Heidmann, Priem & Humphrey 1957; Gill & Nurick 1976;
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Oefelein & Yang 1993), more attention was given to the understanding of atomization
from a thinning liquid sheet. A brief overview of the salient features of planar liquid
sheets is given here. Depending upon the flow conditions, the liquid sheet undergoes
various regimes of breakup, in which different types of breakup mechanisms dominate
(Dombrowski & Hooper 1964; Bush & Hasha 2004). The atomization mode, favoured
by the Rayleigh—Plateau breakup of the thick rim of the sheet at lower sheet velocities,
changes to a wavy breakup by the Kelvin—Helmholtz instability at relatively higher
velocities (Li & Ashgriz 2006). Similarly, the liquid sheet is smooth at lower sheet
velocities and goes into the flapping mode as the relative velocity between the sheet and
the surrounding gas increases (Clanet & Villermaux 2002; Villermaux & Clanet 2002).

The fragmentation of a liquid sheet is caused by the amplification of small perturbations,
and it was shown that the growth rate of the sinuous type of disturbances dominates
the evolution of the instability (Squire 1953; Hagerty 1955). Perturbations may be
inherent to the system, such as the disturbances in the liquid jets, impact waves at
the impingement point, etc., or they may be imposed by some external agency. The
evolution of sheet instabilities has been studied experimentally using various sources for
external disturbances. Generation of Kelvin—Helmholtz waves of controlled amplitude and
frequency on a thin liquid sheet for a mechanically vibrated fan spray nozzle was studied
by Crapper et al. (1973) and Crapper, Dombrowski & Pyott (1975). Bremond & Villermaux
(2006) studied the destabilization of the sheet formed by oblique jet impact. The sheet rim
perturbed by external perturbations or by natural flow perturbations was investigated. Rhys
(1999) carried out experiments to investigate the effect of a stationary acoustic field on flat
and swirling liquid sheets. It was observed that the interaction of the acoustic field with
the sheet generates a sinuous wave riding on it. Flat liquids sheet having large aspect ratio
sandwiched between two impinging air streams in the presence of acoustic excitation was
studied by Sivadas & Heitor (2002) and Sivadas, Fernandes & Heitor (2003). Their result
showed that the breakup of the liquid sheet gets enhanced and there is reduction in the
breakup length of the sheet with acoustic excitation.

Mulmule, Tirumkudulu & Ramamurthi (2010) studied the acoustic excitation of circular
liquid sheets formed by two collinear jets. A stable or smooth sheet and a flapping
sheet were exposed to the acoustic field. Their result showed that the sheet responds to
the acoustic force at a certain minimum sound pressure level (SPL) and this minimum
SPL increases with increase in the excitation frequency. Roa, Schumaker & Talley (2016)
studied the coupling between the stationary acoustic perturbations and the impact waves
on the sheet formed by a like doublet injector configuration inside a pressurized chamber.
Under pressure antinode forcing, oscillations in the sheet size were observed; also in-plane
flapping of the sheet was observed when forced with the pressure node condition. The
effect of acoustic parameters on the breakup characteristics of a liquid sheet formed by
oblique jet impingement in the presence of an acoustic field was investigated by Dighe &
Gadgil (2018). Abrupt sheet breakup is observed for water sheets due to the low viscosity
of water. Characterizing the effect of acoustics on such sheets becomes difficult even
at moderate jet velocities due to their turbulent nature. Hence, the discrete frequency
response of a water sheet is attributed to its lower viscosity and can be explained by
considering the sheet parameters, like the sheet breakup regime, average sheet thickness
and average sheet area (Dighe & Gadgil 2019b). In contrast, smooth, laminar sheets of
high-viscosity liquids are affected over a range of forcing frequency, and the sequential
development of the morphology of the instability growth is observed within this range.
Important features of sheet instability observed in the experiments were shown to be
predicted by the Squire theory (Dighe & Gadgil 2019a).
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The phenomenon of growth of infinitesimal disturbances has been modelled with a
variety of instability formulations considering various dominant effects. Squire (1953)
first presented the linear theory of sheet instability wherein the aerodynamic interaction
between the liquid sheet and the ambient gas is considered to be responsible for the growth
of the instability. Bremond et al. (2007) imposed controlled mechanical vibrations to the
solid surface and modified the dispersion relation of Squire by taking the sheet thickness
variation into account. The use of linear theory was well demonstrated to predict the
instability characteristics in the case of external forcing for the conditions considered in
their work. The wave growth is also affected by the viscous effects present at the liquid—air
interface (Crapper et al. 1973, 1975). The visualization of the liquid—air interface by smoke
tracers along with strobe-light photography showed that there is growth of the boundary
layer and vortex formation upstream of the wave crest location. Vortex formation and
boundary layer growth are dependent on the sheet velocity and oscillation frequency. The
role of gas-phase viscosity on the instability characteristics has been illustrated (Soderberg
2003; Tammisola et al. 2011; Ye, Yang & Fu 2016) using the viscous instability theory.
Recently, the role of the sheet thinning effect on the instability of the sheet has been studied
theoretically and experimentally by Tirumkudulu & Paramati (2013) and Majumdar &
Tirumkudulu (2018). Paramati, Tirumkudulu & Schmid (2015) used acoustic forcing at
the point of impingement to compare the predictions using the conventional aerodynamic
theory and their thinning theory. It was shown that the growth rate of the sinuous waves is
primarily dominated by the sheet thinning effect alone for the set of flow conditions chosen
by them. Further, it was observed from their comparative study (Paramati ef al. 2015) that
there exists a certain region of flow conditions where the thinning theory is better suited
for predictions.

Even though there are different theoretical formulations available for modelling, the
zone of their suitability in terms of the flow and the forcing conditions still remains unclear.
The present work attempts to focus on this aspect. A configuration of an impinging jet
atomizer is used to form liquid sheets with various thicknesses, and travelling acoustic
perturbations of known frequency are imposed to study the evolution of the sinuous
waves. This particular study is of critical importance in the context of high-energy-density
combustors of liquid propellant rockets where the impinging jet atomizers are exposed to
the chamber acoustics. The coupling between the process of atomization from a liquid
sheet and the acoustic field may trigger unstable combustion (Anderson, Ryan & Santoro
1995). Knowledge of suitable theories under various forcing conditions is helpful in
predicting the response of the injector systems. The experimental and diagnostic methods
are elaborated in the following section. It is followed by the presentation of experimental
data and analysis using various stability theories mentioned above.

2. Experimental set-up

Figure 1(a) shows the schematic of the experimental set-up. The liquid sheet is produced
by the oblique collision of two 1 mm diameter (dp) similar jets, as shown in figure 1(b). The
impingement angle (26) can be adjusted from 60° to 120°. Two simple round orifices made
of brass are used to form the jets. The distance of the liquid jet between the impingement
point and the nozzle exit is maintained at 5 mm. A glycerol-water mixture in 80 : 20
proportion by volume is used in all the experiments. The use of a glycerol-water mixture
enables a smooth and laminar liquid sheet to be formed over a wide range of Weber
numbers (We). The surface tension (measured on a Wilhelmy plate surface tensiometer,
GBX CAP 26) and the viscosity (measured on an Anton Paar rotational rheometer,
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Figure 1. (a) Schematic of the experimental set-up for visualization of side views of the liquid sheet by
high-speed shadowgraphy. (b) Lateral view of the liquid sheet formed by the oblique impact of two similar
jets (Weber number We = 130, impingement angle 20 = 60°) without acoustic perturbation. The sheet regime
shown is a fluid chain regime in which orthogonally arranged tiny sheets are present.

MCR-301) of the working fluid are 0.058 N m~! and 0.054 Pa s, respectively. In the
present experiments, the ranges of Reynolds number (Re = p;Vdo/u, where p; is the
density of liquid, V is the jet velocity and w is the dynamic viscosity) and Weber number
(We = p1V2d0 /o, where o is the surface tension) are 55—163 and 130-1013, respectively.

Acoustic waves with wide range of frequency (100—1000 Hz) and SPL (50-110 dB) are
produced by using a loudspeaker (Ahuja VS 200, 8 €2, 200 W root mean square, 65—18 000
Hz, 117 dB maximum SPL). The speaker is placed 30 cm from the liquid sheet in order
to expose the sheet to uniform sound intensity. The acoustic wave signal is generated by
using the MATLAB sine signal generator and is amplified by using an amplifier (Crown
Xl1i800). The measurement of the SPL is carried out using a sound level meter (HTC SL
1350 with resolution 0.1 dB and accuracy 41 dB). The lateral views of the liquid sheet
are visualized using the shadowgraphy technique to derive various instability features.
High-speed images were recorded using an IDT NX4S2 camera (image resolution 1024
pixels x 1024 pixels at 2000 frames per second). The measurement of wave amplitude and
wavelength are obtained from the side views of the liquid sheet. The experimental wave
growth rate is calculated from the maximum wave amplitude and its location downstream
of the impingement point, as explained in Appendix A. All the measurements are carried
out in the image processing software ImageJ. More details on the experimental set-up and
measurements can be found in Dighe & Gadgil (2019a).
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Figure 2. Schematic of the liquid sheet with coordinate system and showing the nomenclature of various
parameters used in the stability analysis: (a) front view of the actual liquid sheet and (b) schematic of the side
view.

3. Results and discussion
3.1. Assessment of instability theories

When a thin liquid sheet moves in air, the dynamics of its disintegration is greatly
influenced by various effects. The movement of the liquid sheet in still air leads to
aerodynamic shear, which is the most fundamental and classical mechanism controlling
the wave formation on the sheet (Squire 1953). The thickness of a radially expanding liquid
sheet is not constant throughout, but varies radially as well as azimuthally from the point of
impingement (Miller 1960; Hasson & Peck 1964). It was shown that the spatial thinning
of the liquid sheet significantly affects its stability and, under certain flow conditions,
even dominates the aerodynamic effect (Tirumkudulu & Paramati 2013; Majumdar &
Tirumkudulu 2016, 2018). Further, the viscous effects at the liquid—air interface result in
boundary layer formation, which plays a key role in dampening the growth of the instability
waves. In the present section, we investigate the dominant mechanisms of sheet instability
that prevail in various acoustic frequency ranges using the existing formulations.

3.1.1. Aerodynamic effect
The inviscid, linear instability analysis of a constant-thickness liquid sheet moving in
ambient air (as shown in figure 2) was investigated by Squire (1953). It can be modified
by considering the thickness variation in the radial direction, and it is observed that
the modified instability formulation predicts the wave characteristics reasonably well
(Bremond et al. 2007; Dighe & Gadgil 2019q).

The dispersion relation for the sinuous mode, including the thickness variation along
the sheet centreline (x axis, ¢ = 0), having frequency w and wavenumber & is

1 7\ - o B
(5 = %) B = ok + Sk + sakd? =0, 3.1)
Here, a = pg/p1, k= kdy, @ = (27fdy)/u, here u =V and & (where h = d%/ex) is the
thickness sensitivity, which is found using the thickness distribution given by equation (5)
of Miller (1960) for an obliquely impacting jet configuration. Equation (3.1) is written in
general form and can be obtained by using h = d(z) /&x in the dispersion relations given
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by Bremond et al. (2007). For 26 = 60°, 90° and 120°, ¢ is 0.287, 0.686 and 1.334,
respectively; as the impingement angle increases, the sheets become progressively thinner.
In the present problem, the sheet is excited with the known acoustic frequency and hence
the predicted spatial growth rate is the imaginary part of the wavenumber (k;) and is
obtained from (3.1) for various real frequencies.

3.1.2. Viscous stability theory
The aerodynamic theory ignores the viscous effects. However, the viscous interaction of
the liquid sheet and the ambient gas significantly affects the growth rate, which has been
shown earlier (Lin, Lian & Creighton 1990; Li & Tankin 1991; Soderberg & Alfredsson
1998; Soderberg 2003; Tammisola et al. 2011; Ye et al. 2016). We adopt the formulation
described by Ye et al. (2016). The governing equations and boundary conditions for the
present case (i.e. a thin liquid sheet moving in still ambient, as shown in figure 2) are given
in Appendix B. The modified Stokes boundary layer model is used to describe the gas
velocity profile (Soderberg & Alfredsson 1998; Soderberg 2003; Tammisola et al. 2011;
Ye et al. 2016). The governing equations (B1) to (B9) after non-dimensionalization and
simplification give the well-known Orr—Sommerfeld equation (Lin 2003; Tammisola et al.
2011). Calculating the growth rate for a real (excitation) frequency can be carried out by
numerical solution of the governing equations along with the boundary conditions (B10)
to (B19) and modelling the viscous gas velocity profile by the modified Stokes boundary
layer (B20a,b), which is descried in Appendix B.

For determination of spatial growth rates experimentally, we define the measure of
spatial growth rate (§) as a function of maximum wave amplitude (a,,) and the distance of
the maximum amplitude downstream of the impingement point (x1):

B =tan~! (“—’") (3.2)

X1

This method is analogous to the measurement of the experimental growth rate by the
measurement of the local streamwise inclination angle of the wave surface (which is a
function of spatial location downstream of the nozzle exit and the local amplitude of
wave oscillation) reported in Tammisola et al. (2011). Measurement of the maximum
amplitude and its location is carried out from the sequence of sheet side views. The spatial
growth rates are obtained along a radial line (for ¢ = O line) directly downstream of the
impingement location, as the growth rate is expected to be maximum along this direction.
Note that the measurements and the theoretical predictions of the growth rates are carried
out at the location of the maximum amplitude. The details of the experimental growth rate
measurements are provided in Appendix A.

Although the complete sheet is exposed to the acoustic forcing, the visualization shows
that the perturbations are imposed at the impingement point and grow spatially with
distinct growth rates depending upon the forcing frequency. The convective nature of
this instability has already been demonstrated by Dighe & Gadgil (2019a). Hence, the
spatial analysis of the growth rates is presented in this work. Figure 3 shows the measured
growth rates corresponding to different forcing frequencies for 26 = 90° and We = 973.
The measured growth rate shows a decreasing trend with increase in the forcing frequency.
The trend observed in figure 3 also signifies that the wave growth rate remains nearly
constant at higher forcing frequencies.

Figure 3 also compares the predicted growth rates using the inviscid (Squire’s theory
(3.1)) as well as the viscous formulations of the aerodynamic interaction theory with
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Figure 3. Comparison of the measured growth rates with the growth rate predicted by considering the
aerodynamic effects (Squire’s theory). Here 26 = 90° and We = 793.

the experimental values. As expected, it may be seen that the growth rates derived from
the inviscid Squire’s theory are consistently greater than the growth rates obtained from
the viscous theory, and consequently the stability curve narrows down for the viscous
theory predictions. If the growth rate predictions are compared with the experimental
measurements, three distinct regions of comparison may be noticed from figure 3. At
moderate frequencies (the declining region of the stability curve), the predicted growth
rates obtained by considering the viscous theory closely match with the experimental
values. In the same frequency range, the growth rate predictions by Squire’s theory are
expectedly higher than the experimental measurements. The overprediction of the growth
rates by Squire’s theory is due to the inviscid assumption, and hence, to match the
experimental growth rates with Squire’s theory, a constant (less than unity) was employed
by Bremond ez al. (2007). This indicates that the viscous instability theory of liquid sheets
is suitable for the prediction of growth rates in externally perturbed liquid sheets.

In the range of lower frequencies, however, one can observe from figure 3 that the
experimental growth rates are significantly higher than even the predictions of inviscid
Squire’s theory. This indicates that the spatial amplification of the interfacial waves is
much larger at lower frequencies than predictions using the existing linear theories. There
may be the possibility that the growth rates corresponding to lower forcing frequencies
are not linear and that nonlinear theories may be required to capture such effects. Note
that there are two reasons for the higher growth rates in the case of low-frequency forcing.
First, the acoustic perturbation imposed at the impingement point varies inversely with the
forcing frequency for a given SPL. Second, the receptivity (response time) of the liquid
sheet is also higher at lower frequencies (esponse X 1/ facoustic)-

If we go to the other extreme of higher forcing frequencies, a significant deviation of
the experimental data from the predictions may be noted. There are certain frequencies
beyond which both the inviscid and the viscous theories predict zero growth rates, as
shown by the nature of the stability curve. However, the experimental data show finite
growth rates at those higher frequencies. It should also be noted that the experimental
growth rate almost saturates at the higher forcing frequencies. This disagreement indicates
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the role of some different mechanism responsible for describing the sheet breakup at
higher forcing frequencies. For a constant SPL, the perturbation amplitude decreases with
increase in frequency. Our estimation of perturbation amplitudes (Dighe & Gadgil 2019q)
suggests that the perturbation amplitudes become much smaller than the sheet thickness at
higher forcing frequencies. Such a small perturbation may not be sufficient to displace both
interfaces in phase to originate the sinuous mode. Unless the liquid sheet is displaced in the
transverse direction, the aerodynamic interaction effects do not influence the evolution of
the instability. It is hence possible that the sheet thinning effect may play an important role
in controlling the wave growth. To investigate this further, we consider the comparison of
experimental data with the predictions of sheet thinning theory (Tirumkudulu & Paramati
2013).

3.1.3. Sheet thinning effect

The dispersion relation accounting for the effect of the sheet thinning alone and neglecting
the interaction of the sheet with the surrounding gas for two head-on impinging jets, as
reported by Tirumkudulu & Paramati (2013) and Paramati et al. (2015), is

fa (R W (R . > i 0 (3.3)
- — — —w+z|z+ — —— =] =0 .
2 We x\2 We 2 2x

Equation (3.3) is identical to equation (3.5) of Paramati er al. (2015), where it was
reported that this equation may be modified using the variation in sheet thickness.
Accordingly, it is modified to obtain the dispersion relation for obliquely impinging jets by
adjusting the thickness distribution (for ¢ = 0) given by h = dg /ex and is expressed as

o) (D W (Y S 2 Y (e 2 B (3.4)
e —o+ |-+ — ———=]=0. .
2 We x\2 We 22X
The predicted spatial growth rate for thinning alone can be obtained from the imaginary
part of k in (3.4).

Figure 4 shows the comparison of the measured and predicted growth rates by the
thinning theory (3.4). The growth rates predicted by the thinning theory vary marginally
with forcing frequency and they are significantly lower than those from Squire’s theory
and the viscous instability theory. At higher frequencies, where Squire’s theory predicts
zero growth rate, the thinning theory gives finite growth rates that are very close to the
measured values, as shown in figure 4. The observed growth rates are also almost constant
at higher frequencies. Hence, it may be concluded that high-frequency forcing is better
modelled using the thinning theory. The cause of the underprediction of the growth rate
by the thinning theory (at lower and moderate frequencies) may be a consequence of the
thickness variation of the liquid sheet, and we further analyse the effect of this on the
theoretical predictions later in § 3.5.

Now, we investigate the wave growth over a wide range of injection and impingement
conditions to generalize the comparisons. For three different thickness distributions
obtained by varying the impingement angle, the comparison of the measured growth rates
with the predictions of the viscous theory and the thinning theory are shown in figure 5.
Close observation of figure 5 points out that at moderate frequencies the measured growth
rates can be closely predicted by the viscous theory. For lower frequencies, the measured
growth rates are higher than the predictions of both the theories. The measured growth
rates are finite after the frequency where the viscous theory predicts the zero growth rate.
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Figure 4. Comparison of the measured growth rates with the growth rate predicted by considering the sheet
thinning effects (thinning theory). Here 20 = 90° and We = 793.

For these frequencies (high), which fall outside the stability curve of the viscous theory,
the experimental growth rates approach the value predicted by the thinning theory. These
three distinct regions of growth rate variations may be noticed across different injection
conditions, as shown in figure 5. It may be noticed, however, that the agreement between
the growth rate measurements and the predictions of the thinning theory is better as the
sheet thickness decreases. This may be attributed to the fact that the predictions of the
thinning theory are sensitive to the absolute sheet thickness, which will be detailed in
subsequent sections.

3.2. Description of wave profiles

If the experimental growth rates are compared with various theoretical predictions, one
can clearly see three patterns as a function of forcing frequency. It is anticipated that
these three distinct growth rate patterns may yield completely different evolutions of the
interfacial wave profiles. Hence, the visualizations of the sheet edge are carried out over all
the operating conditions. Figure 6 shows typical wave profiles along with their envelopes
(averaged image showing the spatial growth in amplitude) for a constant perturbation
amplitude (dB level) for 26 = 60°, 90° and 120°. In each panel (for instance, figure 6a),
the top, middle and bottom rows display typical sheet responses in lower-, moderate- and
high-frequency ranges, and it is seen that the sheet morphologies are clearly different in
different frequency regimes. It should be noted that these different instability evolutions
are observed at the same SPLs.

When the liquid sheet is perturbed at lower frequencies, the amplitude of the waves
increases significantly and the sheet displays out-of-plane flapping. The wavelength of
the waves is also relatively larger and the growth takes place within fewer wavelengths.
Flapping of the liquid sheet similar to a flag was also observed in the case of a mechanically
vibrated fan spray nozzle by Crapper et al. (1973). Hence, this type of breakup is termed
the flapping flag type instability (named as flag in figure 6) to be consistent with the
earlier works (Crapper et al. 1973; Villermaux & Clanet 2002). In flapping flag type
instability, the wave amplitudes grow monotonically over the entire sheet length, resulting
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Figure 5. Comparison of the measured growth rates with the growth rate predicted by considering the viscous

effects, for (a) 20 = 60°, (b) 20 = 90° and (c) 20 = 120°. The gas velocity profile in the viscous case is
accounted for by using the modified Stokes model.
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Figure 6. Lateral views of the sheet showing three wave profiles leading to flapping flag, sinuous and vibrating
membrane instability, for (a) 20 = 60°, (b) 20 = 90° and (c) 26 = 120°. The vibrating membrane is a special
case of sinuous instability in which the sheet is unaffected but a large section of the sheet surface shows very
small-amplitude perturbations, similar to the vibrating thin membrane. The SPL level in all cases is 110 dB.
See also supplementary movie 1, available at https://doi.org/10.1017/jfm.2021.251.

in unbounded growth. This is also evident from the wave envelope corresponding to the
flag type instability (figure 6) which shows the divergent pattern. This corresponds to a
very high growth rate observed in the lower-frequency regime in figure 5. These growth
rates exceed those predicted by the linear theories mainly because of the nonlinear effects
resulting from the large and unbounded amplitudes.

Figure 6 also depicts the breakup of the liquid sheet in a pure sinuous mode (observed
at moderate frequencies and shown in the second row) where both the sheet surfaces
undulate in phase. Both the wavelength and the wave amplitude are seen to decrease and a

relatively greater number of wavelengths appear on the sheet compared with the flag type.
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This is a result of reduced growth rate as compared to the flapping sheet. This kind of
sheet breakup is dominated by the classical sinuous instability because the growth rate of
sinuous waves is higher than the varicose mode (Squire 1953). In the sinuous instability,
the wave amplitudes are bounded as seen from the corresponding wave envelope. Hence,
the growth rates in this frequency range match reasonably with the viscous linear stability
predictions, as shown in figure 5.

For higher frequencies, the growth rate is observed to be still lower. The sheet mainly
remains in its plane and the amplitude of the waves is not high enough to cause any
change in the sheet characteristics. The visualization of such a sheet resembles a stretched
membrane vibrating with high frequency but low amplitude. Hence, this type of sheet
instability is termed the vibrating membrane type instability (as shown in figure 6). A
vibrating membrane is a special case of sinuous mode in which the wave amplitudes
saturate and are very small as compared to the sinuous type. It should be noted that all
three instabilities evolve from the same sinuous perturbation introduced by the acoustics.
However, their growth rates are so distinct that they result in completely different breakup
characteristics. The sheet envelope for the vibrating membrane type breakup shows a very
small growth rate, which is quite similar to that of the unperturbed sheet. However, it
still has finite growth rate, which is comparable to the predictions of thinning theory. The
frequency ranges in which these three distinct wave profiles are observed and their growth
rate comparison with different theories are depicted in figure 5.

The high-frequency acoustics is unable to bring any noticeable change to the natural
sheet breakup phenomenon. These forcing frequencies are higher than the lower cutoff
frequency, as shown earlier in the work of Dighe & Gadgil (2019a). This means that the
breakup at forcing frequencies higher than the lower cutoff frequency is dictated by the
vibrating membrane type breakup. For forcing frequencies smaller than the lower cutoff
frequency, where the forcing brings appreciable changes to the sheet characteristics, the
breakup may be dominated either by the flag type instability or by the sinuous wave
instability. Both these modes belong to the unstable forcing condition, and the frequency
separating these modes is termed here as the transition frequency (f;). In the following
section, we try to establish the transition frequency based on experimental observations
supported by certain theoretical measures.

3.3. Transition in instability patterns

The nature of waves and the associated features noticed for different types of instability
patterns are significantly different. To derive the transition frequencies of the instability
patterns objectively, the wave characteristics, such as the wave aspect ratio, the spatial
wave growth and the critical length, are used. The wave aspect ratio (AR) is defined as

am
AR = 1 (3.5)
where a,, is the maximum wave amplitude and A is the wavelength.

Figure 7 shows the variation of the wave aspect ratio with forcing frequency for different
Weber numbers (7a), and different SPLs (7b). It has been reported earlier by Villermaux &
Clanet (2002) that the wave aspect ratio remains almost constant (for their case, 2a,, /A ~
0.8) for naturally flapping liquid sheets. However, a close observation of figure 7(a) points
out that, for a fixed Weber number and SPL, the aspect ratio is a non-monotonic function
of forcing frequency. It initially increases with the increase in frequency, attains a peak
value and decreases thereafter. A similar trend is observed for different Weber numbers.
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Figure 7. Effect of forcing frequency on the wave aspect ratio, for 20 = 90°. (a) Effect of Weber number on
transition frequency. Here, fi is the first forcing frequency (100 Hz) and f;c is the lower cutoff frequency for
We = 793. (b) Effect of SPL on transition frequency.

If the sheet breakup is governed by a unique mechanism at all forcing frequencies, then
the wave aspect ratio is expected to be unaltered. Hence, we propose that this change in
the variation of the aspect ratio is a consequence of the change in the growth pattern of
instability. The forcing frequency at which the aspect ratio attains the maximum value for
a given Weber number demarcates the shift from the flapping flag to the sinuous type of
instability. Hence, this frequency is named the transition frequency (f;). The transition
frequency increases with increase in the Weber number, as depicted by figure 7(a). The
flag instability dominates for frequencies below the transition frequency, and the sinuous
instability dominates for frequencies higher than the transition frequency. The transition
frequencies for We = 608, 793 and 973 turn out to be 220, 320 and 420 Hz, respectively.
The measured transition frequency values based on the aspect ratio are consistent with the
observed breakup patterns (from lateral profiles of waves) for various frequencies.
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The trend presented in figure 7(b) corresponds to the same value of SPL. Figure 7(b)
shows the typical effect of SPL on the transition frequency for We = 793. It can be noted
from figure 7(b) that the transition from flapping flag to sinuous instability (maximum
value of the aspect ratio) occurs at nearly the same frequency. This indicates that the
transition frequency is independent of the forcing amplitude and is a function of frequency
only. Any generic instability evolution is also governed by the frequency rather than by the
perturbation amplitude. Hence, it may be concluded that the aspect ratio variation is indeed
a correct measure for identifying the transition frequency for flag to sinuous instabilities.

It is also interesting to note from figure 7(a) that there exists a particular frequency in the
sinuous regime for each Weber number where the value of the aspect ratio falls below the
value corresponding to the first forcing frequency (f1). These values of AR tend to the AR
of the unexcited liquid sheet. The frequency after which the wave aspect ratio approaches
the value of the unexcited condition interestingly matches with the lower cutoff frequency
(as shown in figure 7(a) for We = 793), which is also an increasing function of Weber
number. Hence, the lower cutoff frequency can be considered as the second transition
frequency where the sheet breakup mechanism shifts from sinuous breakup to vibrating
membrane type breakup.

3.4. Transition frequency based on the critical sheet length

It is clear from the previous analysis that the dominant instability mechanism responsible
for sheet fragmentation is a function of forcing frequency. Here, the prediction of transition
frequency in the context of the linear theory and its comparison with the experimentally
observed transition frequency by wave aspect ratio is presented. When a flat liquid sheet
is perturbed by the acoustic waves, the perturbation amplitude is proportional to the
air particle displacement. The air particle displacement amplitude is extremely small
and hence we use the linear stability theory for the predictions of transition frequency.
The linear instability analysis conducted by Squire (1953) was used by Bremond et al.
(2007) for analysis of an undulating circular sheet formed by jet impact on a mechanically
vibrating circular cylinder, and later by Dighe & Gadgil (2019a) for acoustically excited
liquid sheets. In those studies, the concept of critical sheet length over which the sheet is
unstable is employed. It is argued that the waves grow over this critical length, and beyond
this critical length the growth ceases (Bremond et al. 2007). Further, the critical sheet
length (x.) over which the sheet is unstable is shown to be

. We @o \'?
= - (2 : 3.6
T 14 ( <ocWe> (36)

Here, X = x/dy, wp = 27fdy/V is the forcing frequency, We = p1V2dy/o is the Weber
number of the liquid jet and o = pg/p;. The critical sheet length (3.6) is a function of
forcing frequency, Weber number and density ratio. Essentially, the critical sheet length
signifies the length of the sheet over which the liquid sheet is unstable to the externally
applied frequency.

A closer look at the sheet envelopes in the flag instability regime in figure 6 shows that
the amplitudes grow monotonically till the sheet breaks up. Further evolution of the sheet
envelope cannot be estimated, as the sheet breaks up, and hence it may be argued that the
critical length is more than the sheet breakup length. If the sheet is assumed to be infinitely
long, one may end up getting a sheet envelope similar to the sinuous mode of breakup
where the spatial variation of amplitude is non-monotonic (grows and decays). The flag
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Figure 8. Schematic representation of critical sheet length. For the flag instability, the wave amplitude
increases till sheet breakup. The solid line represents the sheet envelope.

type of sheet envelope would evolve as shown in figure 8, if the sheet were infinitely
long. The wave amplitude would diverge till the breakup point, reach a maximum value
and decay further to form a closed envelope. The required sheet length to have such an
imaginary envelope would be two times the sheet length till the breakup point. This gives
us the criterion for the limiting value of the critical sheet length for flapping flag instability
to sustain. Hence, it is proposed that, for the transition frequency below which only the
flapping flag instability occurs, the critical sheet length should be equal to twice the sheet
breakup length (x, = 2L). From (3.6) and the transition frequency (w; = 2mf;) criterion
we have

~\ 2
2.8L) ' (3.7)

oy = aWe (l e
We

Equation (3.7) signifies the frequency below which the flapping flag instability exists.
The predicted transition frequency that demarcates the two instabilities is obtained from
(3.7) for a given Weber number. Figure 9 shows the comparison between the transition
frequency obtained experimentally and that predicted by the linear theory (3.7) for
different Weber numbers. The predicted values of the transition frequencies are found
to be in close agreement with the experimental measurements.

The flapping or flag type instability was also observed earlier for a mechanically vibrated
flat liquid sheet produced by fan spray nozzle (Crapper et al. 1973, 1975), flat circular
flapping sheets (Villermaux & Clanet 2002) and mechanically vibrated circular sheets
formed by jet impact on a solid surface (Bremond et al. 2007). In these previous studies,
the flapping of the sheet is described as a sinuous flag-like instability. Although the flag
type instability is an extreme case (ideally unbounded wave amplitudes) of the sinuous
wave growth, the present study reveals that the flapping flag and the sinuous instabilities
lead to completely distinct wave characteristics, and hence these are different types of
sheet breakup mechanisms. These two instabilities are clearly evident in earlier works on
mechanically vibrated fan spray nozzles reported by Crapper et al. (1973, 1975). Further,
these similarities, independent of the type of perturbations (either acoustic or mechanical),
illustrate the uniqueness in the response of the liquid sheet to the external perturbations.
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Figure 9. Transition frequencies separating the two instabilities as a function of Weber number.

3.5. Regimes of instability theories

It is clear from the literature as well as the above discussion that there are two major
classes of theories which rely on different mechanisms of instability: (1) Squire’s theory
based on the aerodynamic interaction of the moving liquid sheet with the ambient gas,
and (2) thinning theory based on the sheet thinning effect. We attempt to understand the
relative dominance of both mechanisms and their relevance in the context of modelling
the sheet instabilities in different frequency ranges. As the thinning theory is inviscid, the
inviscid aerodynamic or Squire’s theory has been employed for the instability mapping.
A similar approach has also been adopted by Paramati et al. (2015).

Paramati et al. (2015) conducted the initial analysis of the effectiveness of the thinning
theory in comparison with Squire’s theory for a circular liquid sheet generated by the
head-on collision of two liquid jets. Such types of liquid sheets produce the thickness
distribution i = d(z) /4x. Some comparison with the liquid sheet produced by jet impact on
a solid surface h = dg /8x (Bremond et al. 2007) was also presented. For these cases, a
regime map in Weber number—frequency (We—w) space was formulated to identify the
conditions dominated by the respective effects. We observed that the features of this
regime mapping are strongly governed by the thickness variation in the liquid sheets,
and there was no conclusive study on this in the available literature. Hence, we obtain
similar instability regime maps in We—@ space for liquid sheets produced by varying the
impingement angles. Impingement angles of 60°, 90° and 120° produce liquid sheets
of different thickness distributions (h = d3/0.287x, h = d3/0.786x and h = d3/1.334x,
respectively) along the ¢ = O line. It is important to note that the local sheet thickness
considered here represents much thicker liquid sheets than those of Paramati et al. (2015)
and Bremond et al. (2007) for similar jet diameters.

All these regime maps are shown in figure 10, which is qualitatively similar to figure
12 in Paramati ef al. (2015). The methodology and procedure for obtaining these regime
maps is provided in Appendix C. The general features of this map are given here just
for the sake of completeness. The regime map is obtained by comparing the growth rates
predicted by both the theories. If a specific point on the map falls in the ‘thinning effect’
region, the growth rate predicted by the thinning theory exceeds that of Squire’s theory for
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Figure 10. Regime maps showing the dominance of either the thinning effect or the aerodynamic plus thinning
effect, for (a) 20 = 60°, (b) 260 = 90° and (c) 26 = 120°. The curve with circular markers separates the two
regimes. (d) The cutoff frequencies using Squire’s theory for a single jet impinging on a solid surface (h =

d% /8x) (Bremond et al. 2007) and the upper boundary of the envelope for a similar configuration (Paramati
et al. 2015).

that particular combination of Weber number and frequency and vice versa. The dominant
mechanism responsible for sheet fragmentation depends upon the combination of Weber
number and frequency. There is a certain range of frequencies for a given Weber number
in which the aerodynamic effects (Squire’s theory) dominate, and this range of frequency
increases with increase in Weber number. Below a specific Weber number, called the
critical Weber number, the sheet breakup is solely governed by the thinning effect at all
the forcing frequencies.

3.5.1. Effect of the sheet thickness

For each thickness distribution, we performed experiments at various Weber numbers and
frequencies in order to study the sheet breakup over the whole map. These flow conditions
are marked in figures 10(a), 10(b) and 10(c). The regime boundary in figure 10 represents
the dividing line between two instability mechanisms where the growth rates predicted
by the two mechanisms are equal. Figure 10(d) depicts a similar map for the experiments
of Bremond et al. (2007). It may be seen from figure 10 that the critical Weber number
(below which only the effect of sheet thinning dominates) increases as the liquid sheets
become thinner. Consequently, the region of influence of the sheet thinning mechanism
increases with the sheets becoming thinner. We present consolidated data of various liquid
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Thickness Thickness Critical We
Injector configuration distribution (h = d(z) /ex)  sensitivity (g) (We,)

Obliquely impinging jets h= d% /0.287x 0.287 147
with acoustic excitation,
26 = 60° (Present study)

Obliquely impinging jets h= d(z) /0.686x 0.686 226
with acoustic excitation,
26 = 90° (Present study)

Obliquely impinging jets h= d(2)/1,334x 1.334 316
with acoustic excitation,
26 = 120° (Present study)

Head-on collision of two h= d(% /4x 4 510
jets with acoustic excitation
(Paramati et al. 2015)

Single jet impact on solid h= d(z)/Sx 8 721
surface with mechanical

excitation (Bremond et al.

2007)

Fan spray nozzle h= d(z) /100x ~100 ~2550
with mechanical excitation

(Crapper et al. 1975;

Majumdar & Tirumkudulu 2016)

Table 1. Influence of sheet thickness variation on critical Weber number.

“This expression has been approximated to take a similar form to the other expressions for comparison
purposes.

sheet configurations under external forcing that are analysed with the above two theories
in table 1.

It may be inferred from table 1 that the critical value of the Weber number (We,) depends
mainly on the sensitivity (¢) of the sheet thickness with respect to the distance from the
impact point (for the fan spray nozzle, h = d(% /100x (an approximate expression as noted
in the table)). To be specific, this scaling may be expressed as We. ~ /. As the value
of ¢ increases for a given mass flow rate, the sheets become thinner progressively and the
envelope of applicability of thinning theory increases. For example, the stability regime
of the fan spray nozzle is mostly dictated by the thinning theory for all frequencies and
practically all operating conditions (Majumdar & Tirumkudulu 2016). However, for thicker
sheets (¢ < 1), the critical We becomes smaller and the dominating instability mechanism
becomes a function of forcing frequency.

Another important observation can be drawn by plotting upper or higher cutoff
frequencies (defined earlier in the work of Bremond et al. (2007) and Dighe & Gadgil
(2019q)) for respective maps in figure 10 (filled circles). The higher cutoff frequencies
follow a similar trend to the upper branch of the regime boundary in all the cases. The
higher cutoff frequency is a forcing frequency beyond which the spatial growth rate
saturates and the sheet breakup is similar to that in the unexcited condition, with the most
natural mode getting amplified (stable forcing condition (Bremond et al. 2007)). The liquid
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sheet is practically unaffected by the external forcing with frequencies greater than the
higher cutoff frequency. Hence, the prediction of the effect of external forcing becomes
relevant when the forcing frequencies are lower than the higher cutoff frequency. The most
notable aspect in the regime maps shown in figure 10 is the spacing between the higher
cutoff frequency and the regime boundary. This spacing is also seen to be sensitive to
the thickness distribution of the sheet. At lower impingement angle (or thicker sheets), the
higher cutoff frequency is very close to the regime boundary for a given Weber number, as
shown in figure 10(a). As the liquid sheet becomes thinner, the spacing between the higher
cutoff frequencies and the regime boundary increases as shown in subsequent cases.

In the case of thicker sheets, the relevant forcing frequencies, which cause an appreciable
rise in the growth rate, come inside the envelope of the aerodynamic effect. Squire’s theory
proposes that the aerodynamic interaction resulting from the relative velocity of the liquid
sheet with respect to the ambient is responsible for the growth of the sinuous waves. Since
the Weber number is an indication of the relative velocity, the range of frequencies over
which Squire’s theory dominates increases with Weber number in all the cases shown
in figure 10(a). Hence, for predicting the effect of external forcing on thicker sheets,
Squire’s theory or aerodynamic interaction theory is more helpful. If the cases of relatively
thinner sheets (¢ > 1) are considered, like figures 10(c) and 10(d), there are a number of
frequencies between the higher cutoff frequencies and the regime boundary in which the
growth rates are better predicted considering the dominance of the sheet thinning effect.
As the sheet becomes thinner, the range of forcing frequencies over which the thinning
theory is reliable increases. Hence, the thinner sheets need both theories for predicting the
effect of forcing over the range of relevant frequencies. Hence, it may be concluded that
the thinner the liquid sheet, the larger will be the domain of influence of the sheet thinning
theory.

3.5.2. Correlating the regime map with the experimental observations

Although the suitability of different instability formulations for different combinations
of Weber number, forcing frequency and thickness distributions are proposed, it is also
important to demonstrate the evolution of the instabilities dominated by different effects.
This is particularly important in the context of the different wave growth profiles presented
in §3.2. It is clear from figure 10 that the aerodynamic interaction effect dominates at
lower forcing frequencies while the thinning effect dominates at higher frequencies for a
given Weber number (greater than the critical value). Two important profiles of the liquid
sheet under forcing have been noticed in the previous analysis: large/moderate-amplitude
flapping (flag and sinuous instability) of a liquid sheet at lower/moderate frequencies, and
non-wavy, near-natural (vibrating membrane type breakup without significant growth rate)
breakup at higher frequencies. These observations further indicate that sheet flapping
or large amplification of sinuous waves is a characteristic feature resulting from the
aerodynamic effect. The sheet thinning mechanism mainly results in vibrating membrane
type of waves or natural breakup having relatively lower growth rates. These distinctions
are particularly important in the context of the relatively thicker liquid sheets considered
in the present study.

In view of this, we attempt to correlate the dominant sheet breakup mechanisms with
the wave growth profiles. The experimental conditions for this illustration are chosen from
the points marked in figure 10. Three different case studies are discussed to generalize the
observations:

(1) for a fixed forcing frequency, varying the Weber number to traverse from the thinning
region to the aerodynamic region;
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Figure 11. Sheet excitation at the same frequency (w = 0.3) but for different Weber numbers: (a,b) 260 =
60°, We = 130, (a) unexcited case (w = 0) and (b) @ = 0.3, thinning region; (c,d) 20 = 60°, We = 658,
(¢) unexcited case (w = 0) and (d) @ = 0.3, aerodynamic plus thinning region. Here SPL = 110 dB.

(i) effect of forcing frequencies at We < We, (belonging to the thinning region) for
different thickness distributions; and

(iii) effect of forcing frequency at We > We, by traversing from the aerodynamic region
to the thinning region.

First, the sheet is excited with the same frequency and the region of dominance is
changed from thinning alone to aerodynamic plus thinning by increasing the Weber
number. The lateral sheet views shown in figure 11 correspond to w = 0.3, SPL = 110 dB,
We = 130 (thinning region on the envelope in figure 10a) and We = 658 (aerodynamic
plus thinning region on the envelope in figure 10a). Figures 11(a) and 11(b) show
the instantaneous images of the liquid sheet under unexcited and excited conditions,
respectively. It can easily be seen that external forcing does not bring any significant
changes to the sheet structures (fluid chain type in this case) and both the sheet breakups
(figures 11(a) and 11(b)) are almost the same. Also, the wavy pattern is not present in
the forced breakup in figure 11(b). These are characteristic features of thinning-dominated
breakup and may be observed in subsequent illustrations. It is also important to note that
the breakup of the forced liquid sheet is similar to the natural breakup. The sheet structures
in figures 11(c) and 11(d) are for unexcited and excited sheet breakup at higher Weber
number that corresponds to the aerodynamic breakup regime. Whereas the unexcited
sheet does not show any significant wavy structure, one may notice classical sinuous type
instability and appreciable growth of wave amplitude in the case of external forcing.

Now, we show different forcing conditions in the thinning region alone for different
impingement conditions (having different thickness sensitivity). Side views of the liquid
sheet in the thinning regime for Weber number less than the critical Weber number (We <
We,) and different jet impingement angles (260 = 60° and 120°) are shown in figure 12. For
260 = 60°, We = 130, figure 12(a) shows the unexcited sheet and figures 12(b) and 12(c)
are with acoustic excitation at 120 Hz and 200 Hz, respectively. Sinuous waves are clearly
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Figure 12. Observed side views of the sheet in the thinning region alone: (a—c) 26 = 60°, We = 130,
(a) unexcited case, (b,c) thinning region alone, (b) We = 130, 120 Hz and (¢) We = 130, 200 Hz; (d-f)
26 = 120°, We = 282, (d) unexcited case, (e, f) thinning region alone, (¢) We = 282, 120 Hz and (f) We = 282,
200 Hz. Here SPL = 110 dB.

absent on the sheet and there is no notable effect of acoustic field on the sheet structure.
Similarly, figure 12(d) shows the natural sheet breakup for We = 282 and 260 = 120°. The
effect of acoustic forcing with frequencies of 120 and 200 Hz is shown in figures 12(e)
and 12(f), respectively. It may be noticed that the sheet breakup is similar to that of the
natural breakup case. However, the sheet, being much thinner than the 60° case, is getting
displaced from its mean position due to the acoustic force without showing any growing
wavy pattern.

Further, the cases with We > We, are considered and the sheet is excited over a range
of frequencies spanned over both regimes of influence, i.e. the aerodynamic plus thinning
regime and the thinning regime. The sheet profiles for various thickness distributions are
shown in figure 13. The top row indicates the sheet structures for We = 658, 260 = 60°.
Figure 13(a) shows the natural breakup of the liquid sheet. Figures 13(b) and 13(c) show
the sheet profiles for frequencies belonging to the aerodynamic region, and the sheet
flapping is clearly observed. High forcing frequency conditions (thinning region) are
shown in figures 13(d) and 13(e). It should be noticed that sheet waves are hardly visible
and amplification is also less, which is similar to the case of natural breakup (figure 13a).
A similar effect may be observed for thinner sheets with We = 721, 260 = 120° in
figure 13(f), unexcited, figures 13(g) and 13(%), acoustic forcing in the aerodynamic plus
thinning region, and (figures 13(7) and 13(})), the thinning region. Thus, these observations
reinforce the relation between the mechanism of sheet breakup and the corresponding
profiles of the interfacial waves.

3.6. Discussion

It has been shown so far that there exist various types of sheet instability patterns and
dominant breakup mechanisms which are dictated by the forcing frequency. If we collate
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S |
Figure 13. Observed wave profiles in the aerodynamic plus thinning regime (ATR) and the thinning regime
(TR) alone: (a) We = 658, unexcited; (b,c) ATR, (b) We = 658, 100 Hz and (c) We = 658, 120 Hz; (d,e) TR,
(d) We = 658, 620 Hz and (e) We = 658, 680 Hz at 110 dB for 20 = 60°; (f) We = 721, unexcited; (g,h) ATR,
(g) We =721, 100 Hz and (h) We = 721, 120 Hz; and (i, /) TR, (i) We = 721, 680 Hz and (j) We = 721, 700
Hz at 110 dB for 20 = 120°.

all the understanding developed so far onto a single We—@ space, it will be definitely
helpful to visualize the whole picture and assess the effects of forcing on the sheet
breakup process. Such a plot for a liquid sheet (for 20 = 60°, i.e. h = d(z) /0.287x) under
the influence of acoustic forcing is shown in figure 14. Since the dominant sheet breakup
mechanisms are sensitive to the thickness distribution, the plot shown in figure 14 changes
as the sheet thickness distribution changes. However, the qualitative nature of the plot
remains unaltered. There are two main regions: the aerodynamic plus thinning region
and the thinning alone region shown on the regime map. The spatial wave growth rate
comparison between the thinning theory and aerodynamic (Squire’s) theory gives an
envelope. Inside the envelope, aerodynamic plus thinning effects dominate, and only sheet
thinning effects dominate in the outside region. This envelope is shown by the red curve
in figure 14.

The upper cutoff frequency obtained from the linear analysis is shown by the black line
(L-3). The separation between line L-3 and the upper branch of the envelope (red line)
is decided by the sheet thickness. The effect of acoustic perturbation on the liquid sheet
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Figure 14. Region of influence of acoustic perturbations on the liquid sheet in Weber number versus frequency

(We—@) space. The region of influence is a function of thickness sensitivity (e, with & = dg /ex) and changes
accordingly with different impingement angles (which is shown earlier in figure 10); hence the envelope drawn
here is, in general, shown without limits on the axes. The complete space is divided into two main regions:
(I) the thinning region and (II) the aerodynamic plus thinning region. The envelope enclosed by the red
line is dominated by the aerodynamic plus thinning effect, and outside this the thinning alone dominates.
Significant changes in the sheet characteristics are observed within the red envelope only. The sheet shows
three different breakup modes influenced by different instabilities: (A) flapping flag, (B-1) sinuous and (B-2)
vibrating membrane instability (type of sinuous instability when forcing is stable). Corresponding sheet images
and envelopes are also shown for & = d(z) /0.287x. The curves shown by L-1, L-2 and L-3 are, respectively:
transition (Squire’s theory with thinning), lower cutoff (based on the sheet breakup length criterion) and upper
cutoff (Squire’s theory with thinning) frequencies that separate different modes of breakup.

ceases beyond the upper cutoff frequency and the liquid sheet behaves as if there were
no external forcing. In the case of thinner liquid sheets, the region between line L-3 and
the upper branch of the regime boundary is very crucial, as the sheet thinning theory is
needed for the accurate prediction of instability characteristics. It should also be important
to mention that the thinning theory is also better suited for the case of natural breakup.
For thicker liquid sheets, most of the breakup dynamics can be predicted with the use of
Squire’s theory. Inside the red envelope, various effects of the acoustic perturbations on the
liquid sheet starting from flapping flag to just vibrating like a thin membrane are observed.
The violent flapping (A) motion is observed at lower frequencies below the transition
frequency. Beyond the transition frequency to the lower cutoff frequency, the liquid sheet
shows the sinuous (B-1) instability. These two wave profiles are characteristic features
of the aerodynamic effect. The sheet shows the vibrating membrane type of instability
(B-2) with further increase in the forcing frequency past the lower cutoff frequency. These
three regimes are shown on the map as flapping flag, sinuous and vibrating membrane
instabilities separated by the curves obtained by the transition (L.-1) and lower cutoff (L.-2)
frequencies. The corresponding sheet lateral views and their phase-averaged envelopes (for
20 = 60°, i.e. h = d(z) /0.287x) demonstrating three instability patterns are also shown in
figure 14.

It is important to note at this point that a similar type of vibrating membrane instability
spans across the boundary of the regime envelope. As mentioned earlier, the regime

916 A57-23


https://doi.org/10.1017/jfm.2021.251

https://doi.org/10.1017/jfm.2021.251 Published online by Cambridge University Press

S. Dighe and H. Gadgil

boundary is the frequency at which the growth rate predicted by the inviscid thinning
theory exceeds that of the inviscid aerodynamic theory. Since both the inviscid theories
provide dispersion relations to enable us to arrive at the regime map with ease, inviscid
formulations are used in the existing work. However, a closer look at figure 3 indicates
that the growth rate predicted by the thinning theory exceeds that of the viscous theory
at a much lower frequency than the inviscid theory. Had the viscous theory been used
to obtain the regime map, the regime boundary must appear in the vicinity of the lower
cutoff frequencies. In that scenario, the complete region of the vibrating membrane type
of instability would belong to the thinning theory zone. It should also be noted that all
the transition frequencies and the cutoff frequencies can be well predicted by the use of
the linear theory. Below the critical Weber number, the transitions are not noticed, as
the sheet breakup is solely governed by the thinning effect. If the liquid sheet geometry
(thickness distribution), the range of Weber numbers and the forcing frequencies are
known, then figure 14 serves as a guideline for determining the qualitative sheet behaviour,
the most appropriate modelling approach and various transition frequencies influencing
the atomization characteristics.

4. Conclusion

Experimental investigations on the effect of external acoustic forcing on the evolution of
liquid sheet instabilities have been carried out. By varying the acoustic wave frequency
and the injection conditions, we have demonstrated the existence of three distinct patterns
of the growth of instability waves. At lower forcing frequencies, the sheet displays flag-like
flapping in which the wave amplitude diverges till the breakup point and the wave profile
is highly non-sinusoidal. The second type is the classical sinuous instability, in which the
wave amplitude grows in a bounded fashion before the sheet breaks and the wave profile
remains sinusoidal. At higher forcing frequencies, the third type of instability pattern,
called a vibrating membrane, is observed and the wave growth rate is seen to saturate to
that of the natural breakup. Although all the instability patterns result from the sinuous
perturbations, their instability features, like wave aspect ratio and spatial growth rate,
are clearly distinctive. It is shown that the instability patterns are a function of forcing
frequency. The transition frequency and the lower cutoff frequency demarcate the flapping
flag to sinuous and the sinuous to vibrating membrane instability transitions, respectively.
It is found that the transition frequency can be well predicted by using the linear instability
theory.

Further, the experimentally measured instability characteristics are assessed with the
help of existing instability theories. According to two established theories, the primary
effects, which dominate the sheet breakup, are its aerodynamic interaction (Squire’s theory
(Squire 1953)) and the sheet thinning effect (Tirumkudulu & Paramati 2013). In order
to determine the regime of applicability of each theory, the response to acoustic forcing
of liquid sheets having different thickness distributions is evaluated. By combining the
measurements of the present work and trends reported in the literature, it is shown that the
sheet thickness primarily determines the dominant mechanism that governs the breakup.
Based on the stability calculations, an instability regime map is formulated in We—® space.
It may be noted, in general, that the aerodynamic interaction mechanism is dominant at
lower forcing frequencies and the sheet thinning effect takes over at higher frequencies.
The change-over frequency is in the vicinity of the upper cutoff frequency, and the
separation between these two increases as the sheet becomes thinner. Hence, it is proposed
that Squire’s theory is more useful for thicker sheets in the frequency domain where the
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forcing augments the growth rate of the instability. The thinning theory performs well
over a wider range of frequencies in the case of thinner sheets as well as natural breakup
events. These conclusions are confirmed with the help of visualizations of the instability
patterns where the breakup dominated by each effect shows distinct wave structure. Finally,
a universal regime map is proposed to enable the choice of the right theoretical formulation
for predicting the sheet stability characteristics.

Supplementary movie. A supplementary movie is available at https://doi.org/10.1017/jfm.2021.251.
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Appendix A. Measurement of the experimental growth rate

The wave amplitude growth on the liquid sheet is visualized using shadowgraphy of the
side views of the liquid sheet. Although the growth rate should be measured near the
impingement location, to be consistent with linear stability, it is evident from the sheet
envelopes in figure 6 that the wave amplitudes near the impingement point are very low.
Reliable measurements near the impingement point are hence not possible due to the
limitation of the optical resolution.

Thus the measurement of the location of maximum wave amplitude is carried out from
a single image (out of 500 images) having maximum wave amplitude. The experimental
growth rate is calculated from the maximum wave amplitude and its location downstream
of the impingement point using (3.2). A similar approach was adapted by Crapper et al.
(1975). It is known that the growth rate is an exponent and it is also evident from figure 15
that the growth rates for all three instability patterns are indeed exponential. However, the
experimental estimation of growth rate is done using an inverse tan function (3.2) for the
following reasons:

(1) In linear stability analysis, the growth rates are derived with the assumption that the
initial perturbation is independent of the forcing frequency. However, in the present
case, the initial acoustic perturbation is a strong function of acoustic frequency (ag
w~2) for a constant SPL.

(i1) In linear theory, the growth rate is a function of forcing frequency (stability curve
from figure 3) since the initial perturbation is not a function of frequency. If the

conventional formulation for growth rate determination (8 = xl_l In(a,/aop)) is used,
the frequency dependence of the growth rate gets neutralized, as seen from the
nearly constant slopes of the curves in figure 15. Physically, the measurements show
that both the maximum wave amplitude and the perturbation amplitude decay with
increase in the frequency, leading to a constant growth rate over the complete range
of forcing frequencies. However, the flow visualizations show significant variations
in the spatial growth rates with frequency. The nearly constant growth rate prediction
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Figure 15. Spatial amplitude growth (260 = 60°, We = 658, 110 dB) for flapping flag (120 Hz), sinuous
(260 Hz) and vibrating membrane type (460 Hz). Here aq is the initial perturbation amplitude given by the
acoustic source.

by the conventional exponent method does not give a realistic depiction of this
phenomenon.

(ii1) In order to get frequency-dependent growth rates, the perturbation amplitude is not
employed in the growth rate estimation. The growth rate is assumed to be a function
of the maximum wave amplitude and its location from the impingement point. Use
of the inverse tan function gives the non-dimensional measure of the growth rate
to compare with the predictions of different theories. It should further be noted
that this method of growth rate estimation gives clear distinctions between different
instability patterns based on the theoretical comparisons. It is also important to
understand that the present method for growth rate measurement is not generic and
may be used when the forcing frequency and the amplitude are strongly coupled.

Appendix B. Growth rate prediction for viscous case

It is known that the viscous boundary layer at the liquid—air interface influences the
spatial growth of the wave. The effect of boundary layer formation on the spatial wave
growth is investigated using linear theory. In the present analysis, we have employed the
spectral collocation method, which has been adapted by many researches for the growth
rate prediction for a viscous liquid sheet and viscous gas (Soderberg & Alfredsson 1998;
Soderberg 2003; Tammisola et al. 2011; Ye et al. 2016). To predict the spatial growth rate,
we used the MATLAB tool ‘Hydrostab’ recently developed by Ye et al. (2016). Details of
this method with a sample code can be found in Ye et al. (2016). The liquid sheet thickness
in the viscous analysis is taken to be constant and calculated from the expression given by
Miller (1960). Note that the growth rate prediction using the viscous theory is carried
out at the location of maximum wave amplitude. The liquid sheet thickness just below
the impingement point (at 0.03 mm on the ¢ = 0 line) is obtained from the thickness
distribution formula (Miller 1960) and this thickness is assumed constant for the prediction
of the growth rate. Here, we have provided the governing equations, the boundary
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conditions and the gas velocity profile used in the current analysis. For consistency, these
equations are presented in a similar way as given in Ye et al. (2016). We consider the liquid

sheet as shown in figure 2 with viscous liquid and viscous surrounding gas.

B.1. The governing equations
For layer 1 (—h/2 <y < h/2),

ouy v
_ + _
dx ay

ou| ap1 n 9%u, n 9%u,
Uu— | = —— —+—,
0x ax M e 0y2

821)1 n 821)1
HI\ o2 02 )’

=0,
du| n
12 P

dv| v op1
pl(az +”ax)_ ay T

For layer 2 (y > h/2),

dugy  dvg _0
0x ay
Ougd Ougn Uy 0pg2 32ug2 32u82
A LR § LIS =—=E =+ :
Pe ( ot 8ox 82 dy dx &\ a2 0y?

Vg 0vgo opg2 82vg2 azvgz
— 4+ Up—— ) =——+ — + .
Ps ( ar 8 ox ) ay M\ a2 T a2

For layer 3 (y < —h/2),

Ougy  0vgs _0
0x ay
g3 g3 dU, pe3 Pugy 0%
% 4y, —52 - R ,
pg( e U8y T8y ax M\ e o

Vg3 0vg3 0pg3 82Ug3 azvg3
Ly, ) =2 [+ .
Ps ( ot & ox ) dy He |\ 22 ay?

B.2. Boundary conditions

B.2.1. The kinematic boundary conditions
At the top interface (y = h/2),

an oni

V= —+u—,
ot 0x

an any

V2 = g T e
L s

Ul =u —_— .
| =ugp + N1 5

(BI)

(B2)

(B3)

(B4)

(B5)

(B6)

(B7)

(B8)

(B9)

(B10)

(B11)

(B12)
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At the bottom interface (y = —h/2),
ad a
_m  0m

, B13
VT T T e (BL3)
an an

B14

Vg3 = 91 + g ax ( )
U,

U = gz + m—=. (B15)
dy

B.2.2. The dynamic boundary conditions
At the top interface (y = h/2),

ouy vy 9%u 0y Vg2 92U
Mz( ot ) =+ =+ —Em | (B16)

dy | ax | dy dy  ox 92
P1— zluaa—y P2 + 21 aagz = —a%. (B17)
At the bottom interface (y = —h/2),
o) o
Pe3 ZMg% —p1+ ZW%I = - 88;72 (B19)

B.3. Gas velocity profile

To obtain the spatial growth rate in the viscous case, the gas motion can be described by
various models. Here, the gas velocity profile given by the modified Stokes boundary layer
(Schlichting 1979) is employed, since it has been shown that the experimental growth
rates can be well predicted by the modified Stokes boundary layer model (Soderberg &
Alfredsson 1998; Soderberg 2003; Tammisola et al. 2011; Ye et al. 2016). Hence, in the
present analysis, we choose the following gas velocity profile given by the modified Stokes
model:

h Upg
Ug(X,y) =u (X, ii (A —erfm), n=WI-D|./—]- (B20a,b)
7994

Appendix C. Methodology of obtaining the regime map

The regime map splits the region of influence of the thinning effect and the aerodynamic
effect in the Weber number versus frequency space (We—®). These maps are obtained
by comparing the spatial growth rate of waves calculated by using the thinning and
aerodynamic plus thinning theories over the length of the sheet. This procedure is
adopted from the work of Tirumkudulu & Paramati (2013) and given here for the sake
of completeness.

Figure 16(a) shows the predicted growth rate as a function of spatial location on the
sheet axis obtained by solving (3.1) and (3.4). The spatial growth rates predicted by
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Figure 16. (a) Predicted growth rate by Squire’s theory (aerodynamic) and thinning theory as a function of
distance on the sheet axis for We = 302, and f =1, 8, 25 114 and 140 Hz. (b) Regime map showing the
dominance of either thinning or aerodynamic plus thinning effect. The dotted line separates the two regimes.

thinning alone diverge at the point of impingement and the sheet edge. It may be clear
from figure 16(a) that the growth rate is a function of forcing frequency. Depending on
the forcing condition, the growth rate either by the thinning theory or by the aerodynamic
theory dominates over the major portion of the sheet. Either at very low or at very high
frequencies the growth rate predicted by the aerodynamic theory is less than the thinning
theory. Hence, for a fixed Weber number, there exists two frequencies at which the growth
rate by the aerodynamic theory and by the thinning theory are equal. For example, for
We =302, f =8 Hz and f = 114 Hz the growth rates are equal at non-dimensional
spatial locations of 0.15 and 0.50, as shown in figure 16(a). The growth rate predicted
by the aerodynamic theory dominates over a range of frequencies that are in between
these (8—114 Hz) two frequencies. If the forcing is outside this range (frequencies < 8 Hz
and frequencies > 114 Hz), the growth rate predicted by the thinning theory dominates.
For each Weber number these two frequencies can be calculated from the growth rate
comparison as explained earlier, and from these measurements the regime map showing
the dominance of the thinning and aerodynamic theory in We—@ space can be obtained.
Such a regime map for 260 = 90° and h = d% /0.686x is shown in figure 16(). The regime
map shown in figures 10(a), 10(b) and 10(c) are obtained by a similar procedure.
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