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GORENSTEIN SCHEMES ON GENERAL

HYPERSURFACES OF Pr

ALFIO RAGUSA and GIUSEPPE ZAPPALÀ

Abstract. It is completely known the characterization of all Hilbert functions
and all graded Betti numbers for 3-codimensional arithmetically Gorenstein
subschemes of Pr (works of Stanley [St] and Diesel [Di]). In this paper we want
to study how geometrical information on the hypersurfaces of minimal degree
containing such schemes affect both their Hilbert functions and graded Betti
numbers. We concentrate mainly on the case of general hypersurfaces and of
irreducible hypersurfaces, for which we find strong restrictions for the Hilbert
functions and graded Betti numbers of their subschemes.

Introduction

The paper of Stanley [St] completely settled the question about all

the possible Hilbert functions for 3-codimensional arithmetically Gorenstein

subschemes of Pr. Precisely, H is the Hilbert function of a 3-codimensional

arithmetically Gorenstein subscheme of Pr if and only if ∆r−2H is “sym-

metric” and the “first half” of ∆r−1H is an O-sequence. Similarly, the

paper of Diesel [Di] settled the question about all the possible graded

Betti numbers of this kind of subschemes. Precisely, the positive integers

d0 ≤ d1 ≤ · · · ≤ d2m are generators degrees of a 3-codimensional arith-
metically Gorenstein subscheme of Pr if and only if

∑
0≤i≤2m di/m = ϑ is

an integer and ϑ > di + d2m+1−i for every i = 1, . . . ,m. In this case the

degrees of the first syzygies are ϑ − di for i = 0, 1, . . . , 2m, and the only
second syzygy has degree ϑ.

Many other papers recently investigate the Hilbert functions and the

graded Betti numbers of 3-codimensional arithmetically Gorenstein sub-

schemes of Pr, mainly based on the structure theorem of Buchsbaum and

Eisenbud, see for instance [DV], [GM], [Ha], [HTV], [IK], [RZ], [Ul].

In this paper, continuing the work started in [RZ], we want to study

how the “geometry” of the hypersurfaces of minimal degree containing a 3-
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codimensional arithmetically Gorenstein subscheme of Pr affects its Hilbert

function and its graded Betti numbers. Of course, it seems natural to start

this investigation looking at the more general case: indeed, since in P3 the

generic surface S of degree ≥ 4 has Pic(S) = Z and in Pr, r ≥ 4, every
nonsingular hypersurface S has Pic(S) = Z (generated by the hyperplane

section), we focus our attention to those 3-codimensional arithmetically

Gorenstein subschemes of Pr contained in hypersurfaces of minimal degree

with the Picard group equal to Z. Of course this forces S from one side

to be irreducible and on the other side to have “too few” divisors: on S

are not allowed 2-codimensional subschemes of Pr other than the complete

intersection of S with another hypersurface. This is, in some sense, our key

point to give restrictions on the Hilbert functions and on the graded Betti

numbers for arithmetically Gorenstein subschemes of such hypersurfaces.

We still strongly make use of the Buchsbaum-Eisenbud structure the-

orem (see [BE]) analyzing the relationships between the geometry of a 3-

codimensional arithmetically Gorenstein subscheme X of Pr and an alter-

nating matrix associated to it.

After notation and preliminaries we construct on any hypersurface of

P
r non-trivial 3-codimensional arithmetically Gorenstein subschemes. This

allows us to give a negative answer (Example 2.1) to a question posed by

Geramita and Migliore in [GM]: is any 0-dimensional arithmetically Goren-

stein scheme of P3 the intersection of two arithmetically Cohen-Macaulay

curves linked in a complete intersection?

In Section 3 we will find some restrictions on the Hilbert functions

of a 3-codimensional arithmetically Gorenstein scheme X, contained in a

general hypersurface of minimal degree of Pr. Precisely if ∆rHX(t+1) = −1
for some t + 1 ≤ min{i ∈ N | ∆r−1HX(i) ≤ 0} then ∆rHX(t) ≥ −1
(Corollary 3.4).

Section 4 is devoted to find restrictions on the graded Betti numbers

for these schemes; the results are summarized in Corollary 4.8: if mn, Mn
denote respectively the minimum and the maximum number of generators

of degree n for a 3-codimensional arithmetically Gorenstein scheme with

a fixed Hilbert function H , if we know that the hypersurface of minimal

degree containing the scheme X is general then{
Mn ≤ mn + 1 =⇒ αn = mn,

Mn ≥ mn + 2 =⇒ mn ≤ αn ≤Mn − 2.

It seems interesting at this point to find 3-codimensional arithmetically
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Gorenstein schemes in Pr for which αn > mn for some n and lying on a

general hypersurface of minimal degree.

§1. Notation and preliminaries

Throughout this paper k will denote an algebraically closed field, Pr

the r-dimensional projective space over k,

R = k[x0, x1, . . . , xr] =
⊕
n∈Z

H0(�Pr(n)).

We recall that if X ⊂ Pr, r ≥ 3, is a 3-codimensional arithmetically
Gorenstein (aG) scheme then its Hilbert function H looks like

n 0 1 · · · γ γ + 1 · · · δ − 1 δ · · · ϑ− 3 ϑ− 2 ϑ− 1 · · ·
∆r−1H 1 2 · · · a 0 · · · 0 −a · · · −2 −1 0 →

where the sequence {1, 2, . . . , a, 0,→} is an O-sequence, ∆r−1H is antisym-
metric, i.e. ∆r−1H(i) = −∆r−1H(ϑ− 2− i) (see [St]).
In the sequel for a 3-codimensional aG scheme X ⊂ Pr with Hilbert

function H we will use the following notation:

ϑ := max{i ∈ N | ∆r+1H(i) �= 0};

u := min{i ∈ N | ∆r−1H(i) < 0} −max{i ∈ N | ∆r−1H(i) > 0} − 1.

Note that u is just the number of zeros “in the middle” of ∆r−1H .

Moreover such a scheme X will have a graded minimal free resolution

of the following type

0 −→ R(−ϑ) −→
⊕
i

R(−i)βi −→
⊕
i

R(−i)αi −→ IX −→ 0

so, in particular, αi will denote the number of minimal generators for IX
in degree i and βi will be the number of minimal generators in degree i for

the first syzygies module for IX .

Recall that, by results of Buchsbaum and Eisenbud (see [BE]), a set of

minimal generators for IX consists of the pfaffians of an alternating matrix

of odd order 2m + 1. In particular, the minimal number of generators for

IX must be odd. Moreover if d0 ≤ d1 ≤ · · · ≤ d2m are the degrees of a
minimal set of generators of IX , then ϑ =

∑
i=0,...,2m di/m and the syzygies

degrees are given by ϑ− di for i = 0, . . . , 2m.
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Our purpose in this paper is to study 3-codimensional aG schemes

on general hypersurfaces of Pr, which means hypersurfaces S such that

Pic(S) = Z. Recall that for r ≥ 4 all nonsingular hypersurfaces are general
in our meaning and for r = 3 the generic surface of degree d ≥ 4 is general.
In particular, on such a general hypersurface S the only divisors are the

complete intersections S ∩ T for some hypersurface T .

§2. Construction of aG schemes on general hypersurfaces

Let S ⊂ Pr be a general hypersurface; a very first question is to ask
if in such an hypersurface there are 3-codimensional aG schemes which are

not complete intersection. The following construction will permit to build

on any given hypersurface S non-trivial aG schemes.

Let S ⊂ Pr be any hypersurface, IS = (f), and consider on it a 3-
codimensional aG scheme X such that f is not a minimal generator for IX .

If we perform two suitable linkages we can obtain a subscheme X ′ on S

which is still arithmetically Gorenstein: precisely it is enough to use first a

complete intersection containing X using S and two more forms of which

at least one is not a minimal generators for IX ; we obtain a linked scheme

Y having f as a minimal generator. Now we perform another linkage using

a complete intersection (f, g, h), containing Y , where g and h are two more

minimal generators of IY (note that IY has just four minimal generators).

Observe that with this construction, if we start from an aG scheme X

with ν(IX) = n then the scheme X
′ will have ν(IX′) = n+2. In particular

on our hypersurface S, starting from “small” complete intersection we get

aG schemes with five generators.

Now we will use the previous construction to find a counterexample to

the following question posed by Geramita and Migliore in [GM]: is any 0-

dimensional aG subscheme of P3 the intersection of two aCM curves linked

in a complete intersection?

Example 2.1. Consider a general quartic surface S of P3, IS = (f)

and X = {P} a subscheme of S consisting just of one point. Let Y be the
scheme linked to X in a complete intersection of type (1, 4, a), a > 4, using

S. Observe that IY is generated by four forms of degree 1, 4, a, a + 2.

Again let X ′ be the scheme linked to Y in a complete intersection of type

(4, a, a+2), using S; as we said in the previous construction, X ′ will be an

aG scheme whose minimal graded free resolution looks like

0 −→ R(−2a− 5) −→ R(−2a− 1)⊕R(−a− 5)⊕R(−a− 3)3 −→
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−→ R(−4)⊕R(−a)⊕R(−a− 2)3 −→ IX′ −→ 0.

Now we will show that do not exist two aCM curves C, D linked in a

complete intersection of type (h, k) such that C ∩ D = X ′. Suppose that
IX′ = IC + ID for some curves C and D. Since S is the only generator of

minimal degree for IX′ it must be generator for IC or ID, say f ∈ IC . By
the “generality” of S, C should be a complete intersection S ∩ T . Since D
is linked to C, ID is minimally generated by three elements, therefore, as

ν(IX′) = 5 there are only two possible cases: or deg T = a or deg T = a+2;

in the first case ID should be generated by three elements of degree a + 2

and in the second case by an element of degree a and two of degree a+ 2.

In both cases one easily shows that C and D cannot be linked in a complete

intersection.

Of course analogous examples can be reproduced in any Pr.

§3. Hilbert functions on general hypersurfaces

Despite of the fact that on a general hypersurface S one can build lots

of aG schemes which are not complete intersections, for instance using the

construction as in the previous section, not all the Hilbert functions allowed

by 3-codimensional aG schemes are available on S. For instance let H be

an O-sequence satisfying the Stanley conditions in order to be the Hilbert

function of a 3-codimensional aG subscheme of P3, where s = deg S =

min{i | ∆r−1H(i) < i+ 1}.

1. On our general hypersurface S there is no 3-codimensional aG schemes

X such that HX = H and s > ∆
r−1H(t) = ∆r−1H(t + 1) > 0, for

some t. This follows since by Theorem 3.1 in [RZ] in such a case S

should be reducible.

2. On our general hypersurface S there is no 3-codimensional aG scheme

X, not complete intersection, such that HX = H and ∆
r−1H(t) =

· · · = ∆r−1H(t + u − 1) = 0 > ∆r−1H(t + u), for some u ≥ 2. This
follows since by a result of Iarrobino and Kanev in [IK] or by Corol-

lary 3.3 in [RZ] one sees that such anX should lie on a 2-codimensional

aCM scheme contained in S and which is not complete intersection of

S.

This section is devoted to find other restrictions on a sequence H in

order to be a possible Hilbert function of a 3-codimensional aG scheme on

a general hypersurface S.
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Proposition 3.1. Let X ⊂ Pr be a 3-codimensional aG scheme and
t ∈ N such that ∆rHX(t) = −h < 0, ∆

rHX(t + 1) = −k < 0, with
h > k, and t + 1 ≤ γ = min{i | ∆r−1HX(i) ≤ 0}. Then there exists a
(2m + 1) × (2m + 1) alternating matrix associated to X of the following
form: ⎛

⎝ ∗ ∗ A

∗ U 0

−tA 0 0

⎞
⎠(1)

where A is a (ρ+ k+1)×ρ matrix and U is an alternating matrix of order
2(m− ρ)− k, with m > ρ.

Proof. By the assumptions we have the following situation

n 0 1 · · · t− 1 t t+ 1 · · ·
∆r−1HX 1 2 · · · c+ h+ k c+ k c · · ·

∆rHX 1 1 · · · · · · −h −k · · ·
∆r+1HX 1 0 · · · · · · · · · h− k > 0 · · ·

Let ρ be the number of first syzygies of IX of degrees less than or equal

to t + 1. Since ∆r+1HX(j) = −αj + βj, h − k > 0 will imply ρ > 0. If
σ denotes the number of minimal generators of IX of degrees less than or

equal to t+ 1, we have 1+ ρ− σ = −k, i.e. σ = 1+ ρ+ k. This shows that
there are ρ syzygies just acting on at most ρ+ k+ 1 generators. Therefore

an alternating matrix associated to X will have the last ρ columns as in

the matrix (1). On the other hand, if we denote by ϑ the degree of the

second syzygy of IX , by the assumption t + 1 ≤ γ, we have t + 1 < ϑ/2,
therefore IX must have at least ρ more generators (of degrees bigger than

t+ 1), hence 2ρ+ k + 1 ≤ 2m+ 1; then ρ ≤ m− k/2 < m.

Now we will apply the previous result to give stronger restrictions on the

Hilbert functions of 3-codimensional subschemes of a general hypersurface

of Pr.

For this we need a result of linear algebra which can be probably de-

duced from general results of Buchsbaum and Eisenbud (see [BE]). Any-

way, for reader’s convenience, here we give a sketch of the proof.

Lemma 3.2. Let A = (aij) be an alternating matrix of order 2n, aij ∈
R, r ≤ n any positive integer and s = 2n − r. Suppose that for every
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(i, j) ≥ (s, s) aij = 0. Then

Pf(A) =
∑

1≤i1<···<ir≤s

Mi1···ir Pf i1···ir

where Mi1···ir is the minor of A associated to the rows i1, . . . , ir and to the

last r columns and Pfi1···ir denotes the pfaffian of the alternating matrix of

order 2(n − r) obtained from A deleting the lines i1, . . . , ir and the last r
lines.

Proof. We use induction on r. The case r = 1 is well known; in the

general case we compute Pf(A) applying the result for r = 1 obtaining

Pf(A) =
∑
i

(−1)iai2n Pfi .

Observe that Pfi are pfaffians of alternating matrices of order 2n−2 which,
by induction, can be computed by using the last r − 1 columns. Now a
simple but tedious computation leads to the required result.

Theorem 3.3. Let X ⊂ Pr be a 3-codimensional aG scheme and H =
HX its Hilbert function, S an hypersurface of minimal degree containing X

and IS = (f). If there exists an integer t + 1 < ϑ/2 such that ∆
rH(t) =

−h < ∆rH(t + 1) = −1, then either S is reducible or there exists a 2-
codimensional aCM scheme C such that f ∈ IC and f is not a minimal
generator for it.

Proof. Using Proposition 3.1, by ordering the minimal generators of IX
in not decreasing degrees and the first syzygies in not increasing degrees,

we can associate to X an alternating matrix M of type (1) with k = 1.

Therefore, the form f defining S is the pfaffian of the submatrix N of M

obtained by deleting the first row and the first column:

N =

⎛
⎝ ∗ ∗ B

∗ U 0

−tB 0 0

⎞
⎠

where B is a (ρ+1)×ρ matrix. Now, we compute this pfaffian by applying
Lemma 3.2 to the last ρ columns. Since the only non zero minors of such

a submatrix are those of B, if we denote by J the ideal generated by these

minors, we have f ∈ J . If ht(J) = 1 then S is reducible; otherwise, by
the Hilbert-Burch Theorem, J will be the saturated homogeneous ideal of

a 2-codimensional aCM scheme for which f is not a minimal generator.
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Corollary 3.4. Let X ⊂ Pr be a 3-codimensional aG scheme, with
Hilbert function H, and let suppose that an hypersurface of minimal degree

containing X is general. Then, if for some integer t < ϑ/2−1 ∆rH(t+1) =
−1 then ∆rH(t) ≥ −1.

For some particular Hilbert functions with the previous conditions we

can give more information on the ideal of the scheme X and consequently

on the hypersurface of minimal degree containing X.

So let X ⊂ Pr be a 3-codimensional aG scheme minimally generated by
f0, f1, . . . , f2m, d0 = deg f0 ≤ d1 = deg f1 ≤ · · · ≤ d2m = deg f2m. Recall
that dm+1 + dm+2 ≥ ϑ implies that (f0, f1, . . . , fm) is the saturated homo-
geneous ideal of a 2-codimensional aCM scheme (see [RZ], Proposition 3.5).

In the following proposition we will use this notation: q =
⌈
ϑ−1
2

⌉
,

p = max{i ≤ q | ∆rHX(i) �= −2}.

Proposition 3.5. Let X ⊂ Pr be a 3-codimensional aG scheme with
Hilbert function H. If either ∆rHX(q) ≥ −1 or ∆rHX(q) = −2 and
∆rHX(p) ≥ −1 then dm+1 + dm+2 ≥ ϑ.

Proof. Let Y ⊂ Pr be an aG scheme such that HY = H with the
minimal number of generators allowed by H (such a scheme there exists,

see for instance [Di] or [GM]). Let d′0 ≤ d
′
1 ≤ · · · ≤ d

′
2h be the degrees of a

minimal set of generators for IY . Of course h ≤ m and d′i ∈ {d0, d1, . . . , d2m}
for 0 ≤ i ≤ 2h. We prove first that d′h+1 + d

′
h+2 ≥ ϑ. For convenience we

set b = ∆r−1HY (q − 1) and a = ∆r−1HY (q − 2).

If u ≥ 2 the conclusion follows by Corollary 3.4 in [RZ].

If u = 1 and ∆rHY (q) = −1, i.e. b = 1, using Lemma 3.6 in [RZ] we
have:

2h+ 1 = x+ y + |a− 2|+ 1

where x is the number of minimal generators of Y of degree < q and y the

number of minimal first syzygies of IY of degree < q. Since ∆
rHY (q− 1) =

1− a we have 1−x+ y = 1− a. Combining this with the previous equality
we get x = h + a−|a−2|2 . Therefore the number of minimal generators of

Y in degree ≤ q is x + (2 − a)+ = h + 1. Since d′h+1 is the degree of the
(h+ 2)− th generator of Y , d′h+1 = q + 1 = ϑ/2 (recall that when u = 1 ϑ
is even and in degree ϑ/2 there is just one generator, see [RZ] Lemma 3.6

or Remark 3.8). Therefore d′h+1 + d
′
h+2 > ϑ/2 + ϑ/2 = ϑ.

https://doi.org/10.1017/S0027763000007820 Published online by Cambridge University Press

https://doi.org/10.1017/S0027763000007820


GORENSTEIN SCHEMES ON GENERAL HYPERSURFACES 119

If u = 1, ∆rHY (q) = −2 and ∆rHY (p) ≥ −1 then b = 2 and analogous
computation shows that the number of minimal generators of Y in degree

≤ q is h + 2. Since ∆rHY (p) ≥ −1 we have ∆r+1HY (p + 1) < 0 hence
d′h+1 = p+ 1 and d

′
h+2 > ϑ− (p+ 1); consequently d

′
h+1 + d

′
h+2 > ϑ.

When u = 0 our hypotheses imply that ∆rHY (q) = −2 (i.e. b = 1)
therefore a similar computation as before says that d′h+1 = p+1 and d

′
h+2 >

ϑ− (p+ 1), hence d′h+1 + d
′
h+2 > ϑ.

Now we will show that d′h+1 + d
′
h+2 ≥ ϑ implies dm+1 + dm+2 ≥ ϑ.

Observe first that we can obtain the (2m+ 1)-tuple (d0, d1, . . . , d2m) from

the (2h+1)-tuple (d′0, d
′
1, . . . , d

′
2h) by addingm−h pairs of the type (δ, ϑ−δ),

with δ ≤ ϑ − δ, see Remark 3.8 in [RZ]. Of course, by induction, we need
just to prove the conclusion when we add to (d′0, d

′
1, . . . , d

′
2h) a pair. Let us

denote by (e0, e1, . . . , e2k), k = h+1, (e0 ≤ e1 ≤ · · · ≤ e2k) the (2k+1)-tuple
obtained by adding the pair (δ, ϑ−δ); we need to prove that ek+1+ek+2 ≥ ϑ.
If δ ≥ d′h+1 we get that ek+1 ≥ d

′
h+1 and ek+2 ≥ d

′
h+2 so the conclusion

follows. If δ ≤ d′h+1 and ϑ − δ ≥ d
′
h+2 we have that ek+1 = d

′
h+1 and

ek+2 = d
′
h+2 and again we are done. Finally when δ ≤ d

′
h+1 and ϑ−δ ≤ d

′
h+2

then ek+1 + ek+2 = d
′
h+1 + ϑ− δ ≥ ϑ.

The next example shows that the previous result cannot be reversed in

general.

Example 3.6. Consider a 3-codimensional aG subscheme X of Pr

whose minimal generators’ degrees are

5, 6, 7, 7, 8, 9, 9

(note that such a subscheme there exists since the Diesel’s conditions are

satisfied, see [Di] Proposition 3.1). For this scheme it is dm+1 + dm+2 =

8 + 9 ≥ 17 = ϑ. Nevertheless ∆rHX(q) = −2 and ∆rHX(p) = −3 (in this
case q = 8 and p = 7).

We want to prove that the previous result can be reversed for the

schemes with a minimal number of generators allowed by their Hilbert func-

tion.

Proposition 3.7. Let X ⊂ Pr be as in the Proposition 3.5 with the
minimal number of generators allowed by its Hilbert function H. Then

dm+1 + dm+2 ≥ ϑ if and only if ∆rH(q) ≥ −1 or ∆rH(q) = −2 and
∆rH(p) ≥ −1.
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Proof. The only if part is the Proposition 3.5.

Now suppose ∆rH(q) ≤ −2 and, when ∆rH(q) = −2, ∆rH(p) < −2
(the inequality is strict by definition of p). Using the same notation as

before, this implies immediately that u < 2.

If u = 1 (which implies ϑ = 2q + 2) and ∆rH(q) < −2, with the same
computation done in the proof of Proposition 3.5 we see that the number

of generators of degree ≤ q is bigger than or equal to m + 2. Therefore
dm+1+dm+2 ≤ q+ q+1 = 2q+1 < ϑ. If ∆rH(q) = −2 and ∆rH(p) < −2,
we see that dm+1 ≤ p and dm+2 = ϑ− (p+1); so, dm+1+dm+2 ≤ ϑ−1 < ϑ.

If u = 0 we observe first that ∆rH(p + 1) > 0 and ∆r+1H(i) = 0 for

p+ 2 ≤ i ≤ q; thus the number of generators of degree ≤ q coincides with
the number of generators of degree ≤ p and it is m+1+ b. Hence dm+1 ≤ p
and dm+2 ≤ ϑ− (p+ 1), therefore dm+1 + dm+2 ≤ p+ ϑ− (p+ 1) < ϑ.

§4. Betti numbers on general hypersurfaces

In the previous section we saw as the “generality” of the hypersurface

S affects the postulation of the 3-codimensional aG schemes which are on

S. A similar question can be posed for the Betti numbers of such schemes.

Precisely if H is the Hilbert function of a 3-codimensional aG scheme X on

a general hypersurface S ⊂ Pr, what Betti numbers allowed by H according
to Diesel conditions can occur in such an hypersurface?

The next result is a very beginning step on this direction.

Proposition 4.1. Let S ⊂ Pr be a general hypersurface with degS =
d0. If X ⊂ S is a 3-codimensional aG scheme with

HX = HZ

where Z is some complete intersection of type (d0, d1, d2), d0 ≤ d1 ≤ d2,
then X is complete intersection.

Proof. Let f0, f1, f2 be the generators of IX of degrees respectively

d0, d1, d2; let d be the least degree of a minimal generator of IX different

from f0, f1, f2. Note that since ∆
r+1HX(j) = −αj +βj , we must have also

a syzygy of degree d. If d < d2, such a syzygy acts only on f0 and f1, hence

S should be reducible. Therefore all the generators of IX other than f0, f1,

f2 should have degrees bigger or equal to d2. Recalling that we can get all

the degrees of the minimal generators of IX by adjoing to {d0, d1, d2} pairs
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of type (d, ϑ − d), (ϑ = d0 + d1 + d2), we see that the generators’ degrees
for IX should be

d0 ≤ d1 ≤ d2 ≤ h1 ≤ h2 ≤ · · · ≤ hr ≤ ϑ− hr ≤ · · · ≤ ϑ− h2 ≤ ϑ− h1.

IX has 2m+1 generators with m = r+1 and in this sequence of integers in

the places m+ 2 and m+ 3 we find hr and ϑ− hr, respectively. Therefore
applying Proposition 3.5 in [RZ], we get that the first m+ 1 generators of

IX generate a 2-codimensional aCM scheme (not complete intersection) on

S, a contradiction.

Corollary 4.2. Let S ⊂ P
r be an irreducible hypersurface with

deg S = d0. If X ⊂ S is a 3-codimensional aG scheme with

HX = HZ

where Z is some complete intersection of type (d0, d1, d2), d0 ≤ d1 ≤ d2,
then the only generators of IX , other the three generators in degrees d0, d1,

d2, can occur in degrees j with d2 ≤ j ≤ d0 + d1.

Corollary 4.3. Let S ⊂ P
r be an irreducible hypersurface with

deg S = d0. If X ⊂ S is a 3-codimensional aG scheme with

HX = HZ

where Z is some complete intersection of type (d0, d1, d2), d2 ≥ d0 + d1,
then X is a complete intersection.

Proof. The only case which is not consequence of the previous corollary

is when d2 = d0 + d1; but in this situation ∆
rHX(d2) = −1 therefore IX

has only one generator in degree d2 (see [RZ] Proposition 3.7).

Recall that if X ⊂ Pr is a 3-codimensional aG scheme, with Hilbert
function H, if αi denotes the number of minimal generators of IX in degree

i, by Proposition 3.7 in [RZ] or Proposition 1.2 in [CV], there are sharp

bounds for αi depending only on H , precisely, for s+ 1 ≤ i ≤ ϑ− s− 1

mi ≤ αi ≤Mi

where Mi = −∆rH(i) and

mi =

{
1, for u = 1, ∆r−1H(ϑ2 − 2) odd, i = ϑ/2
max{0,−∆r+1H(i)}, otherwise
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where s = min{i ∈ N | (IX)i �= 0} (of course αs = −∆r+1H(s)).
The next result will deal with some geometrical consequences for sche-

mes for which αn =Mn > mn for some degree n.

Theorem 4.4. Let X ⊂ Pr be a 3-codimensional aG scheme, with
Hilbert function H. Suppose that there exists an integer n, s + 1 ≤ n ≤
ϑ − s − 1 such that αn = Mn > mn and let J = (IX)≤n−1. Then there
exists a form g, deg g = |∆r−1H(n− 1)|, such that J ⊂ (g) and J : g is the
saturated homogeneous ideal of a 2-codimensional aCM subscheme of Pr.

Proof. Of course, by Remark 3.8 of [RZ], we can suppose n ≤ ϑ/2.
Let ρ be the number of syzygies of IX of degree ≤ n and σ the number of
generators of degree ≤ (n−1). By assumption, we have αn = −∆rH(n) > 0
and the number of syzygies in degree n is βn = ∆

r+1H(n)−∆rH(n) > 0.
Then,

1 + ρ− σ = ∆rH(n− 1) + βn = ∆
rH(n− 1) + ∆r+1H(n)−∆rH(n) = 0.

This shows, as in the Theorem 3.1 in [RZ], that an alternating matrix

associated to X has the following shape

⎛
⎝ ∗ ∗ A

∗ U 0

−tA 0 0

⎞
⎠

where A is a (ρ + 1) × ρ matrix and U is an alternating matrix of order
2(m− ρ), (2m+ 1 = ν(IX)). Now, if g is the pfaffian of U , we see that all
the ρ+ 1 generators of degree less or equal to n− 1 will have g as factor.
Observe that for 0 ≤ i ≤ ρ the generators of IX will have the form

fi = gig, where gi are the maximal minors of the matrix A. Since X is a

3-codimensional aG scheme the matrix A is the Hilbert-Burch matrix of a

2-codimensional aCM scheme. In fact, an easy linear algebra computation,

that one can find also for instance in the proof of Theorem 5.14 in [IK],

shows that the maximal minors of A cannot have a common factor of pos-

itive degree. This shows that J ⊂ (g) and J : g is a 2-codimensional aCM
scheme. Now, to compute deg g, we set di = deg fi and ei the degrees of

the ρ syzygies of degree less or equal to n; we have

−
ρ∑
i=0

(di − deg g) +
ρ∑
j=1

(ej − deg g) = 0
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which implies

deg g =

ρ∑
i=0

di −
ρ∑
j=1

ej = −
n−1∑
i=0

i∆r+1H(i)− nβn

= −(n− 1)∆rH(n− 1) + ∆r−1H(n− 2)− n(∆r+1H(n)−∆rH(n))

= ∆rH(n− 1) + ∆r−1H(n− 2) = ∆r−1H(n− 1)

(note that ∆r−1H(n− 1) ≥ 0 since we are working now with n ≤ ϑ/2).

Remark 4.5. Observe that in the hypothesis of the previous theorem

the only case in which deg g = 0 occurs when u = 1 and n = ϑ/2; in fact,

∆r−1H(n− 1) = 0 implies u ≥ 1 and, on the other hand Mn > mn implies
u ≤ 1. Thus, u = 1, ϑ is even and the only 0 in ∆r−1H occurs in ϑ/2− 1.
So, a 3-codimensional aG scheme on an irreducible hypersurface of minimal

degree cannot have αn = Mn > mn in all cases except when u = 1 and

n = ϑ/2.

Corollary 4.6. Let X ⊂ Pr be a 3-codimensional aG scheme, with
Hilbert function H, contained in a hypersurface of minimal degree S.

If S is general then for any n ∈ N in which Mn > mn, αn < Mn.
If S is irreducible the same is true except when u = 1 and n = ϑ/2.

Theorem 4.7. Let X ⊂ Pr be a 3-codimensional aG scheme, with
Hilbert function H, S an hypersurface of minimal degree containing X and

IS = (f). Suppose that there exists an integer n, s + 1 ≤ n ≤ ϑ − s − 1
such that αn = Mn − 1 > mn. Then, either S is reducible or there exists
a 2-codimensional aCM scheme C such that f ∈ IC for which f is not a
minimal generator.

Proof. Of course, we can suppose again n ≤ ϑ/2. Let ρ be the number
of syzygies of IX of degree ≤ n and σ the number of generators of degree
≤ n− 1. By assumption, we have αn = −∆rH(n)− 1 > 0 and the number
of syzygies in degree n is βn = ∆

r+1H(n)−∆rH(n)− 1 > 0. Then,

1+ρ−σ = ∆rH(n−1)+βn = ∆
rH(n−1)+∆r+1H(n)−∆rH(n)−1 = −1.

This shows, as in the Theorem 3.1 in [RZ], that an alternating matrix

associated to X has the following shape⎛
⎝ ∗ ∗ A

∗ U 0

−tA 0 0

⎞
⎠
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where A is a (ρ + 2) × ρ matrix and U is an alternating matrix of order
2(m−ρ), (2m+1 = ν(IX)). Therefore, the form f defining S is the pfaffian
of the submatrix N of M obtained by deleting the first row and the first

column:

N =

⎛
⎝ ∗ ∗ B

∗ U 0

−tB 0 0

⎞
⎠

where B is a (ρ+ 1)× ρ matrix. Now, the same argument as Theorem 3.3
will show that f belongs to the ideal J generated by the maximal minors of

B. Therefore, if ht(J) = 1 S is reducible; otherwise, J will be the saturated

ideal of a 2-codimensional aCM scheme.

Corollary 4.8. Let X ⊂ Pr be a 3-codimensional aG scheme, with
Hilbert function H, and let suppose that an hypersurface of minimal degree

containing X be general. Then, for every n
{
Mn ≤ mn + 1 =⇒ αn = mn,

Mn ≥ mn + 2 =⇒ mn ≤ αn ≤Mn − 2.

Proof. Just use the previous theorem, reminding that S is irreducible

and does not contain 2-codimensional aCM schemes except complete inter-

sections of type S ∩ T .

We would like to conclude by asking the following questions:

1. Construct examples of 3-codimensional aG subschemes of Pr, con-

tained in a general hypersurface of minimal degree, for which αn > mn
for some n.

2. Are there hypersurfaces S containing only 3-codimensional aG schemes

with αn = mn for every n for which S is of minimal degree?
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