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The elements of the abstract number systems termed groups,
rings, ideals, modules and algebras are mere symbols arranged in
systems by means of consistent and independent postulates which
isolate these systems from the complete realm of abstract mathe-
matics. The postulates are usually chosen so as to generalise the
special number systems which have been noticed in traditional
mathematics and their independence and consistenc}" are usually
proved by means of numerical examples. It is suggested in this
note that the extents of the consistency and independence of a set of
postulates should also be studied

The number systems determined by the same set of postulates
will be termed species, and statements of properties common to all
systems of the same species will be termed theorems. A theorem,
true for one species, may also hold for others and may itself be used
as a postulate to define species. Much recent work in abstract
algebra has for its object the generalisation of theorems and their
expression in terms of standard sets of postulates of familiar type
such as the associative and commutative laws, the laws of transitivity,
cancellation and idempotency.

The effect of an addition of an independent postulate to a set is
to restrict the number of systems in a species and theorems which
are independent in the larger species sometimes coalesce in the more
restricted range. Well known examples are the independence of the
additive and multiplicative properties of zero in general systems and
the distinction between non-factorisable and prime numbers in the
general ideal theory.

For the sake of simplicity and definiteness this note deals only
with a restricted species of abstract systems, viz., the species of finite
groupoids of order n which are sets of n symbols closed to a single
operation. The following definitions are therefore relative and not
absolute.
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Definition 1. The extent of a theorem or postulate is the number
of groupoids of order n which satisfy the theorem or postulate.

Definition 2. The strength of a theorem or postulate is the
probability that it is not satisfied in a groupoid of order n chosen at
random.

The extents of consistency, independence and redundance of a set
of theorems or postulates may be defined similarly and are numbers
which it is desirable to calculate.

There are nn~ finite groupoids of order n not all of which are
algebraically distinct since some may be obtained from others by
mere interchange of symbols. For example, groupoids defined by
the following multiplication tables show that some are altered by
every interchange of elements whilst others remain unaltered by all
such interchanges.
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In the following numerical statements equivalent groupoids are
counted as distinct. Nevertheless it is important to determine how
many are algebraically distinct and how these are distributed in
relation to the properties of the symmetric group of order n\ The
numerical results have been calculated from an examination of the
various multiplication tables, but, in view of the tedious nature of
such calculations, have not been checked independently.

The extent of commutative groupoids of order n is re«(» + i)/2 s o

that the strength of the postulate of commutativity is 1— TC-«(»-D/2#

Mention will now be made of some of the more important
theorems and postulates of which it is desirable to calculate the
strength.

(a) Every associative algebra contains at least one idempotent.
The extent of groupoids of order n which have at least one
idempotent is

and its strength -^e""1 when n is large.

(6) An idempotent e is a right-hand unit of Ge. For G3 its extent
is 5,859.
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(c) Gg is a principal ideal right sub-groupoid, (g), of G for all
elements g of G.

(d) (a) (6) = (06).

For G3 there are 1215 cases in which Ga is of order 1, and in 275
of these cases there are no sub-groupoids of order 2; 3,456 cases in
which Ga is of order 2 and 4,374 cases in which it is of order 3, i.e.
equal to G. Hence Ga is a groupoid in 9,045 cases.

Ga, Gb are both sub-groupoids of order 1 in 108 cases, Ga is of
order 1 and Gb of order exactly 2 in 513 cases, Ga is of order 1 and
Gb of order exactly 3 in 270 cases.

A theorem true for all groupoids is that the powers of any
element are not all different. If this is adopted as a postulate it
leads us outside the domain of finite groupoids into the algebras of
Grassmann and others in which the product is not necessarily an
element of the algebra or in which the order is not finite.

The postulates in most general use are those of associativitj^ and
commutativity. They are independent for finite groupoids as the
following examples show, and it is desirable to determine not only
their extents but also the extent of their independence.

a b c a b c

baa a a b a
a c a b c b a

c a a a , c b c c .

Of the 36 groupoids of Gz which have 3 idempotents 33 are
commutative, 38 are associative and of these 9 are commutative;
9 of the 38 are independent and associative and of these 2 are
commutative.

The nature of such problems is indicated by the following
considerations. In a quasi-group both the right and left cancellation
laws hold; consequently each number appears once in each row and
in each column of the multiplication table. Hence the number of
quasi-groups is the same as that of Latin squares; for G3 there
are 72, for (?4 there are 539,136. A weaker postulate is that of
homogeneity, i.e. each number appears at least once in the multiplica-
tion table. The extent of this postulate is
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Evidently new types of generating functions are required for the
solutions of the problems indicated here.

(e) The order of a sub-groupoid is a divisor of the order of the
groupoid (Lagrange)1.

(/) If s! n then a groupoid of order n contains at least one sub-
groupoid of order s (Sylow)2.
These theorems are of limited extent for there are 2"~ ~" groupoids of
order n such tha t every sub-set is also a sub-groupoid, and there are
at least n""~" groupoids for which no sub-set is a sub-groupoid. In
G3 Sylow's theorem is not true in 23. 36 cases; the theorems of both
Lagrange and Sylow are not true in 23. 35 cases; Lagrange's theorem
is not true in 10,000 cases. In 64 cases every sub-set of order 2 is
also a sub-groupoid. In (?4 1,229,483,008 groupoids contain sub-
groupoids of order 3 and therefore do not satisfy Lagrange's
theorem.

Since the extent of G3 is 19,683, the extent of a t least one
idempotent is 13,851 and Lagrange's theorem is not t rue in 10,000
cases, it follows tha t there are at least 4,168 groupoids which contain
at least one idempotent element and for which Lagrange's theorem is
not true.

(g) The extent to which a groupoid of order n contains maximal or
minimal sub-groupoids of order r.

In Cr3 a sub-groupoid of order 1 is maximal in 5,436 cases and a
sub-groupoid of order 2 is minimal in 2,916 cases. In 972 cases a
sub-groupoid of order 1 is maximal and a sub-groupoid of order 2
minimal. A sub-groupoid may of course be both maximal and
minimal if n 3 : 4.

A specified sub-groupoid of order r is maximal in

x=o s = i \ n ) \ n

cases, where sx > sll_1 > . . . . > s2 > s1; as = 2rs + s2.

(h) The theorems relating to decomposition. A groupoid may be
the tmion [A, B], or the cross-cut (A, B), of groupoids A, B. In
Ga 3024 are directly decomposable, i.e. are the unions of sub-groupoids
having no common elements.

1 cf. Burnside, Theory of groups (Cambridge 1897), p. 25.
- c/. Burnside, op. cit., Chapter 6.
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(j) The theorems relating to residuation, viz., the expression of a
groupoid G as the sum of cosets, Hgt, where H is a sub-groupoid.

(ij) Every number of O lies in some coset.
(i2) No coset contains equal elements.
(is) Different cosets have no common elements.
(ii) The product of two cosets is a coset and the cosets may be

taken to be the elements of a quotient groupoid G/H.

(j) The second law of isomorphism, viz.

[A,B]/A=iB/(A,B).

The complete study of the extents of these theorems and of
others suggested by them will be troublesome; thus cosets exist in
which the theorems hold, but in which H is not a sub-groupoid.
Thus there are 10,432 in Gs which satisfy the theorems (it) . . . . (i4) in
which H is of order 1, and of these H is a sub-groupoid in 4,058
cases.

(k) The various generalisations of the theorem of Jordan-Holder1.

To what extent the above definitions may be used outside the
particular domain of groupoids is a subject for further consideration,
but enough has been sketched to show that there is a wide range of
combinatorial algebra awaiting investigation.

(I) In Gn the ns postulates of associativity are not independent and
it is desirable to determine how many are necessary. The extent of
a . be = ab . c is

(w2 + 2n - 2)nn'-B;

of ab . c = a . be and 6 . b2 = b2 . b is

{2n3 + 3n2 — Qn + 2) nn'2~'°;

of ab . c = a . be and a . a2 = a2 . a is

(2n3 + 4w2 — 8n + 3) n'1"'5.

1 O. Ore, Trans. Amur. Math. Soc., 41 (1937), 266-275.
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