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CONVOLUTION OF RIEMANNIAN MANIFOLDS
AND ITS APPLICATIONS

BANG-YEN CHEN

It is well-known that warped products play some important roles in differential ge-
ometry as well as in physics. In this article we extend the notion of warped product
to the notion of convolution of Riemannian manifolds. We study the basic properties
of convolutions of Riemannian manifolds. We also apply the notion of convolution to
establish and characterise the Euclidean version of Segre embedding.

1. CONVOLUTION OF RIEMANNIAN MANIFOLDS

Let (Vy, ¢1) and (NVy, go) be two Riemannian manifolds and f be a positive differen-
tiable function on N,. The well-known notion of warped product Ny X ; N, is the product
manifold Ny x N, equipped with the warped product metric g, + f2go. It is well-known
that the notion of warped products plays some important roles in differential geometry
as well as in physics (see [7]).

The following notion of convolution of Riemannian manifolds extends the notion of
warped products in a natural way. Let (N1, g;) and (N3, g2) be two Riemannian manifolds
and let f and h be two positive differentiable functions on N; and N,, respectively.
Consider the symmetric tensor field ,g; *5 g» of type (0,2) on N; x N, defined by

(1.1) h91 * 192 = hPg1 + f2g, + 2fhdf ® dh

The symmetric tensor field 59, *; g2 is called the convolution of g, and g, via h and
f. The product manifold N; x N, together with ,g; *; g2, denoted by , Ny ¥ s N, is called
a convolution manifold When f, h are irrelevant, ,Ny% ;N> and »q1 *; gp are simply
denoted by Ny% N, and g; * g,, respectively.

When ,g,%g, is a positive-definite symmetric tensor, it defines a Riemannian metric
on Ny X N,. In this case, ng1 *5 g is called a convolution metric and the convolution
manifold , Ny ¥ ¢V, is called a convolution Riemannian manifold.

In the first part of this article we show that the notion of convolution of Riemannian
manifolds arises naturally. In the second part, we apply the notion of convolution to
provide a fundamental study of the differential geometry of the tensor product C*®FE”. In
particular, we apply the notion of convolution to establish and characterise the Euclidean
version of Segre embedding.
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2. PRELIMINARIES

Let N be a Riemannian manifold equipped with a Riemannian metric g. The gra-
dient Vi of a function ¢ on N is defined by (Vi, X) = X for vector fields X tangent
to N. If N is a submanifold of a Riemannian manifold M, , the formulas of Gauss and
Weingarten are given respectively by

(2.1) VxY = VxY +0(X,Y),
(2.2) Vx€ = —AcX + Dx¢

for vector fields X, Y for vector fields X, Y tangent to N and £ normal to N, where V
denotes the Riemannian connection on M , 0 the second fundamental form, D the normal
connection, and A the shape operator of N in M. The second fundamental form and the
shape operator are related by (A¢X,Y) = (a(X,Y),£), where { , ) denotes the inner
product on M as well as on M. A submanifold in a Riemannian manifold is called totally
geodesic if its second fundamental form vanishes identically.

The equation of Gauss of N in Mis given by

(23) R(X,Y;2,W)=R(X,Y;Z,W)+(0(X, 2),0(Y,W)) — (a(X,W),a(Y, Z)),

for X,Y, Z,W tangent to M, where R and R denote the curvature tensors of N and M ,

respectively.

The covariant derivative Vo of o with respect to the connection on TM & T+ M is
defined by
(2.4) (Vx0)(Y,Z) = Dx(o(Y, 2)) — 0(VxY,Z) - o(Y,VxZ).

The equation of Codazzi is
(2.5) (R(X,Y)2)* = (Vxo)(Y,2) - (Vyo)(X, 2),

where (R(X, Y)Z)" denotes the normal component of R(X,Y)Z.
Let C™ ® E™ denote the tensor product of C™ and E*. Then C™ ® E® is holomor-
phically isometric to C™". The inner product on C™ @ E" is given by

(2.6) (a® B,7®0) = (a,1)(B,6),

where {a, 7) is the inner product of o,y € C™ and (f8,6) the inner product of 8,6 € E".
A vector subspace L of complex Euclidean m-space C™ is called totally real if
J(L) L L, where J denotes the complex structure on C™. A submanifold M in C™ is
called totally real if each tangent space of M is totally real.
A submanifold M in C™ is called a CR-submanifold if there exists on M a differen-
tiable holomorphic distribution  whose orthogonal complementary distribution H* is
a totally real distribution, that is JH* C T+ M (see [1, 2, 3, 4, 5)).

https://doi.org/10.1017/5000497270004003X Published online by Cambridge University Press


https://doi.org/10.1017/S000497270004003X

(3] Convolution of Riemannian manifolds 179

3. SOME NATURAL EXAMPLES OF CONVOLUTION MANIFOLDS

Let C? and ET denote C" — {0} and E™ — {0}, respectively. Let (21,..., z,) denote
a complex Euclidean coordinate system of C* and (z,...,Zms) a Euclidean coordinate
system of E™,

The following result shows that the notion of convolution of Riemannian manifolds
arises naturally.

PROPOSITION 3.1. For each holomorphic isometric immersion z : (Ny,g,)
— C7 and each isometric immersion z : (Ny, g2) = E7', the map

(3.1) Pp: Ny x N - C*"@E™ =C"; (u,v) — z(u) ® z(v), u€ Ny, v € Ny,
gives rise to a convolution manifold Ny % N, equipped with
(3:2) 401 %2 92 = pig1 + Nga + 2Apd) @ dy,
where A = |z| = \/z;':l zjZj and p = |z| = /> P _ 22.

ProOF: For vector fields X,Y tangent to N; and Z, W tangent to N,, we have
(3.3) dY(X)=Xy=XQz, dy(Z)=Z¢y =20 2.
Also, it follows from the definition of the gradient of y = |z| that

¥ 2
(3.4) (V) = (Ze=t T;l(e‘z“)) = (Vu,3),

where e, is a unit vector parallel to gradient of . Similarly, we have
(3.5) . AdA(VA) = (VA 2).
From (2.6), (3.3), (3.4) and (3.5), we obtain Proposition 3.1. 0

Proposition 3.1 provides many examples of convolution manifolds.

REMARK 3.1. If z(IV;) is contained in the unit hypersphere of C™ centred at the origin,
then the convolution g; * g» on the convolution manifold N;% N, given in Proposition
3.1 is nothing but the warped product metric g; + |z|%g,.

4. GEOMETRY OF C'"® E?

In this section we study the geometry of the tensor product C* ® EP by applying
the notion of convolution.

Assume that z : C* — C" and z : E? — E” are the inclusion maps. Let Yoz =20
be the map from C* x E? into C" defined by

,= -_ 3y v . e . PR
(4.1) Yo =20 = (2T1,...,21Tp, - -, 20T, - - - » ZhTp)
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for z = (21,...,2,) € C! and z = (zy,...,z,) € EZ.

If we put z; = u; + iv;,¢ = /-1, and aiz = (1/2)(— —zi) forj=1,...,h,
; . .
then we obtain from (4.1) that

. S
(4.2) dw,,z<2zja—zj) = dw,,z(zxagz—).
i=1 a=1 o

0 h 0
Notice that Z Zio— 82 and )" xaa—z— are nothing but the position vectors of C* and E?
a=1 «

in C* and E”, respectively. Equation (4.2) implies that the gradient of |z| = \/Z?ﬂ 2jZ;
and of |z] = /3", 22 are mapped to the same vector field under 1, .

From (4.1) and (4.2) it follow that di,, has constant rank 2h 4+ p — 1. Hence
¥, -(CP x EP) gives rise to a (2h + p — 1)-manifold, denoted by C* ® EP, which is
equipped with a Riemannian metric induced from the canonical metric on C* ® E? via
¥,z From (4.1) we can verify that C"® E? is isometric to the warped product Ch x gp-1
with the warped product metric ¢ = g; + p1go, where p; is the length of the position
function of C" and g, the metric of the unit hypersphere S?~1.

If we denote the vector field of (4.2) by V, then V is a tangent vector field of C*® E?
with length [z] |z|.

Let

(4.3) 1:CtxEF 5 Chle EP

denote the projection: 7(u,v) = ¥,.(u,v) = {u} ® {v} € C'® E?. It is easy to see
that, for each u € C? and v € E?, C* @ {0} =: ¥:2(C? x {v}) is a complez submanifold
of complex dimension h and {u} ® E? =: ¢, .({u} x E?) is a totally real submanifold of
dimension p in Ch?.

On C! x E?, if we put

(4.4) D=T(C}), D*={ZeT(E):Zp=0}, pn=lal,
F=TE), Ft={XeT(C}:X)x=0}, A=]z|,

then D, D+, F and F* can be regarded as distributions on C* x E? in a natural way.
Moreover, if we put

(4.5) D = dr(D), D* =dn(DY), F=dn(F), FL=dn(FL),
we have the following orthogonal decompositions of the tangent bundle of C* ® E?:

(4.6) T(C'® E?)=Do D =FloF.
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Since the Riemannian metric on C* ® E? is induced from the convolution:
(4.7) w91 *p G2 = PG + Ng2 +22udA @ dp, A=lz|, p=la,

the distributions D and D* can be regarded as the tangent and normal bundles of C* ®

{v},v € E?, in C? ® E?, respectively. Similarly, the distributions F and FL can be

regarded as the tangent and normal bundles of {u}® EZ, u € C! in C"® E?, respectively.
We give the following two lemmas for later use.

LEMMA 4.1. Let V denote the Riemannian connection of C* ® EP. Then, for
any vector fields X in F+ and Z in D', we have

(a) VxZ=VzX=0,
(b) VyZ=VzV =2 and
) VyX=VxV=X,
where V is the vector field given by (4.2).

PROOF: For each vector field X in F* and Z in D+, there exist vector fields X in
FL and Z in D' such that dr(X) = X and dn(Z) = Z. From (4.1), we have

(4.8) X2, =X®Z.

Since XA = Zu = 0, A-= |z|, p = |z, the vector field X ® Z is perpendicular to
3] 0 0 i}
dy, 2 (a—z;),...,dwz,z (a_z,,)’d’/’"’(a_a)"“’d’p"’(a_%)' Thus, for any vector fields
X in F* and Z in DL, we have (a).
h

Let V =2= Y 2;0/0z; € T(C") and let Z be any vector in DL. Then (4.1) implies

=1
(4.9) L ZV=VeLZ
Since z® Z = V ® Z is tangent to C* ® E?, (4.9) implies
(4.16) WZz=Ve.?Z.

On the other hand, we also have Z = di), ,(Z) = Z4,, = V ® Z from (4.1). By
comparing this with (4.10), we obtain (b).

- P o
Similarly, let V =z = ) 2,8/0z, and let X be any vector field in F1, we have

a=1
(4.11) XV, =X @z

On the other hand, we also have X = dw,,z()v( )= X Yoz = X ® z. Comparing this
with (4.11) gives (c). 0
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LEMMA 4.2. For each u € C? and each v € E?, {u} ® E? and C* ® {v} are
totally geodesic submanifolds of C* ® E?.

PROOF: First, we recall that the tangent and normal bundles of C*® {v} in C"*® E?
are given respectively by D and D*. Since the distribution D is spanned by F* and V,
statements (a) and (b) of Lemma 4.1 and the formula of Weingarten imply that C*® {v}
is totally geodesic in C* ® E?.

Similarly, from statements (b) and (c) of Lemma 4.1 and the formula of Weingarten,
we conclude that each {u} ® E? is a totally geodesic submanifold of C* ® E?. 0

5. CLASSIFICATION OF NATURAL CR-IMMERSIONS OF C! ® E?

Since there is a canonical holomorphic distribution Don C"® EP, we call an isometric
immersion ¥ : U — C™ of an open portion U of C* ® E? into C™ a natural CR-
immersion if i carries D into a holomorphic distribution in C™ and carries the orthogonal
complementary distribution D+ of D into a totally real distribution. Clearly, (4.1) defines
a natural C R-immersion of C* ® E? into C"».

THEOREM 5.1. Let ¢ : U — C™ be a natural CR-immersion from an open
portion U of C*® E? into C™. Then, up to rigid motions of C™, ¢ = ¢ o7 is given by

h
(5.1) o(z,z) = ZAj(:vl,...,xp)zj,
=1
where A!,..., A" are mutually orthogonal vector functions of length |z| which span a
totally real subspace of C™ at each point z = (z,...,z,) with n(z,z) € U. Moreover,

Al ..., A" satisfy

(5.2) (Aj, A’;a) = .’Ea(s]'k, (A';_.O,A:B) = jkéa,g,

(A7,iAL ) = (A ,iAL) =0

forj,k=1...,ha,B=1,...,p, where Al = DA /8z,.
Conversely, if A',..., A" are h mutually orthogonal E™-valued functions of length
|z| satisfying (5.2), then (5.1) defines a natural CR-immersion of Ct ® EP into C™.

PROOF: Suppose that ¢ : U — C™ is a natural C R-immersion from an open portion
of C* ® E” into C™. For each v € E?, Lemma 4.2 implies that C* ® {v} is a totally
geodesic submanifold of C'e E”.

Because the restriction of ¢ to U N (C* ® {v}) is a holomorphically isometric
immersion of U N (C! ® {v}) into C™ and C* @ {v} is a flat Kaehler manifold, the
equation of Gauss implies that the restriction of ¢ to U N (C',‘@ {v}) is a totally geodesic
holomorphic immersion. Thus, ¢ immerses U N (C£l ® {v}) into a complex h-plane in
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C™. Consequently, ¢ immerses 77}(U) N (C* x {v}) into a complex h-plane in C™.
Hence, we have

(53) ‘Zz,-zk = az,"z'k = afjfk = 0) 1 < J’k S h

Solving (5.3) yields

A
(5.4) b(z,z) = ZAj(xl, s Tp)2j + Bz, ..., Tp)

2

for some C™-valued functions A4!,..., A* and B. From (5.4) we find
(55) $oo =Y Al zj+By, a=1,..,p

=1
Thus, by (3.15) and (5.5), we obtain

h h h h
(5.6) > zz = <Z A;'az,.,ZAgazk> + 2<Z A;‘az,-,3%> +(B,,, Bz.).
j=1 j=1 k=1 j=1

Condition (5.6) implies B;, = - = B;, = 0. Hence, B is a constant vector in C™.
Without loss of generality, we may choose B = 0 by applying a suitable translation on
C™ if necessary. Hence, (5.4) reduces to

h
(5.7) d(z,z) = ZAj(xl, ey Tp)Zje
Jj=1
From (5.7)y we obtain
(58) ¢u,- = AJ» ¢‘Uj =14, ¢Eu = ZA;GZJ'

j=1

forj=1,...,h a=1,...,p, where z; = u; + iv;. From (3.15) and (5.8), we find

(5.9) 2265 = (Bu;» Bus) = (A7, A%), (A,i4%) = (Bu,, Buy) =0,
h
(510) UjTa = <$ﬂj) g:ca) = <Aj,ZA,;aZk>,
k=1
h
(5.11) UZa = (Buyy bza) = <iA’}ZA'§,,zk>’
~ _ h kz‘l h
(512) lzlzfsaﬂ = <¢Ia)¢lﬁ> = <Z A‘;:azj’ZAl;:ﬂzk>
i=1 k=1
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for j,k=1,...,h; o,8=1,...,p.
The first equation of (5.9) implies that A!,..., A" are h mutually orthogonal vector
functions of length |z|. From equations (5.9), (5.10) and (5.11) we have

(5.13) (A1,iA¥) =0, (A, AL ) =z.0, (A%iAE)=0

for j,k=1,....,ha,B=1,...,p
By comparing the coefficients of u;ux from (5.12), we find

(5.14) (A, Az,) + (AL, AL) = 20,400p

187
forj,k=1,....,ha,B=1,...,p. If j =k, (5.14) implies
(5.15) , (A, Al) = ba.
If j # k, then, by taking partial derivative of (47, A% ) = 0 with respect to zg, we obtain

(516) ( ) = _<A AIBIQ) (Aa:gw )v ] 75 k.

Combining this with (5.14) yields (A;G,A';ﬂ) = 0 for j # k. Hence, we have the second
equation of (5.2). By comparing the coefficients of u;v; from (5.12), we also find

(5.17) (A, iA5,) + (1A% , AL ) =0

forl1<j#k<handl<aqpf<
On the other hand, by applymg (Pz.» J%zﬂ) =0 and (5.8), we find

(5.18) <Z Al 2, ZzA’;sz> =0.

k=1

Comparing the coefficients of uju, from (5.18) yields
(5.19) (AL,,1AL,) + (AL ,iAl ) =

for ,k=1,...,ha,B=1,...,p.

If j = k, (5.19) implies (A ,iA] ) = 0. If j # k, then, by combining (5.17) and
(5.19), we obtain (4] ,iAf ) = 0. Therefore, we have (A]_,iAf) =0for j,k=1,...,h;
a,B =1,...,p. Consequently, we have (5.2). From (5.2) we know that A!,..., A span
a totally real subspace of C™ at each point z = (zy,...,z,) with n(z,z) € U.

Statement (b) can be proved by straightforward computation. 0

ExAMPLE 5.1. Let D be an open portion of Euclidean p-space E? which does
not contain the origin of EP. If A: D — E™ is an isometric immersion of the flat space
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D into E™ satisfying |A| = |z| at £ = (z1,...,2,) € D, then (5.2) holds automatically.
Hence, by Theorem 5.1, we know that

(5.20) é(z,7) = Alzy, ..., xp)2
defines a natural CR-immersion from C. ® D into C™. In particular, if +(s)
= (1(s), ..., Ym-p+1(8)) is a unit speed curve satisfying
9 m+p—1
(5.21) )| = D s =+,
j=1
then A = (n(z1),. .-, Ym—p+1(21), Z2,..., Tp) defines an isometric immersion of an open

portion D of E? into E™ satisfying |A| = |z|. Thus,

(5.22) #(2,7) = A(z1,...,2p)2, A= (Mn(Z1),- s Ym—ps1(21),Z2, ..., Tp)
defines a natural C R-immersion from C! ® D into C™.

REMARK 5.1. When m +p~ 1= 2, then 7, = as, 72 = bs, a® + b*> = 1, are the only
functions satisfying (5.21). However, if m + p — 1 > 3, then there are many unit speed
curves vy, other than lines, which satisfy (5.21).

EXAMPLE 5.2. Suppose that D is an open portion of Euclidean p-space which

does not contain the origin. Let A7 : D - E™, j =1,...,h, be isometric immersions of
the flat space D into E™ satisfying |A'| = --- = |A*| = |z| on D, then
(5.23) ¥(z,z) = (AN(z1, ..., Tp) 21, ..., AP (71, . . ., Tp)28)

defines a natural C R-immersion from C* ® D into C™, m =my + - - - + my,.

6. TWO GEOMETRIC CHARACTERISATIONS OF %, ;

The following result provides a simple geometric characterisation of ¢, = 2 @ z.
THEOREM 6.1. If¢:U — C™ is a natural C R-immersion of an open portion U
of C* ® E? into C™, then we have:
(1) The squared norm of the second fundamental form o of ¢ satisfies

2h-1)(p-1)

|z[?2/?

(2) The equality sign of (6.1) holds identically if and only if, up to rigid motions

of C™, the composition ¢ = ¢ o m is given by

(6.1) llol? >

(6.2) a(z,x) = (2121,...,21%p, - - -, ZaT1, - - -, 20Zp, 0,. .., 0),
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where 7 : C* x B? — C" @ E? is the projection and z = (zy,...,z) and
z = (z1,...,2Zp) are natural coordinate systems of C? and E?, respectively.

We need some lemmas.

LEMMA 6.1. If¢:U — C™ is a natural C R-immersion from an open portion of
C" ® E? into C™, then, for any vector fields X in D with (X,V) = (X,JV) =0 and for
Z, W in D+, we have

(6.3) (0(X,2),JW) =0,
(6.4) (o(JV, 2),IJW) =(Z,W),
(6.5) (o(V,Z),JW) =0.

PROOF: Suppose Z, W are vector fields in DL. Then we have
(66) JVZW+.]0'(Z, W)= —AjwZ + DzJW.

If X is a vector field in D with (X, V) =(X,JV) =0, then both X and JX belong
to FL. Thus, by (6.6), we have

(67) <0’(JX, Z),JW) = (AJWZ, JX) = —(Vzw,X) = (VzX, W) =0

for X in D and Z, W on D+. This proves (6.3).
From (6.6) and statement (b) of Lemma 4.1, we find, for Z, W in D, that

(6.8) (o(JV,2),JW) = (AjwZ,JV) = —(VW,V) = (W,VV) = (W, Z),

which proves (6.4).
For Z,W in D%, we also find from (6.6) and Lemma 4.1 that

(6.9) (0(V,2),IW) = (AywZ,V) =(VzW,JV) = (W,VzJV) =0,

since JV € F+. This proves (6.5). 0
LEMMA 6.2. If¢: U — C™ is a natural C R-immersion of an open portion of

C"®E? into C™, then, for X € F with (X,V) = (X,JV) =0 and Z € D*, the second

fundamental form o of ¢ satisfies

X121

|} |z]

(6.10) lo(X, Z)| =

PROOF: For X € D with (X,V) = (X,JV) = 0 and Z € D, the equation of
Codazzi implies

(6.11) (DJxO'(X, Z) - U(VJXX, Z) - O(X,VJxZ),JZ)
= (Dxo(JX,2) - 0(VxJIX,Z) - o(JX,VxZ),]Z).
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Since C* ® {v} is a totally geodesic submanifold of C* ® E? according to Lemma 4.2,
VxJX and V;x X belong to D. From Lemma 4.1, we also know that VxZ and V;xZ
belong to D*. Hence, by (6.11), Lemma 4.1, and Lemma 6.1, we get

(6.12) (0(X,2),DsxJZ) +{0(VyxX,2),J Z)
=(0(JX,Z),DxJZ) + (o(VxJX,Z),JZ).
From formulas of Gauss and Weingarten, we have
(6.13) JVxZ+J0(X,Z)=—AJzX+DXJZ.
Since VxZ lies in D+, (6.13), Lemma 4.1, and Lemma 6.1 imply
(6.14) (0(JX,2),DxJZ) = (a(JX,Z),JVxZ) +(0(JX, Z),Jo(X, Z))
= (U(JX, Z),Jo(X, Z))

Let v denote the orthogonal complement of JDY in the normal bundle of Che EP
in C™. Then v is invariant under the action of the complex structure J of C™. We
denote by o, the v-component of the second fundamental form o.

Let V be the Riemannian connection of C™. For each Eey, Y € 13, and each
tangent vector U of C* ® E?, we have

(A(IY),U) = (a(JY,U),€) = (JVuY, &) = —(a(Y,U), JE) = —(AseY, U).
Hence, we get
(6.15) AjY = -A(JY), YeD, €ev
By applying (6.15), we find

(6.16) (0(IX,2),Jo(X,2Z)) =(0(IX, Z),Jo,(X,Z))
= (Aseix,2)/ X, Z) = (Ao, ix,2X, Z)
=(0(X,2),0,(X, 2)) = |0,(X, 2)|".

Combining (6.14) and (6.16), we obtain

(6.17) (0(JX,2),DxJZ) = |0,(X, 2)[".
Replacing X in (6.17) by JX and applying {6.15) yield

(6.18) (0(X, Z), DyxJZ) = =|o,(X, Z)[*.

On the other hand, by Lemma 4.1 and Lemma 6.1, we have
(VixX,JV)

(6.19) (0(VoxX, 2),02) = = 24(2,2)
JX,V;xV b eV
=‘m¢§“zm=hH$-
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Replacing X in (6.19) by JX yields

X222
.20 —(o(VxJX,2),J]Z) = .
(6.20) (o(Vx ),/ Z) 22|22
Combining (6.12) and (6.17)-(6.20) gives
| X112]
(6.21) ou(X,Z)| =
| | || |2

for Z € Dt and X € D with (X,V) = (X, JV) =0.

On the other hand, from (6.3) of Lemma 6.1, we have ¢(X, Z) = 0,(X, Z). Hence,
we obtain (6.10) from (6.21). This proves Lemma 6.3.

Now, we return to the proof of Theorem 6.1. First, by applying (6.4) of Lemma 6.1,
we have

(6.22) l0(IV, 2)| > (2, 2),

with equality holding if and only if o(JV, Z) = JZ.
Since |JV| = |z||z|, we obtain inequality (6.1) from (6.21) and (6.22).
Suppose that the equality sign of (6.1) holds. Then, by Lemma 6.2, we have

(6.23) o(D,D)=0, o(F,F)=0

for Z € D* and X € D with (X, V) = (X, JV) =0.
Since ¢ : U — C™ is a natural C R-immersion from an open portion of C* ® E? into
C™, Theorem 5.1 implies that, up to rigid motions of C™, the composition ¢ = ¢ o 7 is

given by
(6.24) z z) = ZA’ (@1,...,Zp)2,
where AY(z1, . ..,%p),. .., A*(z1, ..., T,) are orthogonal vector functions of length |z|. On

the other hand, from Lemma 4.2 and the second equation of (6.23), we know that, for
each u € C", ¢ immerses U N ({u} ® E?) into a totally real p-plane in C™. Hence, é
carries 71 (U) N ({u} X E’,’) into a totally real p-plane. Therefore, by applying formula
of Gauss, we obtain

(6.25) $razp =0, &,f=1,...,p.

Hence, after solving (6.25), we obtain from (6.24) that

h
(6.26) =y

=l a

h
Tz + Zb’z,,

M'u

1
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for some constant vectors ¢, and ¥, @ =1,...,p; j=1,...,h.
Equation (6.26) yields

L) h
(6.27) ¢y, =D ATa+V, ¢, = dz;
. a=1 j=1
forj,k=1...,h;a,8=1,...,p. Hence, by applying (3.15) and (6.27), we find
~ ~ p . . p . -
(6.28) lz)* = (¢, 82,) = < Az +,) cze+ b’>
a=1 a=1
which implies ! = --- = b* = 0. Thus, (6.26) becomes
~ h . . p .
(6.29) o(z,z) = ZAJ(IL‘l, o Zp)2, A= ZCL%,
ij=1 a=1
which gives
(6.30) Al =d.

On the other hand, Theorem 5.1 implies that A!,..., A* satisfy
(6:31) (AL, AL) = 8ubas, (Al ,id%) =0
for jk=1...,h a,B=1,...,p. Combining (6.30) and (6.31) give
(6.32) (chrck) = Gixdap,  (c,ick) =0

forjyk=1...,h;a,8=1,...,p. Hence {¢}, j=1,...,h; a='1,...,p} is an orthonor-
mal set which spans a totally real hp-subspace of C™. Without loss of generality, we may

choose the complex coordinates zi, ..., zm on C™ such that

(6.33) a=(1,0,...,0), ...,
¢ =(0,...,0,1,0,...,0), (1 appears p-th place),...,
& =(0,...,0,1,0,...,0), (1 appears (h— 1)p+ 1-th place),...,
¢h=(0,...,0,1,0,...,0) (1 appears hp-th place).

Combining (6.29) and (6.33) gives (6.2).
Conversely, it is straightforward to verify that (6.2) defines a natural C R-immersion
of C*®E? into C™ whose second fundamental form satisfies the equality case of (6.1). 0

The following theorem provides another simple geometric characterisation of v, ;

=2Q .
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THEOREM 6.2. Let ¢ : U — C™ be a natural CR-immersion from an open
portion U of C* ® EP into C™. We have

(1) m > hp.
(2) Ifm = hp, then, up to rigid motions of C*?, ¢=¢doris given by

(6.34) g(z, z) =Y, 2(2,2) = (2121, .., 21Zp, . . ., Z4T1, - - - , ZnTp)-

PROOF: Let ¢ : U — C™ be a natural C R-immersion from an open portion U of
C" ® E? into C™. Then Theorem 5.1 implies that, up to rigid motions of C™, the
composition ¢ = ¢ o7 is given by

h
(6.35) L d(za) =) Az, 1)z,

Jj=1
where A'(zy,...,%p),...,AP(z1,...,1,) are mutually orthogonal vector functions of

length |z|. Moreover, Al,..., A" satisfy

(636) (A], Ak) = |$I2(Sjk, <A]?1Ak) = 01
(637) (Ajv AI::C,) = xaéjkv (Aia, Agg) = 6jk60ﬂ,
(6.38) (A1,145 ) =0, (Al ,iAk)=0

for ,k=1,....,h o, 8=1,...,p.

From (6.36), (6.37) and (6.38) we know that {47 ,j=1,...,h;a=1,...,p} isan
orthonormal set which spans a totally real hp-plane in C™. Therefore, m > hp. This
proves statement (1).

If m = hp, then (6.37)—(6.38) implies that, for each j € {1,...,h}, A’ defines an
isometric immersion from an open domain, say D, of the Euclidean p-space E” into a
totally real p-subspace of C*. Moreover, each A7 satisfies |A7|? = Xp: z2. Since, up to

rigid motions of EP, the only isometric immersion from the flat pfxs_place D C E? into
E? is the inclusion map, each A’ must be an inclusion map of D into E?. Furthermore,
because A!,..., A" are orthogonal vector functions in C*? which satisfy (6.36)-(6.38), we
may choose the complex Euclidean coordinate system {z;,...,z,} on C*? so that (6.35)
takes the following special form of (6.34). This proves statement (2). 1]

REMARK 6.1. Theorem 6.2 can be regarded as the Euclidean version of the natural
characterisation of Segre imbeddings obtained in [5].

REMARK 6.2. Further results on convolutions have been obtained in [6].
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