
JFP 28, e6, 2 pages, 2018. c© Cambridge University Press 2018

doi:10.1017/S0956796818000060

1

Editorial for the Special Issue on Parallel and
Concurrent Functional Programming

Functional languages are uniquely suited to providing programmers with a

programming model for parallel and concurrent computing. This is reflected in

the wide range of work that is currently underway, both on parallel and concurrent

functional languages, as well as on bringing functional language features to other

programming languages. This has resulted in a rapidly growing number of practical

applications. The Journal of Functional Programming decided to dedicate a special

issue to this field to showcase the state of the art in how functional languages and

functional concepts currently assist programmers with the task of managing the

challenges of creating parallel and concurrent systems.

The common theme of the majority of the papers that were submitted and

accepted for publication is the variety of aspects of scheduling for parallel and

concurrent systems.

In Transparent Fault Tolerance for Scalable Functional Computation, Robert

Stewart, Meier and Trinder address the often neglected issue of reliability and

fault tolerance in this context. To this aim, the authors extend the domain-specific

language HdpH, a Haskell EDSL for parallel and distributed programming, with

support for reliable scheduling. In the paper, the authors present a formal semantics

of HdpH-RS, on which they base the validation of the fault-tolerant distributed

scheduling algorithm using a model checker.

Sivaramakrishnan, Harris, Marlow and Jones present a concurrency substrate

design for the Glasgow Haskell Compiler (GHC) in Composable Scheduler

Activations for Haskell. These abstractions allow application programmers to write

customised schedulers as ordinary libraries, without compromising any of the existing

features in GHC. They show that this approach integrates seamlessly with the

existing runtime system features for concurrency support and that the performance

is comparable to the default scheduler in GHC.

Implicit parallel languages offer a convenient, high-level programming model, as

they leave scheduling decisions to the compiler and runtime system. Deciding on the

scheduling strategy in such a context is a complex problem, which is addressed

by Acar, Charguéraud and Rainey in Oracle-Guided Scheduling for Controlling

Granularity in Implicitly Parallel Languages.

In the Haskell dialect Eden, parallelism and scheduling are implemented via

skeletons. In Skeleton Composition Versus Stable Process Systems in Eden, Dieterle,

Horstmeyer, Loogen and Berthold discuss the trade-offs between programmer

convenience and program efficiency when deciding whether to use complex

monolithic skeletons or composable, simpler ones using a range of case studies.

In A Language for Hierarchical Data Parallel Design-Space Exploration on GPUs,

Svensson, Newton and Sheeran present case studies on how to use Obsidian,

https://doi.org/10.1017/S0956796818000060 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796818000060


2 G. Keller and F. Henglein

a Haskell EDSL for GPU programming. Obsidian supports hierachical data

parallelism, a restricted form of nested data parallelism, and aims at allowing

programmers to abstract over details of the GPU architecture, while still providing

sufficient means for fine tuning to achieve performance close to hand optimised

GPU programs.

As editors of the special issue, we would like to thank all the authors who

responded to the call for papers. We would also like to extend our gratitude to

the reviewers for their expertise, time and effort, and to Matthias Felleisen, Jeremy

Gibbons and the JFP editorial office for their support.

Gabriele Keller

University of New South Wales

gabriele.keller@unsw.edu.au

Fritz Henglein

University of Copenhagen

henglein@diku.dk

https://doi.org/10.1017/S0956796818000060 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796818000060

