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Abstract

We use Stein’s method to establish the rates of normal approximation in terms of the total
variation distance for a large class of sums of score functions of samples arising from
random events driven by a marked Poisson point process on R

d . As in the study under
the weaker Kolmogorov distance, the score functions are assumed to satisfy stabilisation
and moment conditions. At the cost of an additional non-singularity condition, we show
that the rates are in line with those under the Kolmogorov distance. We demonstrate
the use of the theorems in four applications: Voronoi tessellations, k-nearest-neighbours
graphs, timber volume, and maximal layers.
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1. Introduction

Limit theorems of functionals of Poisson point processes initiated by Avram and Bertsimas
[1] have been of considerable interest in the literature; see, e.g., [30, 31, 37, 41, 46, 47]
and references therein. To estimate the approximation errors, a number of tools have been
developed, including Stein’s method [3, 4], the Malliavin–Stein technique via the Wiener–Itô
expansion [37] and the second-order Poincaré inequalities [31], and the stabilisation [38, 39].
The main feature of the stabilisation is that the insertion of a point into a Poisson point pro-
cess induces only a local effect, in some sense; hence there is little change in the functionals.
However, inserting an additional point into the Poisson point process results in the Palm pro-
cess of the Poisson point process at the point [26, Chapter 10], and it is shown in [13, 14]
that the magnitude of the difference between a point process and its Palm processes is directly
linked to the accuracy of Poisson and normal approximations of the point process. This is
also the fundamental reason why the limit theorems in the above-mentioned papers can be
established.
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Normal approximation in total variation 107

The normal approximation theory is generally quantified in terms of the Kolmogorov
distance dK : for two random variables X1 and X2 with distributions F1 and F2,

dK(X1, X2) := dK(F1, F2) := sup
x∈R

|F1(x) − F2(x)|.

The well-known Berry–Esseen theorem [7, 20] states the following. If Xi, 1 ≤ i ≤ n, are inde-
pendent and identically distributed (i.i.d.) random variables with mean 0, variance 1, and a
finite third moment, define

Yn =
∑n

i=1 Xi√
n

, Z ∼ N(0, 1),

where ∼ denotes ‘is distributed as’. Then

dK(Yn, Z) ≤ CE|X1|3√
n

.

The Kolmogorov distance dK(F1, F2) measures the maximum difference between the dis-
tribution functions F1 and F2, but it does not say much about the difference between the
probabilities P(X1 ∈ A) and P(X2 ∈ A) for a non-interval Borel subset A of the real space R, e.g.,
A = ∪i∈Z(2i, 2i + 0.5], where Z denotes the set of all integers. Such information is reflected in
the total variation distance dTV (F1, F2), defined by

dTV (X1, X2) := dTV (F1, F2) := sup
A∈B(R)

|F1(A) − F2(A)|,

where B(R) stands for the Borel σ -algebra on R. Vanishing bounds for normal approximation
under the total variation distance for statistics in geometric probability provide us with the
theoretical foundation for constructing density estimators of the distributions in a wide range
of applications documented in [15, Chapters 8–10] and bound the minimax probability of error
for making statistical inference [49, pp. 80–81]. Moreover, since dK(X1, X2) ≤ dTV (X1, X2),
vanishing bounds on the total variation distance imply a stronger qualitative result than just a
central limit theorem (CLT).

Although CLTs with errors measured in the total variation distance have been studied in
some special circumstances (see, e.g., [19, 36, 2]), it is generally believed that the total vari-
ation distance is too strong for quantifying the errors in normal approximation (see, e.g., [9,
12, 21]). For example, the total variation distance between any discrete distribution and any
normal distribution is always 1. To recover CLTs with errors measured in the total variation
distance, a common approach is to discretise the distribution of interest and approximate it with
a simple discrete distribution, e.g., a translated Poisson distribution [43, 44], a centred bino-
mial distribution [45], a discretised normal distribution [12, 21], or a family of polynomial-type
distributions [24]. The multivariate versions of these approximations are investigated by [6].

By discretising a distribution F of interest, we essentially group the probability of an area
and put it at one point in the area. Hence the information of F(A) for a general set A ∈ B(R)
is completely lost. In this paper, we consider the normal approximation in terms of the total
variation distance to the sum of random variables under various circumstances.

A motivating example: [22, p. 146]. Let {Xi : i ≥ 1} be a sequence of i.i.d. random
variables taking values 0 and 1 with equal probability; then X =∑∞

k=1 2−kXk has the uni-
form distribution on (0, 1). If we separate the even and odd terms into U =∑∞

k=1 2−2kX2k
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108 T. CONG AND A. XIA

and V =∑∞
k=1 2−(2k−1)X2k−1, then U and V are independent, 2U

d= V . Both U and V dif-
fer only by scale factors from the Cantor distribution, which is singular with respect to
the Lebesgue measure [22, p. 146]. Now, we can construct mutually independent random

variables {Ui, Vi : i ≥ 1} such that Ui
d= U −EU and Vi

d= V −EV . Consider ξ1 = U1 + V1,
ξ2 = −V1 − U2, ξ3 = U2 + V2, . . . ; then {ξi} is a sequence of 1-dependent and identically dis-
tributed random variables having the uniform distribution on (−0.5, 0.5). One can easily verify
that

∑n
i=1 ξi does not converge to normal as n → ∞; hence stronger conditions are needed to

ensure normal approximation for the sum of dependent random variables.
Under the Kolmogorov distance, user-friendly conditions are usually formulated to ensure

that the variance of the sum becomes large as n → ∞. In the motivating example, the variance
of the partial sum

∑n
i=1 ξi is bounded, which does not give sufficient offset in the ξi’s to warrant

a CLT. For the normal approximation of the sum of score functions, a typical condition for the
variance to converge to infinity sufficiently fast is non-degeneracy—that is, the conditional
variance of the sum given the information outside a local region is away from 0 (see [38, 51]).

The success of normal approximation with errors measured in terms of the total variation
distance without discretisation hinges on non-singularity; that is, the distribution contains an
absolutely continuous component with respect to the Lebesgue measure. More precisely, by
the Lebesgue decomposition theorem [25, p. 134], any distribution function F on R can be
represented as

F = (1 − αF)Fs + αFFa, (1.1)

where αF ∈ [0, 1], and where Fs and Fa are two distribution functions such that, with respect
to the Lebesgue measure on R, Fa is absolutely continuous and Fs is singular [25, p. 126]; F
is said to be non-singular if αF > 0. For convenience, we say that a random variable is non-
singular if its distribution function is non-singular. It is clear that non-singularity implies non-
degeneracy. Prohorov [40] proved that in one dimension, a necessary and sufficient condition
for the convergence of the standardised partial sum of i.i.d. random variables Xi to the standard
normal distribution in terms of the total variation distance is that there exists an n0 ∈N such
that

∑n0
i=1 Xi is non-singular. The non-singularity is almost necessary because it is an essential

ingredient in the special case of the sum of i.i.d. random variables; see [2] for a brief review of
the development of the CLT in the total variation distance.

In the context of functionals of Poisson point processes, a prototypical example is the
sum Wν =∑N

i=1 Xi of Poisson number N ∼ Poisson(ν) i.i.d. random variables {Xi, i ≥ 1}
which are independent of N. If the distribution L(X1) of X1 is discrete, then the distri-
bution of Ws,ν := (Wν −EWν)/

√
Var(Wν) is also discrete, and hence dTV (Ws,ν , Z) = 1 for

all ν, where Z ∼ N(0, 1). However, if L(X1) is non-singular, the asymptotic behaviour of
dTV (Ws,ν , Z) in terms of large ν is very similar to that of dK(Ws,ν , Z). For example, assume
that P(Y1 = 1) = 9/10 and P(Y1 ∈ dx) = 0.1dx for x ∈ [0, 1). Then Figure 1 shows that when
ν = 50, the density function of the absolutely continuous part of Ws,ν is very close to that of
N (0, 1) in the total variation distance, giving a very small value of dTV (Ws,ν , Z). Moreover,
as shown in Figure 2, the distance dTV (Ws,ν , Z) decreases very fast when ν becomes large.
Briefly summarised, the main results of the paper state that, for the score functions of samples
arising from random events driven by a marked Poisson point process on R

d, if the conditional
distribution of the sum given the information outside a neighbourhood is non-singular, then,
with the cost of a logarithmic factor, the error of the normal approximation to the sum of such
score functions in terms of the total variation distance is similar to the error with respect to the
Kolmogorov distance established in, e.g., [38, 39, 30].
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FIGURE 1. ν = 50.
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FIGURE 2. ν = 100.

In Section 2, we give definitions of the concepts, state the conditions, and present the main
theorems. In Section 3, these theorems are applied to establish error bounds for the normal
approximation for statistics in Voronoi tessellations, k-nearest-neighbours graphs, timber vol-
ume, and maximal layers. The proofs of the main results in Section 2 rely on a number of
preliminaries and lemmas which are given in Section 4. For ease of reading, all proofs are
postponed to Section 5.

2. General results

We consider the functionals of a marked point process with a Poisson point process in R
d as

its ground process, and each point carries a mark in a measurable space (T,T) independently
of other marks, where T is a σ -algebra on T . More precisely, let S := R

d × T be equipped with
the product σ -field S := B

(
R

d
)× T, where B

(
R

d
)

is the Borel σ -algebra of Rd. We use CS
to denote the space of all locally finite non-negative integer-valued measures ξ , often called
configurations, on S such that ξ ({x} × T) ≤ 1 for all x ∈R

d. The space CS is endowed with
the σ -field CS generated by the vague topology [26, p. 169]. A marked point process � is a
measurable mapping from (�,F, P) to (CS,CS) [27, p. 49]. The induced simple point process
�̄(·) := �(· × T) is called the ground process [16, p. 3] or projection [27, p. 17] of the marked
point process � on R

d. In this paper, we use Pλ,LT to denote the law of a marked Poisson
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point process having a homogeneous Poisson point process on R
d with intensity measure λdx

as its ground process and i.i.d. marks on (T,T) with the law LT .
For convenience, we write the restricted process of � on a measurable set A ∈ B

(
R

d
)

as
�A, i.e., �A(B × D) := �((A ∩ B) × D) for all D ∈ T and B ∈ B

(
R

d
)
. Statistics in geometric

probability are often affected by the point configuration; hence both the restricted and unre-
stricted point patterns are of interest in applications. The functionals we study in the paper are

defined on 	α :=
[
− 1

2α
1
d , 1

2α
1
d

]d
and have the forms

Wα :=
∑

(x,m)∈�	α
η( (x,m), �)

and

W̄α :=
∑

(x,m)∈�	α
η( (x,m), �	α , 	α) =

∑
(x,m)∈�	α

η( (x,m), �, 	α),

where �∼ Pλ,LT . The function η is called a score function (resp. restricted score function),
i.e., a measurable function on (S × CS,S × CS) to (R,B(R)) (resp. a function mapping S ×
CS × B

(
R

d
)

to R which is measurable with respect to (S ∩ (	α × T)) × CS∩(	α×T) → B(R)
when the third coordinate is fixed), and it represents the interaction between a point and the
configuration. Because our interest is in the values of the score function of the points in a
configuration, for convenience, η((x,m),X) (resp. η((x,m),X, 	α) ) is understood as 0 for
all x ∈R

d and X ∈ CS such that (x,m) /∈ X. We consider the score functions satisfying the
following four conditions:

• stabilisation (Assumption 2.1)

• translation-invariance (Assumption 2.2)

• a moment condition (Assumption 2.3)

• non-singularity (Assumption 2.4)

Assumption 2.1. Stabilisation

Unrestricted case. For a locally finite configuration X and z ∈ (Rd × T) ∪ {∅}, write X �z� =
X if z = ∅ and X �z� = X ∪ {z} otherwise. We use δv to denote the Dirac measure at v, and
B(x, r) to denote the ball with centre x and radius r. The notion of stabilisation is introduced in
[38], and we adapt it to our setup as follows.

Definition 2.1. (Unrestricted case.) A score function η on R
d × T is range-bounded (resp.

exponentially stabilising, polynomially stabilising of order β > 0) with respect to intensity
λ and a probability measure LT on T if for all x ∈R

d, z ∈ (Rd × T) ∪ {∅}, and almost all
realisations X of the marked homogeneous Poisson point process �∼ Pλ,LT , there exists an
R := R(x) := R

(
x,mx,X �z�

) ∈ (0,∞) (a radius of stabilisation) such that for all locally finite
Y ⊂ (Rd\B(x, R)) × T , we have

R
(
(x,mx) ,

[
X �z� ∩ (B(x, R) × T)

]
∪ Y

)
=R

(
(x,mx) ,X

�z� ∩ (B(x, R) × T)
)
,

η
(
(x,mx) ,

[
X �z� ∩ (B(x, R) × T)

]
∪ Y

)
=η

(
(x,mx) ,X

�z� ∩ (B(x, R) × T)
)
,
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and the tail probability

τ (t) := sup
x∈Rd,mx∈supp(LT )

sup
z∈(Rd×T)∪{∅}

P

(
R(x,mx, �

�z� + δ(x,mx)) ≥ t
)

satisfies

τ (t) = 0 for some t ∈R+
(
resp. τ (t) ≤ C1e−C2t, τ (t) ≤ C1t−β for all t ∈R+

)
for some positive constants C1 and C2.

Here and in the following, we write R or R(x) (resp. R̄ or R̄(x) in Definition 2.1) only if it
will not cause any confusion. The definition ensures that {R((x,mx),X �z�) ≤ t} is determined
by XB(x,t) for all x ∈R

d and t ∈R+.

Restricted case. We have the following counterpart of stabilisation for the functionals with a
restricted marked Poisson point process input. Note that the score function for the restricted
input is not affected by points outside 	α .

Definition 2.2. (Restricted case.) A score function η is range-bounded (resp. exponentially
stabilising, polynomially stabilising of order β > 0) with respect to intensity λ and a prob-
ability measure LT on T if for all α ∈R+, x ∈ 	α , and z ∈ (	α × T) ∪ {∅}, and almost all
realisations X of the marked homogeneous Poisson point process �∼ Pλ,LT , there exists an
R̄ := R̄(x, α) := R̄(x,mx, α,X �z�) ∈ (0,∞) (a radius of stabilisation) such that for all locally
finite Y ⊂ (	α\B(x, R)) × T , we have

R̄
(
(x,mx) ,

[
X

�z�
	α

∩ (
B(x, R̄) × T

)]∪ Y, 	α
)

= R̄
(
(x,mx) ,X

�z�
	α

∩ (
B(x, R̄) × T

)
, 	α

)
,

η
(
(x,mx) ,

[
X

�z�
	α

∩ (
B(x, R̄) × T

)]∪ Y, 	α
)

= η
(
(x,mx) ,X

�z�
	α

∩ (
B(x, R̄) × T

)
, 	α

)
,

(2.1)

and the tail probability

τ̄ (t) := sup
x∈Rd,mx∈supp(LT ),α∈R+

sup
z∈(	α×T)∪{∅}

P

(
R̄
(
x,mx, α, �

�z� + δ(x,mx)
)≥ t

)

satisfies

τ̄ (t) = 0 for some t ∈R+
(
resp. τ̄ (t) ≤ C1e−C2t, τ̄ (t) ≤ C1t−β for all t ∈R+

)
for some positive constants C1 and C2.

As in the unrestricted case, the definition ensures that
{
R̄
(
(x,mx), α,X �z�

)≤ t
}

is a
function of XB(x,t)∩	α for all x ∈R

d and α, t ∈R+.

Assumption 2.2. Translation-invariance

We write d(x, A) := inf{d(x, y); y ∈ A}, A ± B := {x ± y; x ∈ A, y ∈ B} for x ∈R
d and

A, B ∈ B
(
R

d
)
, and define the shift operator as �x(· × D) := �((· + x) × D) for all x ∈R

d,
D ∈ T.

Unrestricted case. See also [38].

Definition 2.3. The score function η is translation-invariant if for all locally finite configura-
tions X, x, y ∈R

d, and m ∈ T , η((x + y,m),X ) = η((x,m),X y).
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Restricted case. A translation may send a configuration outside of 	α , resulting in a com-
pletely different configuration inside 	α . For example, for a configuration X ⊂ 	α × T and a
point x �= 0 in R

d, the translation Xx may not be a configuration contained in 	α × T . To focus
on the part that affects the score function, we expect the score function to take the same value
for two configurations if the parts within their stabilising radii are completely inside 	α , and
one is a translation of the other. More precisely, we have the following definition.

Definition 2.4. A stabilising score function is called translation-invariant if for any α > 0, x ∈
	α , and X ∈ CRd×T such that R̄(x,m, α,X ) ≤ d(x, ∂	α), where ∂A stands for the boundary
of A, we have η((x,m),X, 	α)= η

(
(x′,m),X ′, 	α′

)
and R̄(x′,m, α′,X ′) = R̄(x,m, α,X )

for all α′ > 0, x′ ∈ 	α′ , and X ′ ∈ CRd×T such that R̄(x,m, α,X ) ≤ d(x′, ∂	α′) and

(
X ′

B
(

x′,R̄(x,m,α,X )
))x′

=
(

X
B
(

x,R̄(x,m,α,X )
))x

.

Note that there is a tacit assumption of consistency in Definition 2.4, which implies that if
η is translation-invariant under Definition 2.4, then there exists a ḡ : CRd×T →R such that

lim
α→∞ η((0,m),X, 	α)= ḡ

(
X + δ(0,m)

)
for LT -almost-sure m ∈ T and almost all realisations X of the marked homogeneous Poisson
point process �∼ Pλ,LT . Furthermore, we can see that for each score function η satisfying
the translation-invariance in Definition 2.4, there exists a score function for the unrestricted
case, obtained by setting

η̄((x,m),X ) := ḡ(X x)1(x,m)∈X (2.2)

and using its corresponding radius of stabilisation in the sense of Definition 2.1 as R. From
the construction, η̄ is range-bounded (resp. exponentially stabilising, polynomially stabilis-
ing of order β > 0) in the sense of Definition 2.1 if η is range-bounded (resp. exponentially
stabilising, polynomially stabilising of order β > 0) in the sense of Definition 2.2. Moreover,
if B(x, R(x)) ⊂ 	α , then R̄(x, α) = R(x), and if B(x, R(x)) �⊂ 	α , then R̄(x, α)> d

(
x, ∂	α

)
, but

there is no definite relationship between R̄ and R.

Assumption 2.3. Moment condition

Unrestricted case. A score function η is said to satisfy the kth moment condition if

E

(∣∣η((0,M3), �+ a1δ(x1,M1) + a2δ(x2,M2) + δ(0,M3)
)∣∣k)≤ C (2.3)

for some positive constant C for all ai ∈ {0, 1}, distinct xi ∈R
d, i ∈ {1, 2}, and i.i.d. random

elements M1, M2, M3 ∼ LT that are independent of �.

Restricted case. A score function η is said to satisfy the kth moment condition if there exists
a positive constant C independent of α such that

E

(∣∣η((x3,M3), �	α + a1δ(x1,M1) + a2δ(x2,M2) + δ(x3,M3)
)∣∣k)≤ C (2.4)

for all a1, a2 ∈ {0, 1}, distinct x1, x2, x3 ∈ 	α , and i.i.d. random elements M1, M2, M3 ∼ LT

that are independent of�. From the construction, if η is stabilising, then η̄ satisfies the moment
condition of the same order in the sense of (2.3).
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Assumption 2.4. Non-singularity

Unrestricted case. The score function is said to be non-singular if

L

⎛
⎝ ∑

(x,m)∈�
η((x,m), �) 1d(x,N0)<R(x)

∣∣∣∣∣∣ σ
(
�Nc

0

)⎞⎠ (2.5)

has a positive probability of being non-singular for some bounded set N0. That is, the sum of
the values of the score function affected by the points in N0 is non-singular.

Restricted case. We define non-singularity when the score function is stabilising and
translation-invariant. The score function η for restricted input is said to be non-singular if
it is stabilising, and the corresponding η̄ defined in (2.2) satisfies that

L

⎛
⎝ ∑

(x,m)∈�
η̄((x,m), �) 1d(x,N0)<R(x)

∣∣∣∣∣∣ σ
(
�Nc

0

)⎞⎠ (2.6)

has a positive probability of being non-singular for some bounded set N0.
The non-singularity assumptions above are stronger than the non-degeneracy conditions

(1.10) and (1.12) in [51] for Poisson input. The latter is comparable to the non-degeneracy
condition in [38, Theorem 2.1]; see the proof of Lemma 5.9.

The main result for Wα (the unrestricted case) is summarised below.

Theorem 2.1. Let Zα ∼ N(EWα,Var(Wα)). Assume that the score function η is translation-
invariant as in Definition 2.2 and satisfies the non-singularity in Assumption 2.4.

(i) If η is range-bounded as in Definition 2.1 and satisfies the third moment condition (2.3),
then

dTV (Wα, Zα) ≤ O
(
α− 1

2

)
.

(ii) If η is exponentially stabilising as in Definition 2.1 and satisfies the third moment
condition (2.3), then

dTV (Wα, Zα) ≤ O
(
α− 1

2 ln(α)
5d
2

)
.

(iii) If η is polynomially stabilising as in Definition 2.1 with parameter β > (15k−14)d
k−2 and

satisfies the k′th moment condition (2.3) with k′ > k ≥ 3, then

dTV(Wα, Zα)≤ O

(
α

− β(k−2)[β(k−2)−d(15k−14)]
(kβ−2β−dk)(5dk+2βk−4β)

)
.

When approximation error is measured in terms of the Kolmogorov distance, the distribu-
tions of Wα and W̄α are often close for large α. However, in terms of the total variation distance,
one cannot infer the accuracy of the normal approximation of Wα by taking the limit of that of
W̄α . For this reason, we need to adapt the conditions accordingly and tackle W̄α separately. We
state the main result for W̄α (the restricted case) in the following theorem.

Theorem 2.2. Let Z̄α ∼ N(EW̄α,Var(W̄α)). Assume that η is translation-invariant as in
Definition 2.4 and satisfies the non-singularity in Assumption 2.4.

(i) If η is range-bounded as in Definition 2.2 and satisfies the third moment condition (2.4),
then

dTV (W̄α, Z̄α) ≤ O
(
α− 1

2

)
.
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(ii) If η is exponentially stabilising as in Definition 2.2 and satisfies the third moment
condition (2.4), then

dTV (W̄α, Z̄α) ≤ O
(
α− 1

2 ln(α)
5d
2

)
.

(iii) If η is polynomially stabilising as in Definition 2.2 with parameter β > (15k−14)d
k−2 and

satisfies the k′th moment condition (2.4) with k′ > k ≥ 3, then

dTV
(
W̄α, Z̄α

)≤ O

(
α

− β(k−2)[β(k−2)−d(15k−14)]
(kβ−2β−dk)(5dk+2βk−4β)

)
.

Remark 2.1. It is unclear whether the logarithmic factors in Theorem 2.1(ii) and
Theorem 2.2(ii) are artefacts of the proofs.

3. Applications

Our main result can be applied to a wide range of geometric probability problems, includ-
ing the normal approximation of functionals of k-nearest-neighbours graphs, Voronoi graphs,
sphere-of-influence graphs, Delaunay triangulation graphs, Gabriel graphs, and relative neigh-
bourhood graphs. To keep our article to a reasonable length, we give details only for the
k-nearest-neighbours graph and the Voronoi graph. We can see that many functionals of the
graphs, such as the total edge length, satisfy the conditions of the main theorems naturally, and
the ideas for verifying these conditions are similar. For ease of reading, we briefly introduce
these graphs below; more details can be found in [17, 48].

Let X ⊂R
d be a locally finite point set.

(i) The k-nearest-neighbours graph. The k-nearest-neighbours graph NG(X ) is the graph
obtained by including {x, y} as an edge whenever y is one of the k points nearest to x or
x is one of the k points nearest to y. A variant of NG(X ) considered in the literature is
the directed graph NG′ (X), which is constructed by inserting a directed edge (x, y) if y
is one of the k nearest neighbours of x.

(ii) Voronoi tessellations. We enumerate the points in X as {x1, x2, . . . }, and for each i ∈N

we denote by C(xi) := C(xi,X ) the locus of points in R
d closer to xi than to any other

points in X. We can see that C(xi) is the intersection of half-planes. In particular, when
the point set X has n<∞ points, C(xi) is a convex polygonal region with at most n − 1
sides, 1 ≤ i ≤ n. The cells C(xi) form a partition of Rd. The partition is called a Voronoi
tessellation, and the points in X are usually called Voronoi generators.

(iii) The Delaunay triangulation graph. The Delaunay triangulation graph puts an edge
between two points in X if these points are centres of adjacent Voronoi cells; it is a
dual of a Voronoi tessellation.

(iv) The Gabriel graph. The Gabriel graph puts an edge between two points x and y in
X if the ball centred at the middle point x+y

2 with radius
∥∥ x−y

2

∥∥ does not contain any
other points in X. We can see that the Gabriel graph is a subgraph of the Delaunay
triangulation graph.

(v) The relative neighbourhood graph. The relative neighbourhood graph puts an edge
between two points x and y in X if B(x, ‖x − y‖) ∩ B(y, ‖x − y‖) ∩ X = ∅. When d = 2,
this means that the vesica piscis between x and y does not contain any other points in
X. This graph is a subgraph of Gabriel graph, so it is also a subgraph of Delaunay
triangulation graph.
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(vi) The sphere-of-influence graph. The sphere-of-influence graph of a locally finite point
set X ⊂R

d is the graph obtained by including {x, y} as an edge whenever x, y ∈ X and
‖x − y‖ ≤ ‖x − N(x,X )‖ + ‖y − N(y,X )‖, where for z ∈ X, N(z,X ) is the nearest
point to z in X. That is, for every point z ∈ X, we draw a circle with centre z whose
radius is the distance between z and the point nearest to it in X; then two points x, y are
connected if the circles centred at x and y intersect.

Remark 3.1. Using [30, Corollary 2.2] or [13, Theorem 3.1], it is possible to consider normal
approximation to the statistics in Section 3.1 and Section 3.2 under the Kolmogorov distance

with convergence rate O
(
α− 1

2
)

instead of O
(
α− 1

2 ln(α)
5d
2

)
.

3.1. The total edge length of the k-nearest-neighbours graph

Theorem 3.1. If � is a homogeneous Poisson point process, then the total edge length W̄α(
resp. W̄ ′

α

)
of NG

(
�	α

) (
resp. NG′ (�	α ) ) satisfies

dTV
(
W̄α, Z̄α

)≤ O
(
α− 1

2 ln(α)
5d
2

) (
resp. dTV

(
W̄ ′
α, Z̄′

α

)≤ O
(
α− 1

2 ln(α)
5d
2

))
,

where Z̄α
(
resp. Z̄′

α

)
is a normal random variable with the same mean and variance as W̄α(

resp. W̄ ′
α

)
.

Proof. We adapt the idea of the proof in [38] to our setup. We only show the claim for the
total edge length of NG

(
�	α

)
since NG′ (�	α ) can be handled with the same idea. The score

function in this case is

η(x,X, 	α) := 1

2

∑
y∈X	α

‖y − x‖1{
(x,y)∈NG

(
X	α

)},
which is clearly translation-invariant.

To apply Theorem 2.2, we need to check the moment condition (2.4), the non-singularity
in Assumption 2.4, and the stabilisation condition in Definition 2.2. For simplicity, we show
these conditions in two-dimensional cases; the argument can easily be extended to R

d with
d ≥ 3 (resp. d = 1) by using cones (resp. intervals) instead of triangles in the proof.

We start with the exponential stabilisation, and fix α > 0 and x ∈ 	α . Referring to Figure 3,
for each t> 0, we construct six disjoint sectors of the same size Tj(t), 1 ≤ j ≤ 6, with x as
the centre and angle π

3 . In consideration of edge effects near the boundary of 	α , the sectors
are rotated around x so that all straight edges of the sectors have angles at least π/12 with
respect to the edges of 	α . It is clear that Tj(t) ⊂ Tj(u) for all 0< t< u. Set Tj(∞) = ∪t>0Tj(t)
for 1 ≤ j ≤ 6; then from the properties of the Poisson point process, there are infinitely many
points in �∩ Tj(∞) for all j, a.s. Let |A| denote the cardinality of the set A; define

tx,α = inf
{
t : |Tj(t) ∩ 	α ∩�| ≥ k + 1 or Tj(t) ∩ 	α = Tj(∞) ∩ 	α, 1 ≤ j ≤ 6

}
(3.1)

and R̄(x, α)= 3tx,α . We show that R̄ is a radius of stabilisation, and its tail distribution can be
bounded by an exponentially decaying function independent of α and x.

For the radius of stabilisation, there are two cases to consider. The first case is that none
of Tj(tx,α) ∩ 	α ∩�, 1 ≤ j ≤ 6, contains at least k + 1 points; then B

(
x, R̄

(
x, α

))⊃ 	α , and
(2.1) is obvious. The second case is that at least one of Tj(tx,α) ∩ 	α ∩�, 1 ≤ j ≤ 6, con-
tains at least k + 1 points, which means that the k nearest neighbours {x1, . . . , xk} of x are
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FIGURE 3. k-nearest: stabilisation.

FIGURE 4. k-nearest: At.

in B
(
x, tx,α

)
. If a point y ∈ 	α\B(x, tx,α), then y ∈ 	α ∩ (Tj(∞)\Tj(tx,α)) for some j. Since

	α ∩ (Tj(∞)\Tj(tx,α)) is non-empty, Tj(tx,α) contains at least k + 1 points {y1, . . . , yk+1} and
d(x, y)> d(yi, y) for all i ≤ k + 1; hence y cannot have x as one of its k nearest neighbours.
This ensures that all points having x as one of their k nearest neighbours are in B(x, tx,α).
Noting that the diameter of B

(
x, tx,α

)
is 2tx,α and there are at least k + 1 points in B

(
x, tx,α

)
,

we can see that whether a point y in B
(
x, tx,α

)
has x as one of its k nearest neighbours is

entirely determined by �∩ B(y, 2tx,α) ⊂�∩ B(x, 3tx,α). This guarantees that η(x,X, 	α) is
σ
(
�B(x,3tx,α)

)
-measurable, and R̄(x, α) is a radius of stabilisation. For the tail distribution of R̄,

referring to Figure 4, we consider the number of points of� falling into a triangle At as a result
of a sector being chopped off by the edge of 	α . This is the worst situation for capturing the
number of points by one sector intersecting 	α in the sense of volume. A routine trigonometry
calculation gives that the area of At is at least 0.116t2. Define τ := inf{t : |�∩ At| ≥ k + 1};
then

P
(
R̄(x, α) > t

)≤ 6P(τ > t/3)≤ 6e−0.116λ(t/3)2
k∑

i=0

(
0.116λ(t/3)2

)i

i! , t> 0, (3.2)

which implies the exponential stabilisation.
The non-singularity in Assumption 2.4 can be proved through the corresponding unre-

stricted score function η̄(x,X ) = 1
2

∑
y∈X ‖y − x‖1{(x,y)∈NG(X )}. Referring to Figure 5, we

take N0 := B(0, 0.5), observe that ∂B(0, 6) can be covered by finitely many B(x, 3) with
‖x‖ = 5, and write the centres of these balls as x1, . . . , xn (in the two-dimensional case, n = 5).
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FIGURE 5. k-nearest: non-singularity.

Let E be the event that |B(xi, 1) ∩�| ≥ k + 1 for all 1 ≤ i ≤ n, | (B(0, 1)\B(0, 0.5))∩�| =
k, and �∩ (

B(0, 6)\ (∪i≤nB(xi, 1) ∪ B(0, 1)
))

is empty; then E is σ
(
�Nc

0

)
-measurable and

P(E)> 0. Conditional on E, we can see that E1 := {|�∩ B(0, 0.5)| = 1} satisfies P(E1|E)> 0,
and on E1, all of the summands in (2.6) that are random are those involving the point of
�B(0,0.5); thus we now establish that these random score functions are entirely determined by
�B(0,1). As a matter of fact, any point in �∩ (∪1≤i≤nB(xi, 1)

)
has k nearest points with dis-

tances no larger than 2, so points in �∩ B(0, 1) cannot be among the k nearest points to points
in�∩ B(xi, 1). For any point y ∈�∩ B(0, 6)c, the line between 0 and y intersects ∂B(0, 6) at y′,
which is in B(xi0 , 3) for some 1 ≤ i0 ≤ n, so the distances between y and points in�∩ B(xi0 , 3)
are at most ‖y − y′‖ + 4 = ‖y‖ − 2. The distances between y and points in �∩ B(0, 1) are at
least ‖y‖ − 1, which ensures that points of �∩ B(0, 6)c cannot have points in �∩ B(0, 1) as
their k nearest neighbours. On the other hand, on E ∩ E1, there are k + 1 points in �∩ B(0, 1).
For any point x ∈ B(0, 1), since the distances between x and other points in B (0, 1) are less
than 2, the points outside B(x, 2) ⊂ B(0, 3) will not be among the k nearest points to x:

η̄(x, �) = 1

2

∑
y∈(�∩B(0,1))\{x}

‖x − y‖.

Hence, given E, all random score functions contributing to the sum of (2.6) are those
completely determined by �B(0,2), giving

1E1

∑
x∈� such that

η̄(x,�) is random given�Nc
0

η̄(x, �) 1d(x,N0)<R(x) = 1E1

⎧⎪⎪⎨
⎪⎪⎩

∑
y∈�∩B(0,0.5),

x∈(B(0,1)\B(0,0.5))∩�

‖x − y‖ + X

⎫⎪⎪⎬
⎪⎪⎭ ,

where X is σ
(
�Nc

0

)
-measurable. Since this is a continuous function of y ∈�∩ B(0, 0.5), the

non-singularity in Assumption 2.4 follows.
For the moment condition (2.4), recalling the definition of tx,α in (3.1), we replace x with x3

to get tx3,α . We now establish that

η
(
x3, �	α + a1δx1 + a2δx2 + δx3

)≤ 3.5ktx3,α . (3.3)

In fact, the k nearest neighbours to x3 have the contribution of the total edge length ≤ 1
2 ktx3,α .

On the other hand, for 1 ≤ j ≤ 6, each point in
(
�	α + a1δx1 + a2δx2

)∩ Tj
(
tx3,α

)
may take x3
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FIGURE 6. Voronoi tessellation.

as its k nearest neighbour, with the contribution to the total edge length ≤ 1
2 tx3,α . As there are

six sectors
(
�	α + a1δx1 + a2δx2

)∩ Tj
(
tx3,α

)
, 1 ≤ j ≤ 6, and each sector has no more than k

points, with x3 as one of their k nearest neighbours, the contribution to the total edge length
from this part is bounded by 3ktx3,α . By adding these two bounds, we obtain (3.3). Finally, we
combine (3.3) and (3.2) to get

E

{
η
(
x3, �	α + a1δx1 + a2δx2 + δx3

)3
}

≤ 42.875k3
E

{
t3x3,α

}
≤ C<∞,

and the proof is completed by applying Theorem 2.2. �

3.2. The total edge length of a Voronoi tessellation

Consider a finite point set X ⊂ 	α . The Voronoi tessellation in 	α generated by X is the
partition formed by cells C(xi,X ) ∩ 	α; see Figure 6. We write the graph of this tessellation
as V(X, α) and the total edge length of V(X, α) as V(X, α).

Theorem 3.2. If � is a homogeneous Poisson point process, then

dTV
(
V(�	α , α), Z̄α

)≤ O
(
α− 1

2 ln(α)
5d
2

)
,

where Z̄α is a normal random variable with the same mean and variance as V(X, α).

Proof. The stabilising part of the proof is inspired by [38], and the idea can also be used to
show the stabilisation property for Laguerre tessellations, which are a generalisation of Voronoi
tessellations, as in [23].

Before going into details, we observe that

V
(
�	α , α

)=
∑

{x,y}⊂�	α ,x �=y

l
(
∂C

(
x, �	α

)∩ ∂C
(
y, �	α

))
+ l(∂	α),

https://doi.org/10.1017/apr.2023.15 Published online by Cambridge University Press

https://doi.org/10.1017/apr.2023.15


Normal approximation in total variation 119

FIGURE 7. Voronoi: stabilisation.

where l(·) is the volume of a set in dimension d − 1. We restrict our attention to Voronoi
tessellations of random point sets in R

2; with greater notational complexity, the approach

also works in R
d with d ≥ 3, using cones instead of triangles. Because l(∂	α) = 4α

1
2

is a constant, by removing this constant, we have V ′(�	α , α) := V
(
�	α , α

)− 4α
1
2 and

dTV
(
V
(
�	α , α

)
, Z̄α

)= dTV
(
V ′(�	α , α) , Z̄′

α

)
, where Z̄′

α is a normal random variable having
the same mean and variance as V ′(�	α , α). We can set the score function corresponding to
V ′ as

η(x,X, 	α) = 1

2

∑
y∈X, y �=x

l(∂C(x,X ) ∩ ∂C(y,X ))= 1

2
l(∂(C(x,X ) ∩ 	α)\(∂	α))

for all x ∈ X ⊂ 	α , i.e., η(x,X, 	α) is half of the total length of edges of C(x,X ) ∩ 	α ,
excluding the boundary of 	α . The score function η is clearly translation-invariant. Thus, to
apply Theorem 2.2, we need to verify the stabilisation in Definition 2.2, the moment condition
(2.4), and the non-singularity in Assumption 2.4.

We start by showing that the score function is exponentially stabilising. Referring to
Figure 7, similarly to Section 3.1, we construct six disjoint equilateral triangles Txj(t), 1 ≤ j ≤ 6,
such that x is a vertex of these triangles, and the triangles are rotated so that all edges with x as a
vertex have angles at least π/12 relative to the edges of 	α . Let Txj(∞) = ∪t≥0Txj(t), 1 ≤ j ≤ 6;
then ∪1≤j≤6Txj(∞) =R

2. Define

Rxj := Rxj
(
x, α, �	α

)
:= inf{t : Txj(t) ∩�	α �= ∅ or Txj(t) ∩ 	α = Txj(∞) ∩ 	α}

and
Rx0 := Rx0

(
x, α, �	α

)
:= max

1≤j≤6
Rxj

(
x, α, �	α

)
.

We note that there is a minor issue with the counterpart of Rx0 defined in [34] when x is close
to the corners of 	α . We now show that R̄(x, α) := 3Rx0

(
x, α, �	α

)
is a radius of stabilisation.

In fact, for any point x′ in 	α\
(∪1≤j≤6Txj(Rx0)

)
, x′ is contained in a triangle Txj0 (∞)\Txj0 (Rx0).

This implies that Txj0 (Rx0) ∩�	α �= ∅, i.e., we can find a point y ∈ Txj0 (Rx0) ∩�	α and the
point y satisfies d(x′, y) ≤ d(x, x′); hence x′ /∈ C(x, �	α ) ∩ 	α , which ensures that C(x, �	α ) ⊂(∪1≤j≤6Txj(R0)

)
. Consequently, if a point y in �	α generates an edge of C(X) ∩ 	α , then

d(x, y) ≤ 2R0, and R̄(x, α) satisfies Definition 2.2. As in Section 3.1, we use At in Figure 4
again to define τ := inf{t : |�∩ At| ≥ 1}; then

P
(
R̄(x) > t

)≤ 6P(τ > t/3)≤ 6e−0.116λ(t/3)2
, t> 0. (3.4)
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This completes the proof of the exponential stabilisation of η.
The non-singularity in Assumption 2.4 can be examined by using a non-restricted coun-

terpart η̄ of η, taking N0 = B(0, 1), and filling the moat B(0, 4)\B(0, 3) with sufficiently dense
points of� such that, when�Nc

0
is fixed, the random score functions contributing to the sum of

(2.6) are purely determined by a point in �∩ N0. More precisely, we cover the circle ∂B(0, 3)
with disjoint squares having side length

√
2/4, and enumerate the squares as Si, 1 ≤ i ≤ k.

Note that all the squares are contained in B(0, 4)\B(0, 2). Let E = ∩1≤i≤k{|�∩ (Si)| ≥ 1}, E1 =
{|�∩ N0| = 1}; then E is σ

(
�Nc

0

)
-measurable, P(E)> 0, and P(E1|E)> 0. Since the points in

�∩ (∪k
i=1Si

)
have neighbours within distance 1, for any x ∈ N0, Txj(6) contains at least one

point from �∩ (B(0, 4)\B(0, 2)). As argued in the stabilisation, points in �∩ (B(0, 12)c) do
not affect the cell centred at x ∈ N0, and by symmetry, x ∈ N0 does not affect the Voronoi cells
centred at points in �∩ (B(0, 12)c). This ensures that, conditional on E, all random score
functions contributing to the sum of (2.6) are those completely determined by �N0 , giving

1E1

∑
x∈� such that

η̄(x,�) is random given�Nc
0

η̄(x, �) 1d(x,N0)<R(x)

= 1E1

⎧⎨
⎩

∑
x∈�∩B(0,12)

η̄(x, �) 1d(x,N0)<R(x) + X

⎫⎬
⎭ ,

where X is σ
(
�Nc

0

)
-measurable. As 1E1 η̄(x, �) is an almost surely (a.s.) (in terms of the

volume measure in R
2) continuous function of x ∈�∩ N0, the proof of the non-singularity

in Assumption 2.4 is completed.
It remains to show the moment condition (2.4). In fact, as shown in the stabilisation

property, we can see that R̄(x, α) will not increase when points are added, so C
(
x3, �	α +

a1δx1 + a2δx2 + δx3

)∩ 	α ⊂ B(x, R̄(x, α)); then the number of edges of C
(
x3, �	α + a1δx1 +

a2δx2 + δx3

)∩ 	α excluding those in the edge of 	α is less than or equal to (�	α +
a1δx1 + a2δx2 )

(
B
(
x, R̄(x, α)

))≤�	α
(
B
(
x, R̄(x, α)

))+ 2, and each of them has length less
than 2R̄(x, α). We observe that� restricted to outside of ∪6

j=1Txj(Rxj) is independent of R̄(x, α);
hence

�	α
(
B
(
x, R̄(x, α)

))≤�	α
(

B
(
x, R̄(x, α)

) \
(
∪6

j=1Txj(Rxj)
))

+ 6

ST≤�′
	α

(
B
(
x, R̄(x, α)

))+ 6,

where
ST≤ stands for ‘stochastically less than or equal to’, and �′ is an independent copy of �.

Therefore, using (3.4), we obtain

E

(
η
(
x3, �	α + a1δx1 + a2δx2 + δx3

)3
)

≤E

((
�′ (B(x3, R̄(x, α)

))+ 8
)3 (2R̄(x3, α)

)3
)

≤
∫ ∞

0

∞∑
i=0

(i + 8)3(2r)3 e−λπr2(
λπr2

)i

i! 6e−0.116λ(t/3)2 ∗ (0.116λ/9) 2rdr

≤C<∞,

which ensures (2.4). The proof of Theorem 3.2 is completed by using Theorem 2.2. �
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3.3. Timber volume estimation

Timber volume estimation is an essential research topic in forest science and forest man-
agement [8, 32]. This example demonstrates that, with the marks, our theorem can be used
to provide an error estimate for the normal approximation of the timber volume distribu-
tion. To this end, it is reasonable to assume that in a given range 	α of a natural forest, the
locations of trees form a Poisson point process �̄. For x ∈ �̄, we can use a random mark
Mx ∈ T := {1, . . . , n} to denote the species of the tree at position x; then � := ∑

x∈�̄ δ(x,Mx) is
a marked Poisson point process with independent marks. The timber volume of a tree at x is
a combined result of the location, the species of the tree, the configuration of species of trees
in a finite range around x, and some other random factors that cannot be explained by the con-
figuration of trees in the range. We write η( (x,m), �	α , 	α) as the timber volume determined
by the location x, the species m, and the configuration of trees, and εx as the adjusted timber
volume at location x due to unexplained random factors.

Theorem 3.3. Assume that η is a non-negative bounded score function such that

η( (x,m), �	α , 	α) = η
(
(x,m), �	α∩B(x,r), 	α

)
for some positive constant r,

η( (x,m), �B(x,r), 	α1 ) = η
(
(x,m), �B(x,r), 	α2

)
for all α1 and α2 with B(x, r) ⊂ 	α1∧α2 , η is translation-invariant as in Definition 2.4, the εx

are i.i.d. random variables with a finite third moment, the positive part ε+x = max(εx, 0) is
non-singular, and the εx are independent of the configuration �. Then the timber volume of the
range 	α can be represented as

W̄α :=
∑

x∈�̄	α

[(
η( (x,m), �	α , 	α) + εx

)∨ 0
]
,

and it satisfies

dTV
(
W̄α, Z̄α

)≤ O
(
α− 1

2

)
,

where Z̄α is a normal random variable with the same mean and variance as W̄α .

Proof. Before going into details, we first construct a new marked Poisson point process
�′ := ∑

x∈�̄ δ(x,(Mx,εx)) with i.i.d. marks (Mx, εx) ∈ T ×R independent of the ground process
�̄′ = �̄, and incorporate εx into a new score function on �′ as

η′((x, (m, ε)), �′, 	α) := η′((x, (m, ε)), �′
	α
, 	α)

:= [(
η( (x,m), �	α , 	α) + ε

)∨ 0
]

1(x,(m,ε))∈�′
	α

.

We can see that
W̄α =

∑
x∈�̄′

	α

η′((x, (mx, εx)), �′
	α
, 	α

)
.

The score function η′ is clearly translation-invariant. Thus, to apply Theorem 2.2, it is sufficient
to verify that η′ is range-bounded as in Definition 2.2 and satisfies the moment condition (2.4)
and the non-singularity in Assumption 2.4.
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The range-bounded property of the score function η′ is inherited from the range-bounded
property of η with the same radius of stabilisation R̄(x, α) := r. The moment condition (2.4) is
a direct consequence of the boundedness of η, the finite third moment of εx, and the Minkowski
inequality. Hence it remains to show the non-singularity. To this end, we observe that the
corresponding unrestricted counterpart η̄ of η′ is defined by

η̄
(
(x, (mx, εx)),X ′)= lim

α→∞ η′((x, (mx, εx)),X ′, 	α
)

= η′((x, (mx, εx)),X ′, 	αx

)= (
η
(
(x,mx),X, 	αx

)+ εx
)∨ 0,

where αx = 4(‖x‖ + r)2, and X is the projection of X ′ on R
2 × T . Let N0 = B(0, 1), and let

E =
{∣∣∣�′

B(N0,r)\N0

∣∣∣= 0
}
, E1 = {∣∣�′

N0

∣∣= 1
}

;

then E is σ
(
�′

Nc
0

)
-measurable, P(E)> 0, and P(E1|E)> 0. Writing ε−x = − min(εx, 0), �̄′

N0
=

{x0} in E1, given E we have

1E1

∑
x∈�̄′

η̄
(
(x, (mx, εx)), �′) 1d(x,N0)<r

= 1E1

(
η
((

x0,mx0

)
, δ(

x0,mx0

), 	4(r+1)2

)+ εx0

)
∨ 0

= 1E1

[
1εx0>0

(
η
((

x0,mx0

)
, δ(

x0,mx0

), 	4(r+1)2

)+ ε+x0

)

+ 1εx0≤0

(
η
((

x0,mx0

)
, δ(

x0,mx0

), 	4(r+1)2

)− ε−x0

)]
∨ 0.

On {εx0 > 0}, ε+
x0

is independent of η
((

x0,mx0

)
, δ(

x0,mx0

), 	4(r+1)2

)
and has a posi-

tive non-singular component; hence η
((

x0,mx0

)
, δ(

x0,mx0

), 	4(r+1)2

)
+ ε+x0

is also non-

singular. Together with the fact that {εx0 > 0} and {εx0 ≤ 0} are disjoint, this implies the
non-singularity. �

Remark 3.2. If the timber volume of a tree is determined by its nearest neighbouring trees,
then we can set the score function η as a function of weighted Voronoi cells. Using the idea of
the proof of Theorem 3.2, we can establish the bound of the error of the normal approximation

to the distribution of the timber volume W̄α as dTV
(
W̄α, Z̄α

)≤ O
(
α− 1

2 ln(α)
5d
2
)
. Furthermore,

by setting η((x,mx), �, 	α) as a function of the kmx nearest neighbourhoods of x instead of
the configuration of species of trees in a bounded neighbourhood, we gain an example with
stabilising radius R depending not only on x but also on mx.

3.4. Maximal layers

Maximal layers of points have been of considerable interest since [42, 29], and have a wide
range of applications; see [11] for a brief review of their applications. One of the applications is
the smallest colour-spanning interval [28], which is a linear function of the distances between
maximal points and the edge. In this subsection, we demonstrate that Theorem 2.2 with marks
can easily be applied to estimate the error of the normal approximation to the distribution of
the sum of distances between different maximal layers if the points are from a Poisson point
process.
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(a) (b)

FIGURE 8. Maximal layers.

For x ∈R
d, we define Ax = ([0,∞)d + x) ∩ 	α . Given a locally finite point set X ⊂R

d, a
point x is called maximal in X if x ∈ X and there is no other point (y1, . . . , yd) ∈ X satisfying
yi ≥ xi for all 1 ≤ i ≤ d (see Figure 8(a)). Mathematically, x is maximal in X if X ∩ Ax = {x}.
This enables us to write different maximal layers as follows: the kth maximal layer of points
can be recursively defined as

Xk :=
∑
x∈X

δx1[
Ax∩

(
X \

(
∪k−1

i=1 Xi

))
={x}

], k ≥ 1,

with the convention ∪0
i=1Xi = ∅.

For simplicity, we consider the restriction of the Poisson point process to a region in
R

d between two parallel (d − 1)-dimensional planes for d ≥ 2. More precisely, the region of
interest is

	α,r =
{

(x1, x2, . . . , xd); xi ∈
[
0, α

1
d−1

]
, i ≤ d − 1, xd +

d−1∑
i=1

xi cot(θi) ∈ [0, r]

}

for fixed θi ∈
(
0, π2

)
, 1 ≤ i ≤ d − 1, and �	α,r is a homogeneous Poisson point process with

rate λ on 	α,r. Define �k,r,α as the kth maximal layer of �	α,r ; then the total distance between
the points in �k,r,α and the upper plane

P :=
{

(x1, x2, . . . , xd); xi ∈
[
0, α

1
d−1

]
, i ≤ d − 1, xd = −

d−1∑
i=1

xi cot(θi) + r

}

can be represented as W̄k,r,α := ∑
x∈�k,r,α

d(x, P).

Theorem 3.4. With the above setup, when r ∈R+ and k ∈N is fixed,

dTV
(
W̄k,r,α, Z̄k,r,α

)≤ O
(
α− 1

2

)
,

where Z̄k,r,α ∼ N
(
E
(
W̄k,r,α

)
,Var

(
W̄k,r,α

))
.
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Remark 3.3. It remains a challenge to consider maximal layers induced by a homogeneous
Poisson point process on{

(v1, v2) : v1 ∈ [
0, α1/(d−1)]d−1

, 0 ≤ v2 ≤ F(v1)
}
,

where F : [0, α1/(d−1)]d−1 → [0,∞) has continuous negative partial derivatives in all coordi-
nates, the partial derivatives are bounded away from 0 and −∞, and |F| ≤ O(α1/(d−1)). We
conjecture that the normal approximation in total variation for the total distance between the
points in a maximal layer and the upper edge surface is still valid. The convergence rate of
the total number of points in the kth maximal layer under the Kolmogorov distance can be
found in [30, Theorem 3.3], but because the number of points is a discrete random variable,
the convergence rate under the total variation distance is always 1.

Proof of Theorem 3.4. As the score function d(·, P) is not translation-invariant in the sense
of Definition 2.4, we first turn the problem into that of a marked Poisson point process with
independent marks. The idea is to project the points of �	α,r on their first d − 1 coordinates to
obtain the ground Poisson point process, and send the last coordinate to marks with T = [0, r].
To this end, define a mapping h′ : 	∞,r := ∪α>0	α,r → [0,∞)d−1 × [0, r] such that

h′(x1, . . . , xd) = (x1, . . . , xd) +
(

0, . . . , 0,
d−1∑
i=1

xi cot(θi)

)

and h(X ) := {h′(x) : x ∈ X}. Then h′ is a one-to-one mapping, and �′ := h
(
�	∞,r

)
can be

regarded as a marked Poisson point process on [0,∞)d−1 × [0, r] with rate rλ and independent
marks following the uniform distribution on [0, r]. Write the mark of x ∈�′ as mx; then

W̄k,r,α = C(θ1, . . . , θd−1)
∑

x∈h(�k,r,α)

(r − mx), (3.5)

where C(θ1, . . . , θd−1) is a constant determined by θ1, . . . , θd−1. Let 	′
α := [

0, α
1

d−1
]d−1;

then h
(
�	α,r

)=�′
	′
α
. For a point (x,m) ∈ [0,∞)d−1 × [0, r], we write

A′
x,m,r,α = h′(((h′)−1(x,m) + [0,∞)d)∩ 	α,r

)
(see Figure 8(b)) and

Xi′k,r,α := h(�k,r,α) =
∑

x∈�̄′
	′
α

δ(x,mx)1A′
x,mx,r,α∩

(
�′
	′
α
\∪k−1

i=1�
′
i,r,α

)
={(x,mx)}. (3.6)

Combining (3.5) and (3.6), we can represent W̄k,r,α as the sum of values of the score function

η
(
(x,mx), �′, 	′

α

)
:= C(θ1, . . . , θd−1)(r − mx)1(x,mx)∈�′

k,α

over the range 	′
α . To apply Theorem 2.2, we need to check that η is range-bounded as in

Definition 2.2, and that it satisfies the moment condition (2.4) and the non-singularity in
Assumption 2.4.

For simplicity, we only show the claim in the two-dimensional case; the argument for
d> 2 is the same except for notational complexity. When d = 2, 	α,r is a parallelogram
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with angle θ1 as in Figure 8(a), and P and C(θ1, . . . , θd−1) reduce to an edge in R
2 and

sin(θ1), respectively. Since sin(θ1)(r − mx) is given by the mark of x, to show η is range-
bounded, it is sufficient to show that 1{

(x,mx)∈�′
k,r,α

} is completely determined by�′ ∩ A′
x,mx,r,α .

In fact, we can accomplish this by observing that (x,mx) ∈�′
k,r,α if and only if there is

a sequence {(xj,mxj), 1 ≤ j ≤ k} ⊂�′ ∩ A′
x,mx,r,α

(
which ensures A′

xj,mxj ,r,α
⊂ A′

x,mx,r,α

)
such

that (xk,mxk ) = (x,m) and

A′
xj,mxj ,r,α

∩
(
�′\ ∪j−1

i=1 �
′
i,r,α

)
= {(

xj,mxj

)}
for 1 ≤ j ≤ k. Since

�′ ∩ A′
x,mx,α

⊂�′
[x,x+r tan(θ1)],

we can see that η is range-bounded as in Definition 2.2 with R̄(x, α) := r tan(θ1)+1. The
moment condition follows from the fact that η is bounded above by r. For the non-singularity,
we extend �′ to R

d−1 × [0, r], write

	e∞,r := {x ∈R
d : there exists y ∈ P such that y − r(0, . . . , 0, 1) ≤ x ≤ y},

and let (�	e∞,r )j be the jth maximal layer of �	e∞,r and �′
j = h((�	e∞,r )j). We can see that

the corresponding unrestricted score function is η̄(x, �′) = sin(θ1)(r − mx)1(x,mx)∈�′
k

with the

stabilising radius R(x) = r tan(θ1)+1. Referring to Figure 8(b), we set N0 :=
(

0, r tan(θ1)
2

)
,

B0 = {(x,m); x ∈ N0, 0 ≤ m ≤ x cot(θ1)}, Bi as the triangle region with vertices(
r tan(θ1)

(
1

2
+ i − 1

4(k − 1)

)
, r

(
1

2
+ 2i − 1

4(k − 1)

))
,(

r tan(θ1)

(
1

2
+ i

4(k − 1)

)
, r

(
1

2
+ 2i − 1

4(k − 1)

))
,(

r tan(θ1)

(
1

2
+ i

4(k − 1)

)
, r

(
1

2
+ 2i

4(k − 1)

))

for 1 ≤ i ≤ k − 1, and

D =
(([

−r tan(θ1)−1,
3r tan(θ1)

2
+1

]
\N0

)
× [0, r]

)
\
(
∪k−1

i=1 Bi

)
.

Define E := {
�′ ∩ D = ∅, ∣∣�′ ∩ Bi

∣∣= 1, 1 ≤ i ≤ k − 1
}

and E0 := {∣∣�′
N0

∣∣= ∣∣�′ ∩ B0
∣∣= 1

}
.

Then E ∈ σ
(
�′

Nc
0

)
, P(E)> 0, and P(E0|E)> 0. We can see that given E, the point in �′ ∩ Bi is

in �′
k−i for all 1 ≤ i ≤ k − 1. Moreover, on E ∩ E0, the point (x0,mx0 ) in �′

N0
is in �′

k. Hence,
given E,

1E0

∑
x∈�̄′

η̄
(
x, �′) 1d(x,N0)<R(x) = 1E0 sin(θ1)(r − mx0 )

is non-singular. �
As a final remark of the section, we mention that unrestricted versions of all the examples

considered here can be proved, because it is trivial to show that the unrestricted version of the
score function η̄ satisfies the stabilisation condition in Definition 2.1 and the moment condition
(2.3) using the same method, and the non-singularity in Assumption 2.4 for the restricted case
is the same as that in the unrestricted case with the score function η̄.
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4. Preliminaries and auxiliary results

We start with a few technical lemmas.

Lemma 4.1. Assume ξ1, . . . , ξn are i.i.d. random variables having the triangular density
function

κa(x) =
{

1
a

(
1 − |x|

a

)
for |x| ≤ a,

0 for |x|> a,
(4.1)

where a> 0. Let Tn =∑n
i=1 ξi. Then for any γ > 0,

dTV (Tn, Tn + γ ) ≤ γ

a

{√
3

πn
+ 2

(2n − 1)π2n

}
. (4.2)

The following lemma says that if the distribution of a random variable is non-singular, then
the distributions of random variables which are not far away from it are also non-singular.

Lemma 4.2. Let F be a non-singular distribution on R with αF > 0 in the decomposition (1.1).
If G is a distribution satisfying dTV(F,G) < αF, then the weight of the absolutely continuous
component, αG, in the Lebesgue decomposition of G,

G = (1 − αG)Gs + αGGa,

satisfies αG ≥ αF − dTV(F,G).

We denote the convolution by ∗.

Lemma 4.3. For any two non-singular distributions F1 and F2, there exist positive constants
a> 0, u ∈R, θ ∈ (0, 1] and a distribution function H such that

F1 ∗ F2 = (1 − θ )H + θKa ∗ δu, (4.3)

where Ka is the distribution of the triangle density κa in (4.1), and δu is the Dirac measure
at u.

Lemma 4.3 says that F1 ∗ F2 is the distribution function of (X1 + u)X3 + X2(1 − X3), where
X1 ∼ Ka, X2 ∼ H, X3 ∼ Bernoulli(θ ) are independent random variables.

Remark 4.1. From the definition of the triangular density function, if a, u, θ satisfy (4.3) with
a distribution H, then for arbitrary p, q such that 0< q ≤ p ≤ 1, we can find an H′ satisfying
the equation with a′ = pa, u′ = u, and θ ′ = qθ .

Using the properties of the triangular distributions, we can derive that the sum of the score
functions restricted by their radii of stabilisation has a similar property in Lemma 4.1 when the
score function is range-bounded, exponentially stabilising, or polynomially stabilising with
suitable β.

Lemma 4.4. Let� be a marked homogeneous Poisson point process on (Rd × T,B
(
R

d
)× T)

with intensity λ and i.i.d. marks in (T,T) following LT .

(a) (Unrestricted case.) Assume that the score function η satisfies the non-singularity in
Assumption 2.4. If η is polynomially stabilising as in Definition 2.1 with order β >
d + 1, then

dTV (Wα,r,Wα,r + γ ) ≤ C
(|γ | ∨ 1

) (
α− 1

2 r
d
2

)
(4.4)
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for any γ ∈R and r> R0, where C and R0 are positive constants independent of γ . If η
is range-bounded as in Definition 2.1, then

dTV
(
Wα,Wα + γ

)≤ C(|γ | ∨ 1)α− 1
2 (4.5)

for some positive constant C independent of γ .

(b) (Restricted case.) Assume that the score function η satisfies the non-singularity in
Assumption 2.4. If η is polynomially stabilising as in Definition 2.2 with order β >
d + 1, then

dTV (W̄α,r, W̄α,r + γ ) ≤ C(|γ | ∨ 1)
(
α− 1

2 r
d
2

)
(4.6)

for any γ ∈R and r> R0, where C and R0 are positive constants independent of γ . If η
is range-bounded as in Definition 2.2, then

dTV (W̄α, W̄α + γ ) ≤ C(|γ | ∨ 1)α− 1
2 (4.7)

for some positive constant C independent of γ .

Remark 4.2. Since exponential stabilisation implies polynomial stabilisation, the statements
(4.4) and (4.6) also hold under the corresponding exponential stabilisation conditions.

We can generalise Lemma 4.4 by replacing γ with a function of �N for some Borel set N
and the expectation with a conditional expectation.

Corollary 4.1. For α, r> 0, let
{
N(k)
α,r
}

k∈{1,2,3} ⊂ B
(
R

d
)

be such that

(
N(1)
α,r ∪ N(2)

α,r ∪ N(3)
α,r

)
∩ 	α⊂B

(
x, qα

1
d
)

for a point x ∈R
d and a positive constant q ∈ (

0, 1
2

)
, let F0,α,r be a sub-σ -algebra of

σ
(
�

N(1)
α,r

)
, and let hα,r be a measurable function mapping configurations on N(2)

α,r × T to the

real space.

(a) (Unrestricted case.) Define

W ′
α,r :=

∑
(x,m)∈�

	α\N(3)
α,r

η( (x,m), �)1R(x)≤r.

If the conditions of Lemma 4.4(a) hold, then

dTV

(
W ′
α,r,W ′

α,r + hα,r
(
�

N(2)
α,r

)∣∣∣F0,α,r

)
≤E

(∣∣∣hα,r (�N(2)
α,r

)∣∣∣∨ 1
∣∣∣F0,α,r

)
O
(
α− 1

2 r
d
2

)
a.s. (4.8)

for r> R0, where R0 > 0 is a constant, and O
(
α− 1

2 r
d
2

)
is independent of the sets{

N(k)
α,r
}
α,r∈R+,k∈{1,2,3}, functions {hα,r}α,r∈R+ and σ -algebras {F0,α,r}α,r∈R+ .
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(b) (Restricted case.) Define

W̄ ′
α,r :=

∑
(x,m)∈�

	α\N(3)
α,r

η( (x,m), �, 	α)1R̄(x,α)<r.

If the conditions of Lemma 4.4(b) hold, then

dTV

(
W̄ ′
α,r, W̄ ′

α,r + hα,r
(
�

N(2)
α,r

)∣∣∣F0,α,r

)
≤E

(∣∣∣hα,r (�N(2)
α,r

)∣∣∣∨ 1
∣∣∣F0,α,r

)
O
(
α− 1

2 r
d
2

)
a.s. (4.9)

for r> R0, where R0 > 0 is a constant, and O
(
α− 1

2 r
d
2

)
is independent of the sets{

N(k)
α,r
}
α,r∈R+,k∈{1,2,3}, functions {hα,r}α,r∈R+ and σ -algebras {F0,α,r}α,r∈R+ .

As discussed in the motivating example, the orders of Var(Wα) and Var
(
W̄α

)
play a pivotal

role in the accuracy of the normal approximation. The next lemma says that the optimal order
of the variance can be achieved under exponential stabilisation.

Lemma 4.5.

(a) (Unrestricted case.) If the score function η satisfies the third moment condition (2.3), the
non-singularity in Assumption 2.4, and the exponential stabilisation in Definition 2.1,
then Var(Wα)=�(α).

(b) (Restricted case.) If the score function η satisfies the third moment condition (2.4), the
non-singularity in Assumption 2.4, and the exponential stabilisation in Definition 2.2,
then Var

(
W̄α

) =�(α).

We cannot obtain the optimal order of the variances in the polynomially stabilising case,
but the following lower bound can be established.

Lemma 4.6.

(a) (Unrestricted case.) If the score function η satisfies the k′th moment condition (2.3) with
k′ > k ≥ 3 and the non-singularity in Assumption 2.4, and is polynomially stabilising as
in Definition 2.1 with parameter β > (3k − 2)d/(k − 2), then

Var(Wα)≥ O

(
α

kβ−2β−3dk+2d
kβ−2β−dk

)
.

(b) (Restricted case.) If the score function η satisfies the k′th moment condition (2.4) with
k′ > k ≥ 3 and the non-singularity in Assumption 2.4, and is polynomially stabilising as
in Definition 2.2 with parameter β > (3k − 2)d/(k − 2), then

Var
(
W̄α

)≥ O

(
α

kβ−2β−3dk+2d
kβ−2β−dk

)
.

5. The proofs of the auxiliary and main results

We need Palm processes and reduced Palm processes in our proofs, and for ease of reading,
we briefly recall their definitions. Let E be a Polish space with Borel σ -algebra E and configu-
ration space (CE,CE), let � be a point process on (E, E), and write the mean measure of � as
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ψ(dx) := E�(dx). The family of point processes {�x : x ∈ E} are said to be the Palm processes
associated with � if for any measurable function f : E × CE → [0,∞),

E

[∫
E

f (x, �)�(dx)

]
=
∫

E
Ef (x, �x)ψ(dx); (5.1)

see [26, Section 10.1]. A Palm process �x contains a point at x, and it is often more conve-
nient to consider the reduced Palm process �x − δx at x by removing the point x from �x.
Furthermore, suppose that the factorial moments

ψ [2](dx, dy) := E[�(dx)(� − δx)(dy)],

ψ [3](dx, dy, dz) := E[�(dx)(� − δx)(dy)(� − δx − δy)(dz)]

are locally finite; then we can respectively define the second-order Palm processes {�xy : x, y ∈
E} and third-order Palm processes {�xyz : x, y, z ∈ E} associated with � by

E

⎡
⎢⎣∫∫

E2

f (x, y;�)�(dx)(� − δx)(dy)

⎤
⎥⎦=

∫∫
E2

Ef (x, y;�xy)ψ [2](dx, dy), (5.2)

E

⎡
⎢⎣∫∫∫

E3

f (x, y, z;�)�(dx)(� − δx)(dy)(� − δx − δy)(dz)

⎤
⎥⎦

=
∫∫∫

E3

Ef (x, y, z;�xyz)ψ
[3](dx, dy, dz), (5.3)

for all measurable functions f : E2 × CE → [0,∞) in (5.2) and f :E3 × CE → [0,∞) in (5.3)
[26, Section 12.3]. Using reduced Palm processes, the Slivnyak–Mecke theorem [35] states
that the distributions of the reduced Palm processes of a point process are the same as that of
the point process if and only if the point process is a Poisson point process. Then we can see
that for a homogeneous Poisson point process with rate λ, its mean measure can be written

as �(dx) = λdx; its Palm processes satisfy �x
d=� + δx, �xy

d=� + δx + δy, and �xyz
d=� +

δx + δy + δz; and the factorial momentsψ [2](dx, dy) = λ2dxdy andψ [3](dx, dy, dz) = λ3dxdydz
for all distinct x, y, z ∈ E =R

d.
We can adapt (5.1), (5.2), and (5.3) to the marked point process �. To this end, we assume

that the rate of �̄ is λ, and that {Mi}1≤i≤3 are i.i.d. random elements on (T,T) following the
distribution LT , which are independent of �. We use Mx to denote the mark of x if x ∈ �̄.
Because of the independence of the marks, we can obtain the following corollaries of the
Campbell–Mecke theorem (also known as the Mecke equation) and the multivariate Mecke
equation [15, p. 130]:

E

[∫
Rd

f ((x,Mx), �)�̄(dx)

]
=
∫
Rd

Ef ((x,M1), �+ δ(x,M1))λdx, (5.4)

E

⎡
⎢⎢⎣
∫∫
(Rd)

2

f ((x,Mx), (y,My);�)�̄(dx)(�̄− δx)(dy)

⎤
⎥⎥⎦

=
∫∫
(Rd)

2

Ef ((x,M1), (y,M2);�+ δ(x,M1) + δ(y,M2))λ
2dxdy, (5.5)
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E

⎡
⎢⎢⎣
∫∫∫
(Rd)

3

f ((x,Mx), (y,My), (z,Mz);�)�̄(dx)(�̄− δx)(dy)(�̄− δx − δy)(dz)

⎤
⎥⎥⎦

=
∫∫∫
(Rd)

3

Ef ((x,M1), (y,M2), (z,M3);�+ δ(x,M1) + δ(y,M2) + δ(z,M3))λ
3dxdydz, (5.6)

for all measurable functions f : S × CS → [0,∞) in (5.4), f : S2 × CS → [0,∞) in (5.5), and
f : S3 × CS → [0,∞) in (5.6).

Recalling the shift operator defined in Section 2, we can write g(Xx) := η( (x,m),X )
(resp. gα(x,X ) := η((x,m), �,X, 	α)) for every configuration X, (x,m) ∈ X, and α > 0,
so that the notation can be simplified significantly; e.g.,

Wα=
∑

(x,m)∈�	α
η( (x,m), �) =

∫
	α

g(�x)�̄(dx) =
∑
x∈�̄

g(�x),

W̄α=
∑

(x,m)∈�	α
η( (x,m), �, 	α) =

∫
	α

gα(x, �)�̄(dx),

where �̄ is the projection of � on R
d, and R and R̄(x, α) are the corresponding radii of

stabilisation. Here, g(X ) (resp. gα(x,X )) is not affected by m since η((x,m),X) (resp.
η((x,m), �,X, 	α)) is understood as 0 if (x,m) /∈ X.

Since the mean and variance of W̄α are generally different from those of W̄α,r, in the proof
of Theorem 2.2, we will need the bound of the total variation distance between two normal
distributions.

Lemma 5.1. ([18, Theorem 1.3].) Let Fμ,σ be the distribution of N(μ, σ 2); then

dTV
(
Fμ1,σ1 , Fμ2,σ2

)≤ 3
∣∣σ 2

1 − σ 2
2

∣∣
2 max

{
σ 2

1 , σ
2
2

} + |μ1 −μ2|
2 max(σ1, σ2)

.

To find suitable normal approximations for Wα and Wα,r (resp. W̄α and W̄α,r), we need to
analyse the first two moments of Wα and Wα,r (resp. W̄α and W̄α,r). Before doing this, we
establish a few lemmas needed in the proofs.

Lemma 5.2. (Conditional total variance formula.) Let X be a random variable on the proba-
bility space (�, G, P) with a finite second moment, and let G1 and G2 be two sub-σ -algebras
of G such that G1 ⊂ G2. Then

Var(X|G1)=E(Var(X|G2)|G1)+ Var(E(X|G2)|G1) .

Proof. From the definition of the conditional variance, we can see that

Var(X|G1)=E

(
X2
∣∣∣G1

)
−E(X|G1)

2

=E

(
E

(
X2
∣∣∣G2

)∣∣∣G1

)
−E(E(X|G2)|G1)

2

=E

(
E

(
X2
∣∣∣G2

)∣∣∣G1

)
−E

(
E(X|G2)

2
∣∣∣G1

)
+E

(
E(X|G2)

2
∣∣∣G1

)
−E(E(X|G2)|G1)

2

=E(Var(X|G2)|G1)+ Var(E(X|G2)|G1) ,

so the statement holds. �
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Also, given the value of a random variable in a certain event, we can find a lower bound for
the conditional variance.

Lemma 5.3. Let X be a random variable on the probability space (�, G, P) with a finite second
moment. For any event A and σ -algebra such that F ⊂ G,

Var(X|F )≥ Var

(
X1A + E(X1A|F )

P(A|F )
1Ac

∣∣∣∣F
)
, (5.7)

where 0
0 = 0 by convention.

Proof of Lemma 5.3. The statement is trivially true if P(A) = 0, so we focus on the case
that P(A)> 0. Let A ∩ F = {B ∩ A; B ∈ F}, which is a σ -algebra on A, and let PA be a prob-
ability measure on (A, A ∩ F) such that PA(B ∩ A)= P(B|A) for all B ∈ F. Then we have the
corresponding conditional expectation

EA(X|A ∩ F )=EA(X1A|A ∩ F )= 1AEA(X|A ∩ F ) ,

which equals 0 on 1Ac . The proof relies on the following observations.

Lemma 5.4. For any random variable Y with E|Y|<∞ and A ∈ G such that P(A)> 0,

E(EA(Y|A ∩ F )|F )=E(1AY|F ) .

Proof. Both sides are F-measurable, and for any B ∈ F,

E(E(EA(Y|A ∩ F )|F ) 1B)=E(EA(Y|A ∩ F ) 1B)

=E(EA(Y|A ∩ F ) 1B∩A)

=E(EA(1B∩AY|A ∩ F ))

= P(A)EA(EA(1B∩AY|A ∩ F ))

= P(A)EA(1B∩AY)=E(1B∩AY)=E(E(1AY|F ) 1B) ,

as claimed. �
Lemma 5.5. For any random variable Y with E|Y|<∞ and A ∈ G such that P(A)> 0,

E(1AY|F )

P(A|F )
1A =EA(Y|F ) . (5.8)

Proof. Both sides equal 0 on Ac and are measurable on A ∩ F when restricted to A. From
the construction of A ∩ F, any set B′ ∈ A ∩ F is of the form B ∩ A for some B ∈ F. Hence
(5.8) is equivalent to

EA

(
E(1AY|F )

P(A|F )
1A1A∩B

)
=EA(EA(Y|F ) 1A∩B)
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for all B ∈ F. Now we have

EA

(
E(1AY|F )

E(1A|F )
1A∩B

)
= 1

P(A)
E

(
E(1AY|F )

E(1A|F )
1A1B

)

= 1

P(A)
E

(
E

(
E(1AY|F )

E(1A|F )
1A1B

∣∣∣∣F
))

= 1

P(A)
E(E(1AY|F ) 1B)= 1

P(A)
E(E(1A1BY|F ))

= 1

P(A)
E(1A1BY)=EA(EA(Y1A1B|F)) =EA(EA(Y|F)1A∩B),

completing the proof. �
Proof of Lemma 5.3 (continued). We start from the left-hand side of (5.7):

Var(X|F )

=E

(
X2
∣∣∣F )

−E(X|F )2

=E

(
X2
∣∣∣F )

− (E(X1A|F )+E(X1Ac |F ))2

=E

(
X2
∣∣∣F )

−E
(
EA(X1A|A ∩ F )+EAc

(
X
∣∣Ac ∩ F

)∣∣F )2

≥E

(
X2
∣∣∣F )

−E

((
EA(X1A|A ∩ F )+EAc

(
X
∣∣Ac ∩ F

))2
∣∣∣F )

=E

(
X2 (1A + 1Ac)

∣∣∣F )
−E

(
EA(X1A|A ∩ F )2 +EAc

(
X
∣∣Ac ∩ F

)2
∣∣∣F )

=E

(
EA

(
X2
∣∣∣A ∩ F

)
+EAc

(
X2
∣∣∣Ac ∩ F

)∣∣∣F )
−E

(
EA(X1A|A ∩ F )2 +EAc

(
X
∣∣Ac ∩ F

)2
∣∣∣F )

=E
(
VarA (X|A ∩ F )+ VarAc

(
X
∣∣Ac ∩ F

)∣∣F )
, (5.9)

where the inequality follows from Jensen’s inequality, and the third equality and the second-
to-last equality are from Lemma 5.4. On the other hand, the right-hand side of (5.7) can be
written as

E

(
X21A +

(
E(X1A|F )

P(A|F )

)2

1Ac

∣∣∣∣∣F
)

−
(
E(X1A|F )+E

(
E(X1A|F )

P(A|F )
1Ac

∣∣∣∣F
))2

=E

(
X21A

∣∣∣F )
+
(
E(X1A|F )

P(A|F )

)2

P
(
Ac
∣∣F )−E(X1A|F )2

1

P(A|F )2

=E

(
X21A

∣∣∣F )
−
(
E(X1A|F )

P(A|F )

)2

P(A|F )

=E

(
EA

(
X2
∣∣∣A ∩ F

)
−
(
E(X1A|F )

P(A|F )

)2

1A

∣∣∣∣∣F
)

=E

(
EA

(
X2
∣∣∣A ∩ F

)
−EA(X|A ∩ F )2

∣∣∣F )
=E(VarA (X|A ∩ F )|F ) , (5.10)

where the third equality follows from Lemma 5.4, and the second-to-last equality is from
Lemma 5.5. Combining (5.9), (5.10), and Lemma 5.2 completes the proof. �
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Before going to the proof of Lemma 4.4, we need a lemma to show that under the stabil-
isation conditions, the cost of throwing away the terms with a large radius of stabilisation is
negligible.

Lemma 5.6.

(a) (Unrestricted case.) If the score function is exponentially stabilising as in Definition 2.1,
then we have

dTV
(
Wα,Wα,r

)≤ C1αe−C2r

for some positive constants C1, C2. If the score function is polynomially stabilising with
parameter β in Definition 2.1, then we have

dTV
(
Wα,Wα,r

)≤ Cαr−β

for some positive constant C.

(b) (Restricted case.) If the score function is exponentially stabilising as in Definition 2.2,
then we have

dTV
(
W̄α, W̄α,r

)≤ C1αe−C2r

for some positive constants C1, C2. If the score function is polynomially stabilising with
parameter β in Definition 2.2, then we have

dTV
(
W̄α, W̄α,r

)≤ Cαr−β

for some positive constant C.

Proof. We first show that the statement is true for W̄α and W̄α,r. Recall that we defined
M1 ∼ LT as a random element independent of �. From the construction of W̄α and W̄α,r, we
can see that the event {W̄α �= W̄α,r} ⊂ {at least one x ∈ �̄∩ 	αwith R̄(x, α)> r}. From (5.4),
we have

dTV
(
W̄α, W̄α,r

)≤ P
({

W̄α �= W̄α,r
})

≤ P
({

at least one x ∈ �̄∩ 	α such that R̄(x, α)> r
})

≤E

∫
	α

1R̄(x,α)>r�̄(dx)

=
∫
	α

E

(
1

R̄
(

x,M1,α,�+δ(x,M1)

)
>r

)
λdx

=
∫
	α

P
(
R̄
(
x,M1, α, �+ δ(x,M1)

)
> r

)
λdx

≤ αλτ̄ (r),

which, together with the stabilisation conditions, gives the claim for W̄α .
The statement is also true for Wα , which can be proved by replacing W̄α with the corre-

sponding Wα , W̄α,r with Wα,r, R̄(x, α) with R(x), R̄(x,M1, α, �+ δ(x,M1)) with R(x,M1, �+
δ(x,M1)), and τ̄ with τ . �

https://doi.org/10.1017/apr.2023.15 Published online by Cambridge University Press

https://doi.org/10.1017/apr.2023.15


134 T. CONG AND A. XIA

Proof of Lemma 4.1. For convenience, we write Gn, gn, and ψn for the distribution, density,
and characteristic functions, respectively, of Tn. It is well known that the triangular density κa

has the characteristic function

ψ1(s) = 2(1 − cos(as))

(as)2
,

which gives

ψn(s) =
(

2(1 − cos(as))

(as)2

)n

.

Using the fact that the convolution of two symmetric unimodal distributions on R is unimodal
[50], we can conclude that the distribution of Tn is unimodal and symmetric. This ensures that

dTV (Tn, Tn + γ ) = sup
x∈R

|Gn(x) − Gn(x − γ )| =
∫ γ /2

−γ /2
gn(x)dx. (5.11)

Applying the inversion formula, we have

gn(x) = 1

2π

∫
R

e−isxψn(s)ds = 1

2π

∫
R

cos(sx)ψn(s)ds

= 1

aπ

∫ ∞

0
cos(sx/a)

(
2(1 − cos s)

s2

)n

ds,

where i = √−1, and the second equality is due to the fact that sin(sx)ψn(s) is an odd function.
Obviously, gn(x) ≤ gn(0), so we need to establish an upper bound for gn(0). A direct verification
gives

0 ≤ 2(1 − cos s)

s2
≤ e− s2

12 for 0< s ≤ 2π,

which implies

gn(0) ≤ 1

aπ

{∫ 2π

0
e− ns2

12 ds +
∫ ∞

2π

(
4

s2

)n

ds

}

≤ 1

aπ
√

n

∫ ∞

0
e− s2

12 ds + 2

a(2n − 1)π2n

= 1

a

√
3

πn
+ 2

a(2n − 1)π2n
. (5.12)

Now, combining (5.11) with (5.12) gives (4.2). �
Proof of Lemma 4.2. We construct a maximal coupling [5, p. 254] (X, Y) such that X ∼

F, Y ∼ G, and dTV (F,G) = P(X �= Y). The Lebesgue decomposition (1.1) ensures that there
exists an A ∈ B(R) such that Fa(A) = 1 and Fs(A) = 0. DefineμG(B) = P(X ∈ B ∩ A, X = Y)≤
αFFa(B) for B ∈ B(R), so μG is absolutely continuous with respect to the Lebesgue measure.
On the other hand,

G(B) ≥ G(B ∩ A) ≥ P(Y ∈ B ∩ A, X = Y) =μG(B), for B ∈ B(R) ;

hence αG ≥μG(R) = αF − P(X �= Y)= αF − dTV(F,G) > 0. �
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FIGURE 9. Existence of u and v.

Proof of Lemma 4.3. Since Fi is non-singular, there exists a non-zero sub-probability
measure μi with a density fi such that μi(dx) = fi(x)dx ≤ dFi(x) for x ∈R. Without loss of gen-
erality, we can assume that both f1 and f2 are bounded with bounded support, which ensures
that f1 ∗ f2 is continuous (for the case of f1 = f2, see [33, p. 79]). In fact, as f1 is a density, one
can find a sequence of continuous functions {f1n : n ≥ 1} satisfying |f1n − f1|1 → 0 as n → ∞,
where | · |1 is the L1 norm. Now, with | · |∞ denoting the supremum norm, |f1n ∗ f2 − f1 ∗
f2|∞ ≤ |f2|∞|f1n − f1|1 → 0 as n → ∞. However, since the continuity is preserved under the
supremum norm, the continuity of f1 ∗ f2 follows.

Referring to Figure 9, since f1 ∗ f2 �≡ 0, we can find u ∈R and v> 0 such that f1 ∗ f2(u)> 0
and

min
x∈[u−v,u+v]

f1 ∗ f2(x) ≥ 1

2
f1 ∗ f2(u) =: b.

Let θ = vb and a = v; then H = 1
1−θ (F1 ∗ F2 − θKa ∗ δu) is a distribution function, and the

claim follows. �

Proof of Lemma 4.4. The idea of the proof is to use the radius of stabilisation to limit
the effect of dependence, pass the non-singularity property to the truncated score function
η( (x,m), �)1R(x)≤r

(
resp.η( (x,m), �, 	α)1R̄(x,α)≤r

)
, and dig out the maximum number of

cubes in the carrier space 	α such that the truncated score functions on these cubes are inde-
pendent. Then we can apply Lemmas 4.2 and 4.3 to find the component with the form of a
convolution of triangular distributions, which, together with the property of the triangular dis-
tributions in Lemma 4.1, implies the conclusion. The order of the bound is then determined by
the reciprocal of the number of the cubes, as in the Berry–Esseen bound. Except for notational
complexity, the proof of the restricted case is the same, so we first focus on the unrestricted
case.

From Assumption 2.2, for the restricted case, we can find ḡ, η̄, and R corresponding to η
such that the stabilisation radius R of η̄ satisfies the same stabilisation property as η in the sense
of Definition 2.1. Because N0 is a bounded set, there exists an r1 ∈R+ such that N0 ⊂ B(0, r1).
For convenience, we write the random variables

Y :=
∑
x∈�̄

ḡ(�x)1d(x,N0)<R(x), Yr :=
∑
x∈�̄

ḡ(�x)1d(x,N0)<R(x)<r,

and write the event {Y �= Yr} as Er for r ∈R+. We can see that

P
(
Er
)≤ P

({there is at least one point x ∈ �̄ such that d(x,N0) ∨ r< R(x)}) =: P
(
E′

r

)
,
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and the right-hand side is a decreasing function of r. Under any stabilisation condition in
Lemma 4.4, we can show that P(Er)→ 0 as r → ∞, that is, Yr converges to Y a.s. In fact,

P
(
E′

r

)
≤ P

({there is at least one point x ∈ �̄∩ B(0, r1 + r) such that r ≤ R(x)}) (5.13)

+ P
({there is at least one point x ∈ �̄∩ B(0, r1 + r)c such that |x| − r1 ≤ R(x)}) .

Using the property of the Palm process (5.4), we can see that the first term of (5.13) satisfies

P
({there is at least one point x ∈ �̄∩ B(0, r1 + r) such that r ≤ R(x)})

≤E

∫
B(0,r1+r)

1R(x)≥r�̄(dx) =
∫

B(0,r1+r)
E1

R

(
x,M1,�+δ(

x,M1

))≥r
λdx

=
∫

B(0,r1+r)
P

(
R
(

x,M1, �+ δ(
x,M1

))≥ r

)
λdx

≤
∫

B(0,r1+r)
τ (r)λdx = λ(r1 + r)dπd/2τ (r)

	
( d

2 + 1
) , (5.14)

and the second term is bounded by

P
({there is at least one point x ∈ �̄∩ B(0, r1 + r)c such that |x| − r1 ≤ R(x)})

≤E

∫
B(0,r1+r)c

1R(x)≥|x|−r1�̄(dx) =
∫

B(0,r1+r)c
E1

R

(
x,M1,�+δ(

x,M1

))≥|x|−r1

λdx

=
∫

B(0,r1+r)c
P

(
R
(

x,M1, �+ δ(
x,M1

))≥ |x| − r1

)
λdx

≤
∫

B(0,r1+r)c
τ (|x| − r1)λdx =

∫ ∞

r1+r

dλtd−1πd/2τ (t − r1)

	
( d

2 + 1
) dt. (5.15)

When the score function satisfies one of the stabilisation conditions, both bounds in (5.14) and
(5.15) converge to 0 as r → ∞, so P

(
Er
)≤ P

(
E′

r

)→ 0 as r → ∞.
For two measures μ1, μ2, we write μ1 �μ2 if μ1(A) ≤μ2(A) for all measurable sets A. The

non-singularity in Assumption 2.4 ensures that, with positive probability, the conditional distri-

bution L
(

Y
∣∣∣σ(�Nc

0

))
is non-singular. So we can find a σ

(
�Nc

0

)
-measurable random measure

ξ on R such that ξ � L
(

Y
∣∣∣σ(�Nc

0

))
a.s., P(ξ(R) > 0) > 0, and ξ is absolutely continuous

[26, Lemma 2.1]. Since

lim
u↓0

P(ξ (R)> u)= P(ξ(R) > 0) > 0,

we can find a p> 0 such that P(ξ (R)> p) > 4p. Because E′
r is decreasing in the sense of

inclusion in r, and P
(
E′

r

)→ 0 as r → ∞, we can find an R0 ∈R+ such that P
(
E′

R0

)≤ p2,
which ensures

P

(
P

(
E′

R0

∣∣∣σ(�Nc
0

))
>

p

2

)
≤ 2p. (5.16)

If we write Ỹ := Y1
E

′R0
c , A1 :=

{
dTV

(
Y, Ỹ

∣∣ σ(�Nc
0

))
> p/2

}
, A2 := {ξ (R)> p}, then A1

and A2 are both σ
(
�Nc

0

)
-measurable, and

P

(
P

(
dTV

(
Y, Ỹ

∣∣ σ(�Nc
0

)))
>

p

2

)
≤ P

(
P

(
E′

R0

∣∣∣σ(�Nc
0

))
>

p

2

)
≤ 2p,
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giving P
(
A2 ∩ Ac

1

)
> 2p. For ω ∈ Ac

1 ∩ A2, dTV

(
Y, Ỹ

∣∣ σ(�Nc
0

))
(ω)< p/2 and ξ (ω)(R)> p.

By Lemma 4.2 and (5.16), there exists an absolutely continuous σ
(
�Nc

0

)
-measurable ran-

dom measure ξ̃ such that ξ̃ � L
(

Ỹ
∣∣∣σ(�Nc

0

))
a.s. and P

(
ξ̃ (R) >

p
2

)
> 2p. We write �′ as

an independent copy of �, and the corresponding Yr and ξ̃ as Y ′
r and ξ̃ ′, respectively. Using

Lemma 4.3, we can find σ
(
�Nc

0
, �′

Nc
0

)
-measurable random variables �1 ≥ 0, �2 ≥ 0 and

U ∈R such that P(�1 > 0, �2 > 0) = 4p2, and

ξ̃ � ξ̃ ′��1K�2 � δU .

However,
lim
ε↓0

P{�1/�2 ≥ ε, �2 ≥ ε} = P{�1 > 0, �2 > 0} ,
and from Remark 4.1, we can find an ε > 0 such that

P

{
ξ̃ � ξ̃ ′�ε2Kε � δU

}
≥ 2p2

for a σ
(
�Nc

0
, �′

Nc
0

)
-measurable U. From the fact that we can write Yr = Ỹ + Yr1E′

R0
, we have,

for any B ∈ B(R\{0}),
P

(
Yr ∈ B| σ

(
�Nc

0

))
= P

(
Ỹ ∈ B, E′

R0

c∣∣ σ(�Nc
0

))
+ P

(
Yr ∈ B, E′R0

∣∣ σ(�Nc
0

))
≥ P

(
Ỹ ∈ B, E′R0

c∣∣ σ(�Nc
0

))
= P

(
Ỹ ∈ B

∣∣ σ(�Nc
0

))
.

Hence

L
(

Yr

∣∣∣σ(�Nc
0

))
(·) ≥ L

(
Ỹ
∣∣∣σ(�Nc

0

))
(·\{0})

≥ ξ̃ (·\{0}) = ξ̃ (·) a.s. for all r ≥ R0. (5.17)

Therefore, using U ∈ A to stand for U being A-measurable, we have

sup
U∈σ

(
�B(N0,2r)\N0 ,�

′
B(N0,2r)\N0

)
P

{
L
(
Yr
∣∣σ (�B(N0,2r)\N0

))
�L

(
Y ′

r

∣∣∣σ(�′
B(N0,2r)\N0

))
�ε2Kε � δU

}
= sup

U∈σ
(
�Nc

0
,�′

Nc
0

) P
{
L
(
Yr
∣∣σ (�B(N0,2r)\N0

))
�L

(
Y ′

r

∣∣∣σ(�′
B(N0,2r)\N0

))
�ε2Kε � δU

}

= sup

U∈σ
(
�Nc

0
,�′

Nc
0

) P
{
L
(

Yr

∣∣∣σ(�Nc
0

))
�L

(
Y ′

r

∣∣∣σ(�′
Nc

0

))
�ε2Kε � δU

}

≥ sup

U∈σ
(
�Nc

0
,�′

Nc
0

) P
{
ξ̃ � ξ̃ ′�ε2Kε � δU

}

≥ 2p2,
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which ensures that, for any r> R0, we can find a σ
(
�B(N0,2r)\N0 , �

′
B(N0,2r)\N0

)
-measurable U

such that

P

{
L
(
Yr
∣∣σ (�B(N0,2r)\N0

))
�L

(
Y ′

r

∣∣∣σ(�′
B(N0,2r)\N0

))
�ε2Kε � δU

}
≥ p2. (5.18)

If α ≤ (2(4r + 2r1))d, (4.4) is trivial with

C =
{

2

(
4 + 2r1

R0

)}d/2

,

so we now assume α > {2(4r + 2r1)}d. From the structure of �, we can see that �(A,D)
d=

�(x + A,D), and �(A,D) is independent of �(B,D) for all disjoint A, B ∈ B
(
R

d
)
, D ∈ T,

and x ∈R
d. For a fixed r> R0, we can divide 	α into disjoint cubes C1, · · · ,Cmα,r with edge

length 4r + 2r1 and centres c1, · · · , cmα,r , aiming to maximise the number of cubes, so mα,r ∼
α(4r + 2r1)−d, which has order O

(
αr−d

)
. Without loss of generality, we can assume that mα,r

is even or simply delete one of them, and the above properties still hold. For i ≤ mα,r, we
define

Ai = ci + N0, Bi = B(Ai, r), Ci = B(Bi, r), Di = Ci\Ai,

N0,α,r := ∪1≤i≤mα,r Ai, N1,α,r := ∪1≤i≤mα,r Bi, N2,α,r := ∪1≤i≤mα,r Di,

F1,α,r := σ
(
�Rd\N0,α,r

)
, F2,α,r := σ

(
�N2,α,r

)
,

W0
α,r =

∫
N1,α,r

ḡ(�x)1R(x)<r�̄(dx), W1
α,r = Wα,r − W0

α,r.

Note that for all x such that d(x, ∂	α) ≥ r,

η((x,m), �, 	α)1R̄(x,α)<r = η̄((x,m), �)1R(x)<r

for all (x,m) ∈� a.s. From the definition of total variation distance,

dTV
(
Wα,r,Wα,r + γ

)= sup
A∈B(R)

(
P
(
Wα,r ∈ A

)− P
(
Wα,r ∈ A − γ

))
;

hence the tower property ensures that

dTV
(
Wα,r,Wα,r + γ

)
= sup

A∈B(R)
E
(
1Wα,r∈A − 1Wα,r∈A−γ

)
= sup

A∈B(R)
E
(
E
(
1Wα,r∈A − 1Wα,r∈A−γ |F1,α,r

))
= sup

A∈B(R)
E

(
E

(
1W0

α,r∈A−W1
α,r

− 1W0
α,r∈A−γ−W1

α,r
|F1,α,r

))

≤E

(
sup

A∈B(R)

[
E

(
1W0

α,r∈A − 1W0
α,r∈A−γ |F1,α,r

)])

=E

(
sup

A∈B(R)

[
E

(
1W0

α,r∈A − 1W0
α,r∈A−γ |F2,α,r

)])
, (5.19)

where the last equality follows from the fact that W0
α,r depends on F2,α,r in F1,α,r.
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From (5.19), to show (4.4), it is sufficient to show that

E

(
sup

A∈B(R)

[
E

(
1W0

α,r∈A − 1W0
α,r∈A−γ |F2,α,r

)])
≤ (|γ | ∨ 1) O

(
α− 1

2 r
d
2

)
.

Using the fact that
∫

Bi
ḡ(�x)1R(x)<r�(dx) depends only on σ (�Di) in F2,α,r for i ≤ mα,r, and

from the independence of σ (�Di) for different i, we can see that

L
(

W0
α,r|F2,α,r

)
= L

(mα,r∑
i=1

∫
Bi

ḡ(�x)1R(x)<r�(dx)

∣∣∣∣F2,α,r

)

= L

(mα,r∑
i=1

∫
Bi

ḡ(�x)1R(x)<r�(dx)

∣∣∣∣∣ σ (�Di , i ≤ mα,r
))

. (5.20)

Using (5.18), we obtain

L

⎛
⎝ 2j∑

i=2j−1

∫
Bi

ḡ(�x)1R(x)<r�(dx)

∣∣∣∣∣∣ σ
(
�Di , i ≤ mα,r

)⎞⎠
= L

(
X1,j

(
1 − J1,j

)+ X2,jJ1,j
(
1 − J2,j

)+ (X3,j + Uj)J1,jJ2,j
∣∣ σ (�D2j−1 , �D2j

))
,

where J1,j, J2,j and Uj are σ
(
�D2j−1 , �D2j

)
-measurable with P(J1,j = 1) = 1 − P(J1,j = 0) = p2,

P(J2,j = 1) = 1 − P(J2,j = 0) = ε2, J1,j ⊥⊥ J2,j, X1,j and X2,j are σ
(
�B2j−1 , �B2j

)
-measurable,

and X3,j ∼ Kε, 1 ≤ j ≤ mα,r/2, are i.i.d. and independent of σ
(
�Di , i ≤ mα,r

)
. Define

�1 :=
mα,r/2∑

j=1

(
X1,j

(
1 − J1,j

)+ X2,jJ1,j
(
1 − J2,j

)+ (
X3,j + Uj

)
J1,jJ2,j

)
,

�2 :=
mα,r/2∑

j=1

X3,jJ1,jJ2,j,

�3,l :=
l∑

j=1

X3,j,

and let I ∼ Binomial
(
mα,r/2, ε2p2

)
be independent of

{
X3,j : j ≤ mα,r/2

}
. It follows from

(5.19) and (5.20) that

dTV
(
Wα,r,Wα,r + γ

)
≤E

(
sup

A∈B(R)

[
E
(
1�1∈A − 1�1∈A−γ |σ (�Di , i ≤ mα,r

))])

≤E

(
sup

A∈B(R)

[
E
(
1�2∈A − 1�2∈A−γ |σ (�Di , i ≤ mα,r

))])

=E

(
sup

A∈B(R)

[
E
(
1�3,I∈A − 1�3,I∈A−γ |I)]

)
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≤ P(I ≤ (EI)/2) +
∑

(EI)/2<j≤mα,r/2

sup
A∈B(R)

[
E
(
1�3,j∈A − 1�3,j∈A−γ

)]
P(I = j)

≤ O
(
α−1rd

)
+ O

(
α− 1

2 r
d
2

)
|γ | = (|γ | ∨ 1)O

(
α− 1

2 r
d
2

)
, (5.21)

where the first term of (5.21) is from Chebyshev’s inequality, and the second term is due to
Lemma 4.1. This completes the proof of (4.4).

In terms of (4.5), since range-boundedness implies polynomial stabilisation with arbitrary
order β, (4.4) still holds for all r> R0. On the other hand, W̄α = W̄α,r a.s. when r> t for some
positive constant t; (4.5) follows by taking r = R0 ∨ t + 1.

The claim (4.6) can be proved by replacing Wα with W̄α , Wα,r with W̄α,r, ḡ with g,
W0
α,r with W̄0

α,r, W1
α,r with W̄1

α,r, �x by �	α,x, R(x) with R̄(x, α), and R
(
x,M1, �+ δ(x,M1)

)
with R̄

(
x,M1, α, �+ δ(x,M1)

)
, and redefining F1,α,r := σ

(
�	α\N0,α,r

)
. The bound (4.7) can

be argued in the same way as that for (4.5). �
Proof of Corollary 4.1. The proof can easily be adapted from the second half of the proof of

Lemma 4.4, and we start with (4.9). If α− 1
d (1 − 2q)−1(4r + 2r1)> 1

3 , (4.9) is obvious because

the total variation distance is bounded above by 1. Now we assume α− 1
d (1 − 2q)−1(4r + 2r1) ≤

1
3 . Similarly to the proof of Lemma 4.4, we embed disjoint cubes with edge length 4r + 2r1

into 	α\
(

N(1)
α,r ∪ N(2)

α,r ∪ N(3)
α,r

)
, aiming to maximise the number mα,r of cubes. Without loss of

generality, we assume that mα,r is even. Then we have

α(1 − 2q)d(12r + 6r1)−d−1 ≤ mα,r ≤ α(1 − 2q)d(4r + 2r1)−d,

giving mα,r = O
(
αr−d

)
.

We use the same notation as in the proof of Lemma 4.4 but with 	α replaced by 	α\
(

N(1)
α,r ∪

N(2)
α,r ∪ N(3)

α,r

)
, and define

F′
2,α,r := σ

(
�N2,α,r∪N(2)

α,r

)
.

Bearing in mind that N(1)
α,r ∪ N(2)

α,r ∪ N(3)
α,r is excluded from the mα,r cubes, we have F0,α,r ⊂

F1,α,r, giving the following result analogous to (5.19):

dTV

(
W̄ ′
α,r, W̄ ′

α,r + hα,r
(
�

N(2)
α,r

)∣∣∣F0,α,r

)

= sup
A∈B(R)

E

⎛
⎝1W̄ ′

α,r∈A − 1
W̄α,r∈A−hα,r

(
�

N(2)
α,r

)
∣∣∣∣∣∣F0,α,r

⎞
⎠

= sup
A∈B(R)

E

⎛
⎝E

⎛
⎝1W̄α,r∈A − 1

W̄α,r∈A−hα,r

(
�

N(2)
α,r

)
∣∣∣∣∣∣F1,α,r

⎞
⎠
∣∣∣∣∣∣F0,α,r

⎞
⎠

= sup
A∈B(R)

E

⎛
⎝E

⎛
⎝1W̄0

α,r∈A − 1
W̄0
α,r∈A−hα,r

(
�

N(2)
α,r

)
∣∣∣∣∣∣F1,α,r

⎞
⎠
∣∣∣∣∣∣F0,α,r

⎞
⎠
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≤E

⎛
⎝ sup

A∈B(R)

⎡
⎣E

⎛
⎝1W̄0

α,r∈A − 1
W̄0
α,r∈A−hα,r

(
�

N(2)
α,r

)
∣∣∣∣∣∣F1,α,r

⎞
⎠
⎤
⎦
∣∣∣∣∣∣F0,α,r

⎞
⎠

=E

⎛
⎝ sup

A∈B(R)

⎡
⎣E

⎛
⎝1W̄0

α,r∈A − 1
W̄0
α,r∈A−hα,r

(
�

N(2)
α,r

)
∣∣∣∣∣∣F′

2,α,r

⎞
⎠
⎤
⎦
∣∣∣∣∣∣F0,α,r

⎞
⎠ .

The rest is a line-by-line repetition of the proof of Lemma 4.4 with γ replaced by hα,r
(
�

N(2)
α,r

)
,

and the expectations replaced by the conditional expectations given F0,α,r, leading to

dTV

(
W̄ ′
α,r, W̄ ′

α,r + hα,r
(
�

N(2)
α,r

)∣∣∣F0,α,r

)

≤E

⎛
⎝ sup

A∈B(R)

⎡
⎣E

⎛
⎝1W̄0

α,r∈A − 1
W̄0
α,r∈A−hα,r

(
�

N(2)
α,r

)
∣∣∣∣∣∣F′

2,α,r

⎞
⎠
⎤
⎦
∣∣∣∣∣∣F0,α,r

⎞
⎠

≤E

⎛
⎝E

⎡
⎣ sup

A∈B(R)

⎛
⎝1�3,I∈A − 1

�3,I∈A−hα,r

(
�

N(2)
α,r

)
∣∣∣∣∣∣I, σ

(
�

N(2)
α,r

)⎞⎠
⎤
⎦
∣∣∣∣∣∣F0,α,r

⎞
⎠ (5.22)

≤
∑

EI<2j≤mα,r

P(I = j)E

⎛
⎝E

⎡
⎣ sup

A∈B(R)

⎛
⎝1�3,j∈A − 1

�3,j∈A−hα,r

(
�

N(2)
α,r

)
∣∣∣∣∣∣σ
(
�

N(2)
α,r

)⎞⎠
⎤
⎦
∣∣∣∣∣∣F0,α,r

⎞
⎠

+ P(I ≤ (EI)/2)

≤ O
(
α−1rd

)
+ O

(
α− 1

2 r
d
2

)
E

(∣∣∣hα,r (�N(2)
α,r

)∣∣∣∣∣∣F0,α,r

)
(5.23)

=E

(∣∣∣hα,r (�N(2)
α,r

)∣∣∣∨ 1
∣∣∣F0,α,r

)
O
(
α− 1

2 r
d
2

)
,

where (5.22) follows from the fact that

sup
A∈B(R)

⎡
⎣1�3,I∈A − 1

�3,I∈A−hα,r

(
�

N(2)
α,r

)
⎤
⎦

is a function of I and �
N(2)
α,r

, the first term of (5.23) is from Chebyshev’s inequality, and the

second term is due to Lemma 4.1. This completes the proof for the statement of W̄α,r.
The claim (4.8) can be proved by replacing W̄α,r with Wα,r, W̄ ′

α,r with W ′
α,r, and W̄0

α,r with
W0
α,r. �

The moments of Wα,r and Wα (resp. W̄α,r and W̄α) are established in the following lemmas

using the ideas in [51, Section 4]. Let ‖X‖p := E(|X|p) 1
p be the Lp norm of X, provided it is

finite.

Lemma 5.7.

(a) (Unrestricted case.) If the score function η satisfies the k′th moment condition 2.3 with
k′ > k ≥ 1, then max0<l≤k

{‖Wα‖l, ‖Wα,r‖l
}≤ Cα.

(b) (Restricted case.) If the score function η satisfies the k′th moment condition (2.4) with
k′ > k ≥ 1, then max0<l≤k

{‖W̄α‖l, ‖W̄α,r‖l
}≤ Cα.
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Proof. The proof is adapted from that of [51, Lemma 4.1]. We use the same notation as
in the proof of Lemma 4.4, and start with the restricted case. To this end, it suffices to show
‖W̄α‖k∨‖Wα,r‖k ≤ Cα, and the claim follows from Hölder’s inequality. Let Nα := ∣∣�̄	α ∣∣; then
Nα follows the Poisson distribution with parameter αλ. Using Minkowski’s inequality, we
obtain

‖W̄α‖k ≤
∥∥∥∥∥∥
∑

x∈�̄	α
|gα(x, �)|

∥∥∥∥∥∥
k

=
∥∥∥∥∥∥
∑

x∈�̄	α
|gα(x, �)|

⎛
⎝1Nα≤αλ +

∞∑
j=0

1αλ2j<Nα≤αλ2j+1

⎞
⎠
∥∥∥∥∥∥

k

≤
∥∥∥∥∥∥
∑

x∈�̄	α
|gα(x, �)| 1Nα≤αλ

∥∥∥∥∥∥
k

+
∞∑

j=0

∥∥∥∥∥∥
∑

x∈�̄	α
|gα(x, �)| 1αλ2j<Nα≤αλ2j+1

∥∥∥∥∥∥
k

. (5.24)

Let s = k′
k > 1 and let t be its conjugate, i.e., 1

s + 1
t = 1. Using Hölder’s inequality and

Minkowski’s inequality, for any j ∈N we have∥∥∥∥∥∥
∑

x∈�̄	α
|gα(x, �)| 1αλ2j<Nα≤αλ2j+1

∥∥∥∥∥∥
k

=
∥∥∥∥∥∥
∑

x∈�̄	α
|gα(x, �)| 1Nα≤αλ2j+1 1αλ2j<Nα

∥∥∥∥∥∥
k

≤
∥∥∥∥∥∥
∑

x∈�̄	α
|gα(x, �)| 1Nα≤αλ2j+1

∥∥∥∥∥∥
k′

(
P
(
Nα > αλ2j)) 1

kt

=
∥∥∥∥∥∥
∑

x∈�̄	α
|gα(x, �)| 1Nα≤αλ2j+1

∥∥∥∥∥∥
k′

P
(
Nα − αλ> αλ

(
2j − 1

)) 1
kt . (5.25)

For the term ‖ · ‖k′ in (5.25), we have∥∥∥∥∥∥
∑

x∈�̄	α
|gα(x, �)| 1Nα≤n

∥∥∥∥∥∥
k′

=

⎧⎪⎨
⎪⎩E

⎡
⎢⎣
⎛
⎝ n∑

j=1

∑
x∈�̄	α

|gα(x, �)| 1Nα=j

⎞
⎠

k′⎤⎥⎦
⎫⎪⎬
⎪⎭

1
k′

=

⎧⎪⎨
⎪⎩

n∑
j=1

E

⎡
⎢⎣
⎛
⎝ ∑

x∈�̄	α
|gα(x, �)| 1Nα=j

⎞
⎠

k′⎤⎥⎦
⎫⎪⎬
⎪⎭

1
k′

, (5.26)
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where the first equality holds because∑
x∈�̄	α

∣∣gα(x, �)∣∣k′
1Nα=0 = 0,

and the last equality follows from the fact that {Nα = j}, 1 ≤ j ≤ n, are disjoint events. On
{Nα = j} for some fixed j ∈N, if we write j points in �∩ 	α as {(x1,m1), . . . , (xj,mj)}, and
let {(Uα,i,Mi

)}i∈N be a sequence of i.i.d. random elements that have distribution U(	α)× LT

and are independent of �, where U(	α) is the uniform distribution on 	α , then

E

⎡
⎢⎣
⎛
⎝ ∑

x∈�̄	α
|gα(x, �)| 1Nα=j

⎞
⎠

k′⎤⎥⎦

≤
⎧⎨
⎩

j∑
i=1

E

[
|gα((xi,mi), �)|k′

1Nα=j

] 1
k′
⎫⎬
⎭

k′

= jk
′
E

⎡
⎢⎣
∣∣∣∣∣∣gα

⎛
⎝(Uα,i,Mi

)
,

⎛
⎝ j∑

i=1

δ(Uα,i,Mi)

⎞
⎠
⎞
⎠
∣∣∣∣∣∣
k′

1Nα=j

⎤
⎥⎦ , (5.27)

where the inequality follows from Minkowski’s inequality, and the equality follows from the
fact that when

∣∣�̄∩ 	α
∣∣ is fixed, points in �̄∩ 	α are independent and follow the uniform

distribution on 	α . Combining (5.26) and (5.27), we have∥∥∥∥∥∥
∑

x∈�̄	α
|gα(x, �)| 1Nα≤n

∥∥∥∥∥∥
k′

≤

⎧⎪⎨
⎪⎩

n∑
j=1

jk
′
E

⎡
⎢⎣
∣∣∣∣∣∣gα

⎛
⎝(Uα,1,M1

)
,

⎛
⎝ j∑

i=1

δ(Uα,i,Mi)

⎞
⎠
⎞
⎠
∣∣∣∣∣∣
k′

1Nα=j

⎤
⎥⎦
⎫⎪⎬
⎪⎭

1
k′

=

⎧⎪⎨
⎪⎩

n∑
j=1

λαjk
′−1

E

⎡
⎢⎣
∣∣∣∣∣∣gα

⎛
⎝(Uα,1,M1

)
,

⎛
⎝ j∑

i=1

δ(Uα,i,Mi)

⎞
⎠
⎞
⎠
∣∣∣∣∣∣
k′

1Nα=j−1

⎤
⎥⎦
⎫⎪⎬
⎪⎭

1
k′

≤ (λα)
1
k′ n

k′−1
k′

⎧⎪⎨
⎪⎩E

⎡
⎢⎣n−1∑

j=0

∣∣∣∣∣∣gα
⎛
⎝(Uα,1,M1

)
,

⎛
⎝ j+1∑

i=1

δ(Uα,i,Mi)

⎞
⎠
⎞
⎠
∣∣∣∣∣∣
k′

1Nα=j

⎤
⎥⎦
⎫⎪⎬
⎪⎭

1
k′

≤ (λα)
1
k′ n

k′−1
k′

⎧⎪⎨
⎪⎩E

⎡
⎢⎣ ∞∑

j=0

∣∣∣∣∣∣gα
⎛
⎝(Uα,1,M1

)
,

⎛
⎝ j+1∑

i=1

δ(Uα,i,Mi)

⎞
⎠
⎞
⎠
∣∣∣∣∣∣
k′

1Nα=j

⎤
⎥⎦
⎫⎪⎬
⎪⎭

1
k′

= (λα)
1
k′ n

k′−1
k′

{∫
	α

E

[∣∣gα((x,M), �	α + δ(x,M)
)∣∣k′ 1

α
dx

]} 1
k′

≤ (λα)
1
k′ n

k′−1
k′ C

1
k′
0 , (5.28)
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where the first equality follows from the fact that Nα is independent of {(Uα,i,Mi
)}i∈N, P(Nα =

j) = λα
j P(Nα = j − 1), and the last equality follows from the construction of the marked Poisson

point process.

Combining (5.25) and (5.28), we have∥∥∥∥∥∥
∑

x∈�̄	α

∣∣gα(x, �)∣∣ 1αλ2j<Nα≤αλ2j+1

∥∥∥∥∥∥
k

≤ αλ2
(k′−1)(j+1)

k′ C
1
k′
0 P

(
Nα − αλ> αλ

(
2j − 1

)) 1
kt . (5.29)

Using (5.28) and Hölder’s inequality, we have∥∥∥∥∥∥
∑

x∈�̄	α

∣∣gα(x, �)∣∣1Nα≤αλ

∥∥∥∥∥∥
k

≤
∥∥∥∥∥∥
∑

x∈�̄	α
|gα(x, �)| 1Nα≤αλ

∥∥∥∥∥∥
k′

≤ αλC
1
k′
0 . (5.30)

Combining (5.29) and (5.30), together with the fact that P(Nα − αλ> αλk) decreases expo-
nentially fast with respect to k, we have from (5.24) that

‖W̄α‖k ≤
∥∥∥∥∥∥
∑

x∈�̄	α
|gα(x, �)|

∥∥∥∥∥∥
k

≤ Cα.

The proof of (b) is completed by observing that, for arbitrary r ∈R+,

‖W̄α,r‖k =
∥∥∥∥∥∥
∑

x∈�̄	α
gα(x, �) 1R(x)≤r

∥∥∥∥∥∥
k

≤
∥∥∥∥∥∥
∑

x∈�̄	α
|gα(x, �)|

∥∥∥∥∥∥
k

≤ Cα.

The claim in (a) can be established by replacing W̄α with Wα , W̄α,r with Wα,r, gα(x,X )
with g(X x), and

∑j
i=1 δ(Uα,i,Mi) with

∑j
i=1 δ(Uα,i,Mi) +�	c

α
. �

Remark 5.1. The proof of Lemma 5.7 does not depend on the shape of 	α , so the claims still
hold if we replace 	α with a set A ∈ B

(
R

d
)

and α in the upper bound with the volume of A.

With these preparations, we are ready to bound the differences
∣∣Var(Wα)− Var

(
Wα,r

)∣∣ and∣∣Var
(
W̄α

)− Var
(
W̄α,r

)∣∣.
Lemma 5.8.

(a) (Unrestricted case.) Assume that the score function η satisfies the k′th moment condition
(2.3) for some k′ > 2. If η is exponentially stabilising as in Definition 2.1, then there exist
positive constants α0 and C such that

∣∣Var(Wα)− Var
(
Wα,r

)∣∣≤ 1

α
(5.31)

for all α ≥ α0 and r ≥ C ln (α). If η is polynomially stabilising as in Definition 2.1 with
parameter β, then for any k ∈ (2, k′), there exists a positive constant C such that∣∣Var(Wα)− Var

(
Wα,r

)∣∣≤ C
(
α

3k−2
k r−β k−2

k

)
∨
(
α

3k−1
k r−β k−1

k

)
(5.32)

for all r ≤ α 1
d .
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(b) (Restricted case.) Assume that the score function η satisfies the k′th moment condition
(2.4) for some k′ > 2. If η is exponentially stabilising as in Definition 2.2, then there
exist positive constants α0 and C such that

∣∣Var
(
W̄α

)− Var
(
W̄α,r

)∣∣≤ 1

α
(5.33)

for all α ≥ α0 and r ≥ C ln (α). If η is polynomially stabilising as in Definition 2.2, with
parameter β, then for any k ∈ (2, k′), there exists a positive constant C such that∣∣Var

(
W̄α

)− Var
(
W̄α,r

)∣∣≤ C
(
α

3k−2
k r−β k−2

k

)
∨
(
α

3k−1
k r−β k−1

k

)
(5.34)

for all r ≤ α 1
d .

Proof. We start with (5.33). From Lemma 5.7(b), for fixed k ∈ (2, k′), we have

max
0<l≤k

{‖W̄α‖l, ‖W̄α,r‖l
}≤ C0α (5.35)

for some positive constant C0. Without loss of generality, we assume α0 > 1. Since∣∣Var
(
W̄α

)− Var
(
W̄α,r

)∣∣≤ ∣∣∣E(W̄2
α − W̄2

α,r

)∣∣∣+ ∣∣∣(EW̄α

)2 − (
EW̄α,r

)2
∣∣∣ , (5.36)

assuming that the score function is exponentially stabilising as in Definition 2.2, we show that
each of the terms in the right-hand side of (5.36) is bounded by 1

2α for α and r sufficiently
large. Clearly, the definition of W̄α,r implies that W̄2

α − W̄2
α,r = 0 if R̄(x, α) ≤ r for all x ∈ �̄	α ;

hence it remains to tackle Er,α := {R̄(x, α) ≤ r for all x ∈ �̄	α }c. As shown in the proof of
Lemma 5.6, P

(
Er,α

)≤ αC1e−C2r, which, together with Hölder’s inequality, ensures that∣∣∣E(W̄2
α − W̄2

α,r

)∣∣∣= ∣∣∣E[(W̄2
α − W̄2

α,r

)
1Er,α

]∣∣∣
≤ ‖W̄2

α − W̄2
α,r‖ k

2
‖1Er,α‖ k

k−2

≤
(
‖W̄2

α‖ k
2
+ ‖W̄2

α,r‖ k
2

)
P(Er,α)

k−2
k

=
(
‖W̄α‖2

k + ‖W̄α,r‖2
k

)
P(Er,α)

k−2
k ≤ 2(C0α)

2
(
αC1e−C2r

) k−2
k

. (5.37)

For the remaining term of (5.36), we have∣∣∣(EW̄α

)2 − (
EW̄α,r

)2
∣∣∣= ∣∣EW̄α −EW̄α,r

∣∣ ∣∣EW̄α +EW̄α,r
∣∣ .

The bound (5.35) implies
∣∣EW̄α +EW̄α,r

∣∣≤ 2C0α. However, using Hölder’s inequality,
Minkowski’s inequality, and (5.35) again, we have∣∣EW̄α −EW̄α,r

∣∣= ∣∣E[(W̄α − W̄α,r
)

1Er,α

]∣∣
≤ ‖W̄α − W̄α,r‖k‖1Er,α‖ k

k−1

≤ (‖W̄α‖k + ‖W̄α,r‖k
)
P(Er,α)

k−1
k

≤ 2C0α
(
αC1e−C2r

) k−1
k
, (5.38)
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giving ∣∣∣(EW̄α

)2 − (
EW̄α,r

)2
∣∣∣≤ 4 (C0α)

2
(
αC1e−C2r

) k−1
k

. (5.39)

We set r = C ln(α) in the upper bounds of (5.37) and (5.39), and find C such that both bounds
are bounded by 1/(2α), completing the proof of (5.33).

The same proof can be adapted for (5.34). With (5.36) in mind, recalling the fact established
in the proof of Lemma 5.6 that P(Er,α) ≤ C1αr−β , we replace the last inequalities of (5.37),
(5.38), and (5.39) with the corresponding bound of P(Er,α) to obtain∣∣∣E(W̄2

α − W̄2
α,r

)∣∣∣≤ 2(C0α)2 (C1αr−β) k−2
k , (5.40)

∣∣EW̄α −EW̄α,r
∣∣≤ 2C0α

(
C1αr−β) k−1

k , (5.41)

∣∣∣(EW̄α

)2 − (
EW̄α,r

)2
∣∣∣≤ 4(C0α)

2 (C1αr−β) k−1
k . (5.42)

The claim (5.34) follows from combining (5.40) and (5.42), extracting α and r, and then taking
C as the sum of the remaining constants.

A line-by-line repetition of the above proof with W̄α and W̄α,r replaced by Wα and Wα,r

gives (5.31) and (5.32) respectively. �
Next, we apply Lemma 5.2 and Lemma 5.3 to establish lower bounds for Var

(
Wα,r

)
and

Var
(
W̄α,r

)
.

Lemma 5.9.

(a) (Unrestricted case.) If the score function η satisfies the polynomial stabilisation in
Definition 2.1 with order β > d + 1 and the non-singularity in Assumption 2.4, then
Var

(
Wα,r

)≥ Cαr−d for R0 ≤ r ≤ α1/d/6, where C, R0 > 0 are independent of α.

(b) (Restricted case.) If the score function η satisfies the polynomial stabilisation in
Definition 2.2 with order β > d + 1 and the non-singularity in Assumption 2.4, then
Var

(
W̄α,r

)≥ Cαr−d for R0 ≤ r ≤ α1/d/6, where C, R0 > 0 are independent of α.

Proof. For (b), recalling the notation in the paragraph after (5.19), we obtain from the total
variance formula that

Var
(
W̄α,r

)=E
(
Var

(
W̄α,r

∣∣F2,α,r
))+ Var

(
E
(
W̄α,r

∣∣F2,α,r
))

≥E
(
Var

(
W̄α,r

∣∣F2,α,r
))

=
mα,r∑
i=1

E

⎛
⎝Var

⎛
⎝ ∑

x∈�∩Bi

ḡ(�	α,x)1R̄(x,α)≤r

∣∣∣∣∣∣�Di

⎞
⎠
⎞
⎠

= mα,rE
(

Var
(

Yr

∣∣∣�Nc
0

))
, (5.43)

where mα,r is the number of disjoint cubes with length 4r + 2r1 embedded into 	α .
Using (5.17), there exists an R0 ≥ r1 > 0 such that for all r> R0,

L

⎛
⎝Yr1(

E′
R0

)c

∣∣∣∣∣∣�Nc
0

⎞
⎠= L

(
Ỹ
∣∣∣�Nc

0

)
≥ ξ̃ a.s.,
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where ξ̃ is an absolutely continuous σ
(
�Nc

0

)
-measurable random measure satisfying

P

(
ξ̃ (R)> p

2

)
> 2p. Hence, for r> R0, we apply Lemma 5.3 with X := Yr, A :=

(
E′

R0

)c
, and

use the fact that Yr1(
E′

R0

)c = Ỹ for all r ≥ R0 to obtain

EVar
(

Yr

∣∣∣�Nc
0

)
≥EVar

⎛
⎜⎝Ỹ +

E

(
Ỹ
∣∣∣�Nc

0

)
P

((
E′

R0

)c∣∣∣�Nc
0

)1E′
R0

∣∣∣∣∣∣∣�Nc
0

⎞
⎟⎠ =: b> 0. (5.44)

The proof of the claim (b) is completed by combining (5.43) and (5.44), and observing that
R0 ≤ r ≤ α1/d/6 ensures that mα,r ≥ 12−dαr−d.

The claim (a) can be proved by replacing W̄α,r with Wα,r and ḡ with g throughout the above
argument. �

Finally, we make use of [51, Lemma 4.6], Lemma 5.8, and Lemma 5.9 to establish
Lemma 4.5.

Proof of Lemma 4.5. To begin with, we combine (5.31), (5.33), and Lemma 5.9(a) to find
an r := C1 ln(α) such that

∣∣Var(Wα)− Var
(
Wα,r

)∣∣≤ 1

α
, (5.45)

∣∣Var
(
W̄α

)− Var
(
W̄α,r

)∣∣≤ 1

α
, (5.46)

Var
(
Wα,r

)≥ C2α ln(α)−d, (5.47)

for positive constants C1,C2. The inequalities (5.45) and (5.47) imply Var(Wα)≥
O
(
α ln(α)−d

)
; hence the claim (a) follows from the dichotomy established in [51, Lemma

4.6] saying either Var(Wα)=�(α) or Var(Wα)= O
(
α

d−1
d

)
.

For (b), it suffices to show that Var
(
W̄α

)− Var(Wα)= o(α) if we take η̄ as the score function
in the unrestricted case. To this end, noting that (5.45) and (5.46), it remains to show that
Var

(
Wα,r

)− Var
(
W̄α,r

)= o(α). However, by the Cauchy–Schwarz inequality, we have∣∣Var
(
Wα,r

)− Var
(
W̄α,r

)∣∣
= ∣∣Var

(
Wα,r − W̄α,r

)− 2cov
(
Wα,r − W̄α,r,Wα,r

)∣∣
≤Var

(
Wα,r − W̄α,r

)+ 2
√

Var
(
Wα,r − W̄α,r

)
Var

(
Wα,r

)
,

and it follows from Var(Wα)=�(α), Var(Wα,r) = O(α), and (5.45) that Var
(
Wα,r

)=�(α);
hence the proof is reduced to showing Var

(
Wα,r − W̄α,r

)= o(α).
Since gα(x, �)1R̄(x,α)<r = ḡ (�x) 1R(x)<r if d(x, ∂	α)> r, we have Wα,r − W̄α,r = W1,α,r −

W2,α,r where

W1,α,r :=
∑

x∈�̄B(∂	α,r)∩	α

ḡ
(
�x) 1R(x)<r,W2,α,r :=

∑
x∈�̄B(∂	α,r)∩	α

gα (x, �) 1R̄(x,α)<r.
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As the summands of W1,α,r and W2,α,r are in the moat within distance r from the boundary of
	α , both Var

(
W1,α,r′

α

)
and Var

(
W2,α,r′

α

)
are of order o(α), as detailed below. In fact, it follows

from (5.4) that

E
(
gα(x, �) 1R̄(x,α)<r�̄(dx)

)
=E

(
gα

(
x, �+ δ(

x,M1

)) 1R̄(x,M1,α,�+δ(
x,M1

))<r

)
λdx

=: Px,α,rdx; (5.48)

if we set
�̄∗
α(dx) := gα(x, �)1R̄(x,α)<r�̄(dx) − Px,α,rdx, (5.49)

then E
(
�̄∗
α(dx)�̄∗

α(dy)
)=E

(
�̄∗
α(dx)

)
E
(
�̄∗
α(dy)

)= 0 if d(x, y)> 2r. Therefore,

Var
(
W2,α,r

)
=
∫

x,y∈B(∂	α,r)∩	α
E
(
�̄∗
α(dx)�̄∗

α(dy)
)

=
∫

x,y∈B(∂	α,r)∩	α,d(x,y)≤2r
E
(
�̄∗
α(dx)�̄∗

α(dy)
)

=
∫

x,y∈B(∂	α,r)∩	α,d(x,y)≤2r

{
E

[
gα(x, �)1R̄(x,α)<rgα(y, �)1R̄(y,α)<r�̄(dx)�̄(dy)

]

−Px,α,rPy,α,rdxdy
}

. (5.50)

Recalling the second-order Palm distribution in (5.5), we can use the moment condition (2.4)
together with Hölder’s inequality to obtain

E

[
|gα(x, �)| 1R̄(x,α)<r |gα(y, �)| 1R̄(y,α)<r�̄(dx)�̄(dy)

]
≤ C2(λ2dxdy + λdx), (5.51)∣∣Px,α,r

∣∣ ∣∣Py,α,r
∣∣ dxdy ≤ C2λ2dxdy, (5.52)

where C ≥ 1. Combining these estimates with (5.50) gives

Var
(
W2,α,r

)= O
(
α

d−1
d rd+1

)
= o(α).

The proof of Var
(
W1,α,r

)= o(α) is similar, except we replace (2.4) with (2.3). Consequently,

Var
(
Wα,r − W̄α,r

)= Var
(
W1,α,r − W2,α,r

)≤ 2
(
Var

(
W1,α,r

)+ Var
(
W2,α,r

))= o(α),

and the statement follows. �
As the lower bounds in Lemma 4.6 are very conservative, their proofs are less demanding,

as demonstrated below.

Proof of Lemma 4.5. We start with (b). The bound (5.34) ensures that

∣∣Var
(
W̄α

)− Var
(
W̄α,r

)∣∣≤ C1

(
α

3k0−2
k0 r

−β k0−2
k0

)
∨
(
α

3k0−1
k0 r

−β k0−1
k0

)
(5.53)

for all r ≤ α 1
d and k′ > k0 > k ≥ 3. On the other hand, Lemma 5.9(b) says

Var
(
W̄α,r

)≥ C1αr−d
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for 0< R0 ≤ r ≤ α1/d/6. Let rα := α
2k−2

kβ−2β−dk . The assumption β > (3k − 2)d/(k − 2) ensures
that rα < α1/d/6 for large α, and k0 > k guarantees

∣∣Var
(
W̄α

)− Var
(
W̄α,rα

)∣∣� Var
(
W̄α,rα

)
for

large α. Hence

Var
(
W̄α

)≥ C1αr−d
α = O

(
α

kβ−2β−3dk+2d
kβ−2β−dk

)
,

completing the proof.
For the proof of (a), we can proceed as in the proof of (b), replacing W̄α with Wα and W̄α,r

with Wα,r. �
The proof of Lemma 4.6 enables us to get slightly better bounds for Var

(
Wα,r

)
and

Var
(
W̄α,r

)
.

Lemma 5.10.

(a) (Unrestricted case.) If the score function η satisfies the conditions of Lemma 4.6(a), then

Var
(
Wα,r

)≥ C
(
αr−d)∨

(
α

kβ−2β−3dk+2d
kβ−2β−dk

)

for R0 ≤ r ≤ α1/d/6, where C, R0 > 0 are independent of α.

(b) (Restricted case.) If the score function η satisfies the conditions of Lemma 4.6(b), then

Var
(
W̄α,r

)≥ C
(
αr−d)∨

(
α

kβ−2β−3dk+2d
kβ−2β−dk

)

for R0 ≤ r ≤ α1/d/6, where C, R0 > 0 are independent of α.

Proof of Theorem 2.2. Let σ 2
α := Var

(
W̄α

)
, σ 2
α,r := Var

(
W̄α,r

)
, and Z̄α,r ∼ N

(
EW̄α,r, σ

2
α,r

)
;

then it follows from the triangle inequality that

dTV (W̄α, Z̄α) ≤ dTV
(
W̄α, W̄α,r

)+ dTV
(
Z̄α, Z̄α,r

)+ dTV
(
W̄α,r, Z̄α,r

)
. (5.54)

We take R0 as the maximum of the quantities R0 in Lemma 4.4(b), Corollary 4.1(b), and
Lemma 5.9(b). We start with the exponentially stabilising case (ii).

(ii) The first term of (5.54) can be bounded using Lemma 5.6(b), giving

dTV
(
W̄α, W̄α,r

)≤ C1αe−C1r ≤ 1

α
, (5.55)

for r>C3 ln(α).
We can establish an upper bound for the second term dTV

(
Z̄α, Z̄α,r

)
of (5.54) using

Lemma 5.1. To this end, (5.33) gives ∣∣∣σ 2
α − σ 2

α,r

∣∣∣≤ 1

α
, (5.56)

which, together with Lemma 4.5(b), implies

σ 2
α,r =�(α), σ 2

α =�(α), (5.57)

for r>C4 ln(α). We combine (5.57) and (5.38) to obtain∣∣E(Z̄α)−E
(
Z̄α,r

)∣∣
max(σα, σα,r)

=
∣∣E(W̄α

)−E
(
W̄α,r

)∣∣
max(σα, σα,r)

≤ O
(
α−2

)
(5.58)

https://doi.org/10.1017/apr.2023.15 Published online by Cambridge University Press

https://doi.org/10.1017/apr.2023.15


150 T. CONG AND A. XIA

for r>C5 ln(α). Therefore, it follows from (5.56), (5.57), (5.58), and Lemma 5.1 that

dTV
(
Z̄α, Z̄α,r

)≤
∣∣E(Z̄α)−E

(
Z̄α,r

)∣∣
2 max(σα, σα,r)

+ 3
∣∣Var

(
W̄α

)− Var
(
W̄α,r

)∣∣
2 max

(
Var

(
W̄α

)
,Var

(
W̄α,r

)) (5.59)

≤ O
(
α−2) (5.60)

for r>C6 ln(α).
For the last term of (5.54), as a linear transformation does not change the total variation

distance, we can rewrite it as

dTV
(
W̄α,r, Z̄α,r

)= dTV
(
Vα,r, Z

)
,

where Vα,r := (
W̄α,r −EW̄α,r

)
/σα,r and Z ∼ N(0, 1). We now appeal to Stein’s method to

tackle the problem. Briefly speaking, Stein’s method for normal approximation hinges on a
Stein equation (see [10, p. 15])

f ′(w) − wf (w) = h(w) − Nh, (5.61)

where Nh := Eh(Z). The solution of (5.61) satisfies (see [10, p. 16])

‖f ′
h‖ := sup

w

∣∣f ′
h(w)

∣∣≤ 2‖h(·) − Nh‖.

Hence, for h = 1A with A ∈ B(R), the solution fh =: fA satisfies

‖f ′
h‖ ≤ 2. (5.62)

The Stein equation (5.61) enables us to bound dTV
(
Vα,r, Z

)
through a functional form of Vα,r

only, giving
dTV

(
Vα,r, Z

)≤ sup
{f : ‖f ′‖≤2}

E
[
f ′ (Vα,r)− Vα,rf

(
Vα,r

)]
. (5.63)

Recalling (5.48) and (5.49), we can represent Vα,r through V(dx) := 1
σα,r
�̄∗
α(dx), giving Vα,r =∫

	α
V(dx). Let N′

x,α,r = B(x, 2r) ∩ 	α and N′′
x,α,r = B(x, 4r) ∩ 	α . Define

S′
x,α,r =

∫
N′

x,α,r

V(dy), S′′
x,α,r =

∫
N′′

x,α,r

V(dy).

Since V(dx) is independent of V(dy) if |x − y|> 2r, V(dx) is independent of Vα,r − S′
x,α,r,

S′
x,α,rV(dx) is independent of Vα,r − S′′

x,α,r, 1 = Var
(
Vα,r

)=E
∫
	α

S′
x,α,rV(dx), and

E
[
f ′ (Vα,r)− Vα,rf

(
Vα,r

)]
=Ef ′ (Vα,r)−E

∫
	α

(
f (Vα,r) − f

(
Vα,r − S′

x,α,r

))
V(dx)

=Ef ′ (Vα,r)−E

∫
	α

∫ 1

0
f ′ (Vα,r − uS′

x,α,r

)
S′

x,α,rduV(dx)

=E

∫
	α

E
[
f ′ (Vα,r)] S′

x,α,rV(dx) −E

∫
	α

∫ 1

0
f ′ (Vα,r − uS′

x,α,r

)
S′

x,α,rduV(dx)

=E

∫
	α

E
[
f ′ (Vα,r)− f ′ (Vα,r − S′′

x,α,r

)]
S′

x,α,rV(dx)

−E

∫
	α

∫ 1

0

(
f ′ (Vα,r − uS′

x,α,r

)− f ′ (Vα,r − S′′
x,α,r

))
S′

x,α,rduV(dx). (5.64)
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By the definition of the total variation distance, we have

dTV
(
Vα,r, Vα,r + γ

)= dTV
(
W̄α,r, W̄α,r + σα,rγ

)
(5.65)

for any γ ∈R. Using Corollary 4.1(b) with N(1)
α,r = N(3)

α,r := ∅ and N(2)
α,r := B

(
N′′

x,α,r, r
)
, for r ≤

C7α
1
d , the non-singularity in Assumption 2.4 ensures that

dTV

(
W̄α,r, W̄α,r + hα,r

(
�

N(2)
α,r

))
≤E

(∣∣∣hα,r (�N(2)
α,r

)∣∣∣∨ 1
)

O
(
α− 1

2 r
d
2

)
,

which, together with (5.65), implies

∣∣E [
f ′ (Vα,r)− f ′ (Vα,r − S′′

x,α,r

)]∣∣≤ 2‖f ′‖ O
(
α− 1

2 r
d
2

)
E
[∣∣σα,rS′′

x,α,r

∣∣∨ 1
]

. (5.66)

Recalling (5.49), we have

σα,rS′′
x,α,r =

∫
N′′

x,α,r

�̄∗
α(dy).

Using the first-order Palm distribution (5.4), the third-order Palm distribution (5.6), and the
moment condition (2.4), we obtain

E

[
|gα(z, �)| 1R̄(z,α)<r�̄(dz) |gα(y, �)| 1R̄(y,α)<r�̄(dy) |gα(x, �)| 1R̄(x,α)<r�̄(dx)

]
≤ C8

(
λ3dzdydx + λ2dzdx + λ2dydx + λdx

)
,

E

[
|gα(y, �)| 1R̄(y,α)<r�̄(dy)

]
≤ C1λdy,∣∣Py,α,r

∣∣≤ C1λ,

which, together with (5.51) and (5.52), yields

E
∣∣�̄∗

α(dy)
∣∣≤ C11λdy, (5.67)

E
∣∣�̄∗

α(dy)�̄∗
α(dx)

∣∣≤ C12
(
λ2dydx + λdx

)
, (5.68)

E
∣∣�̄∗

α(dz)�̄∗
α(dy)�̄∗

α(dx)
∣∣≤ C13

(
λ3dzdydx + λ2dzdx + λ2dydx + λdx

)
. (5.69)

Since N′′
x,α,r ⊂ B(x, 4r), the volume of N′′

x,α,r is of order O(rd). Then

E

∫
N′

x,α,r

∣∣�̄∗
α(dy)

∣∣≤E

∫
N′′

x,α,r

∣∣�̄∗
α(dy)

∣∣≤ O
(
rd),

E
[∣∣σα,rS′′

x,α,r

∣∣∨ 1
]≤ 1 +E

∫
N′′

x,α,r

∣∣�̄∗
α(dy)

∣∣≤ O
(
rd). (5.70)

Combining (5.66), (5.70), and (5.62), we have

∣∣E[f ′ (Vα,r)− f ′ (Vα,r − S′′
x,α,r

)]∣∣≤ O
(
α− 1

2 r
3d
2

)
.

https://doi.org/10.1017/apr.2023.15 Published online by Cambridge University Press

https://doi.org/10.1017/apr.2023.15


152 T. CONG AND A. XIA

Hence the first term of (5.64) can be bounded as∣∣∣∣E
∫
	α

E
[
f ′ (Vα,r)− f ′ (Vα,r − S′′

x,α,r

)]
S′

x,α,rV(dx)

∣∣∣∣
≤ O

(
α− 1

2 r
3d
2

)
σ−2
α,rE

∫
	α

∫
N′

x,α,r

∣∣�̄∗
α(dy)

∣∣ ∣∣�̄∗
α(dx)

∣∣
≤ O

(
α− 1

2 r
3d
2

)
σ−2
α,r

∫
	α

(∫
N′

x,α,r

λdy + 1

)
λdx = O

(
σ−2
α,r α

1
2 r

5d
2

)
, (5.71)

where the last inequality is from (5.68), and the last equality follows from the fact that
Vol(N′

x,α,r) ≤ Vol (B(x, 2r))= O(rd).

For the second term of (5.64), we have from Corollary 4.1 with N(1)
α,r := B

(
N′

x,α,r, r
)
, N(2)

α,r :=
B
(
N′′

x,α,r, r
)
, N(3)

α,r := N′′
x,α,r, for r ≤ C14α

1
d , and the non-singularity in Assumption 2.4 that∣∣∣∣∣E

[∫ 1

0

(
f ′ (Vα,r − uS′

x,α,r

)− f ′ (Vα,r − S′′
x,α,r

))
du

∣∣∣∣∣�B
(
N′

x,α,r,r
)
]∣∣∣∣∣

≤2
∫ 1

0
EdTV

(
Vα,r − uS′

x,α,r, Vα,r − S′′
x,α,r

∣∣�B
(
N′

x,α,r,r
)) du

≤ O
(
α− 1

2 r
d
2

)
E

(∫
N′′

x,α,r

∣∣�̄∗
α(dz)

∣∣+ 1

∣∣∣∣∣�B
(
N′

x,α,r,r
)
)

;

hence ∣∣∣∣∣E
∫
	α

∫ 1

0

(
f ′ (Vα,r − uS′

x,α,r

)− f ′ (Vα,r − S′′
x,α,r

))
S′

x,α,rduV(dx)

∣∣∣∣∣
=
∣∣∣∣∣E

∫
	α

E

[∫ 1

0

(
f ′ (Vα,r − uS′

x,α,r

)− f ′ (Vα,r − S′′
x,α,r

))
du

∣∣∣∣∣�B
(
N′

x,α,r,r
)
]

S′
x,α,rV(dx)

∣∣∣∣∣
≤ O

(
α− 1

2 r
d
2

)
E

∫
	α

E

(∫
N′′

x,α,r

∣∣�̄∗
α(dz)

∣∣+ 1

∣∣∣∣∣�B
(
N′

x,α,r,r
)
) ∣∣S′

x,α,r

∣∣ |V(dx)|

≤ O
(
α− 1

2 r
d
2

)
σ−2
α,rE

∫
	α

[∫
N′′

x,α,r

∫
N′

x,α,r

∣∣�̄∗
α(dz)�̄∗

α(dy)
∣∣+ ∫

N′
x,α,r

∣∣�̄∗
α(dy)

∣∣] ∣∣�̄∗
α(dx)

∣∣
≤ O

(
α− 1

2 r
d
2

)
σ−2
α,r

∫
	α

(∫
N′′

x,α,r

∫
N′

x,α,r

λ2dzdy +
∫

N′′
x,α,r

λdz +
∫

N′
x,α,r

λdy + 1

)
λdx

≤ O
(
α− 1

2 r
d
2

)
σ−2
α,r O

(
αr2d)

= O
(
σ−2
α,r α

1
2 r

5d
2

)
, (5.72)

where the second-to-last inequality follows from (5.67), (5.68), and (5.69), and the last inequal-
ity is due to the fact that the volumes of N′

x,α,r and N′′
x,α,r are of order O

(
rd
)
. Recalling (5.63)

and (5.64), we add up the bounds of (5.71) and (5.72) to obtain

dTV
(
W̄α,r, Z̄α,r

)= dTV
(
Vα,r, Z

)≤ O
(
σ−2
α,r α

1
2 r

5d
2

)
. (5.73)
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The proof of (ii) is completed by using (5.54), taking r = max(C3,C4,C5) ln(α) for large α,
and collecting the bounds in (5.55), (5.60), and (5.73) and substituting σ 2

α,r =�(α), as shown
in (5.57).

(i) There exists an r1 > 0 such that W̄α,r1 = W̄α a.s. for all α, which implies EW̄α,r1 =EW̄α ,
Var

(
W̄α,r1

)= Var
(
W̄α

)
; hence dTV

(
W̄α, Z̄α

)= dTV
(
W̄α,r1 , Z̄α,r1

)
. On the other hand, range-

boundedness implies exponential stabilisation; with r1 in place of r, (5.57) and (5.73) still
hold. However, r1 is a constant independent of α; the conclusion follows.

(iii) We take r = rα := R0 ∨ α 5k−4
5dk+2βk−4β . Lemma 5.6(b) gives

dTV
(
W̄α, W̄α,r

)≤ O
(
αr−β)<O

(
α

− β(k−2)[β(k−2)−d(15k−14)]
(kβ−2β−dk)(5dk+2βk−4β)

)
. (5.74)

Next, applying Lemma 4.6(b) and Lemma 5.10(b), we have

Var
(
W̄α,r

)∧ Var
(
W̄α

)≥ O

(
α

kβ−2β−3dk+2d
kβ−2β−dk

)
, (5.75)

which, together with (5.34), (5.41), and (5.59), yields

dTV
(
Z̄α, Z̄α,r

)≤ O

(
α

2k−1
k r−β k−1

k

α
1
2

kβ−2β−3dk+2d
kβ−2β−dk

∨ α
3k−2

k r−β k−2
k

α
kβ−2β−3dk+2d

kβ−2β−dk

∨ α
3k−1

k r−β k−1
k

α
kβ−2β−3dk+2d

kβ−2β−dk

)
(5.76)

for R0 < r<C15α
1
d . Recalling that β > (15k−14)d

k−2 , the dominating term of (5.76) is

α
3k−2

k r−β k−2
k

α
kβ−2β−3dk+2d

kβ−2β−dk

,

giving

dTV
(
Z̄α, Z̄α,r

)≤ O

(
α

3k−2
k r−β k−2

k

α
kβ−2β−3dk+2d

kβ−2β−dk

)
= O

(
α

− β(k−2)[β(k−2)−d(15k−14)]
(kβ−2β−dk)(5dk+2βk−4β)

)
. (5.77)

For dTV
(
W̄α,r, Z̄α,r

)
, we make use of (5.73) and (5.75), and replace r with rα to obtain

dTV
(
W̄α,r, Z̄α,r

)≤ O
(
α

1
2 r

5d
2

)
O

(
α

− kβ−2β−3dk+2d
kβ−2β−dk

)
= O

(
α

− β(k−2)[β(k−2)−d(15k−14)]
(kβ−2β−dk)(5dk+2βk−4β)

)
. (5.78)

Finally, the proof is completed by combining (5.54), (5.74), (5.77), and (5.78). �
Proof of Theorem 2.1. One can repeat the proof of Theorem 2.2 by replacing W̄α , W̄α,r, Z̄α ,

Z̄α,r, gα(x, �), and R̄(x, α) with Wα , Wα,r, Zα , Zα,r, g(�x), and R(x). �
Remark 5.2. If we aim to find the order of the total variation distance between W̄α and a
normal distribution instead of a normal distribution with the same mean and variance in the
polynomially stabilising case, we can get a better upper-bound approximation error with a
weaker condition. When

β >
5dk − 7d + √

20d2k2 − 60d2k + 49d2

k − 2
,

combining (5.73) and the fact that dTV
(
W̄α, W̄α,r

)≤ Cαλr−β , and taking

rα := α
3βk−7dk+4d−6β

(βk−dk−2β)(5d+2β) ,
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we have

dTV
(
W̄α, Z̄α,rα

)≤ dTV
(
W̄α, W̄α,rα

)+ dTV
(
W̄α,rα , Z̄α,rα

)
≤ O

(
α

−β2(k−2)+10βdk−14βd−5d2k
(βk−dk−2β)(5d+2β)

)
.
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