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Abstract
In this paper, we prove a series of identities of the quasi-map K-theoretical I-functions with level structure between
the Grassmannian and its dual Grassmannian. Those identities prove the quantum K-theory version mutation
conjecture stated in [13]. Here we find an interval of levels within which two I-functions are the same, and on
the boundary of that interval, two I-functions intertwine. We call this phenomenon the level correspondence in
Grassmann duality.
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1. Introduction

The quantum K-theory was introduced by Givental [6] and Lee [9] decades ago. Recently, Givental
shows that q-hypergeometric solutions represent K-theoretic Gromov-Witten invariants in the toric case
[5] and Ruan-Zhang [14] introduce the level structures in quantum K-theory. There is a serendipitous
discovery that some special toric spaces with certain level structures result in Mock theta functions.
Nevertheless, beyond the toric case, much less is known.

The recent explosion of study of the quantum K-theory was from a fundamental relation between
3d supersymmetric gauge theories and quantum K-theory of the so-called Higgs branch discovered by
the works of Nekrasov [12], and Nekrasov and Shatashvili [10] [11], amongst many others. For the
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concrete case of massless theories with a nontrivial UV-IR flow, Jockers and Mayr [7] show a 3d gauge
theory/quantum K-theory correspondence, connecting the BPS partition functions of specific N = 2
supersymmetric gauge theories to Givental’s permutation equivariant K-theory. In addition, Jockers
et al. [8] and Ueda-Yoshida [18] establish the correspondence between 3d gauge theory and the quantum
K-theory of 𝐺𝑟 (𝑟, 𝑛) independently. Now it is well-understood that the level structures introduced by
Ruan-Zhang [14] are the key new feature for the so-called 3d N = 2 theory (Chern-Simons term).

One of the key features of gauge theory is Seiberg-duality, which has been studied in 2d by Bonelli
et al. [1] and the first author. The 2d Seiberg-duality has a mathematical version known as mutation
conjecture [13]. As far as the authors know very little is known in the 3d N = 2 case. The results of
this article hopefully will contribute some clarity. The simplest example of the mutation conjecture
is the Grassmannian 𝐺𝑟 (𝑟,𝑉) versus dual Grassmannian 𝐺𝑟 (𝑛 − 𝑟,𝑉∗). However, it is unknown how
to match the level structure. Without misunderstanding, we will use 𝐺𝑟 (𝑟, 𝑛) and 𝐺𝑟 (𝑛 − 𝑟, 𝑛) to
denote the Grassmannian and its dual, respectively. They are geometrically isomorphic. However, they
encode very different combinatorial data. A long-standing problem is matching their combinatorial
data directly. For example, the presentations of K-theoretic I-functions depend on their gauge theory
representation/combinatorial data, and it is tough to see why the I-function of the Grassmannian equals
the I-function of the dual Grassmannian. In this paper, we give the explicit formula of K-theoretic
I-function of the Grassmannian with level structure by using abelian/nonabelian correspondence [20]
as follows:

𝐼𝐺𝑟 (𝑟 ,𝑛) ,𝐸𝑟 ,𝑙
𝑇 ,𝑑 =

∑
𝑑1+𝑑2+···+𝑑𝑟=𝑑

𝑄𝑑
𝑟∏

𝑖, 𝑗=1

∏𝑑𝑖−𝑑 𝑗

𝑘=−∞(1 − 𝑞𝑘𝐿𝑖𝐿
−1
𝑗 )∏0

𝑘=−∞(1 − 𝑞𝑘𝐿𝑖𝐿
−1
𝑗 )

𝑟∏
𝑖=1

(𝐿𝑑𝑖
𝑖 𝑞

𝑑𝑖 (𝑑𝑖−1)
2 )𝑙∏𝑑𝑖

𝑘=1
∏𝑛

𝑚=1 (1 − 𝑞𝑘𝐿𝑖Λ−1
𝑚 )

,

and

𝐼𝐺𝑟 (𝑛−𝑟 ,𝑛) ,𝐸𝑛−𝑟 ,𝑙
𝑇 ,𝑑 =

∑
𝑑1+𝑑2+···+𝑑𝑛−𝑟=𝑑

𝑄𝑑
𝑛−𝑟∏
𝑖, 𝑗=1

∏𝑑𝑖−𝑑 𝑗

𝑘=−∞(1 − 𝑞𝑘 �̃�𝑖 �̃�
−1
𝑗 )∏0

𝑘=−∞(1 − 𝑞𝑘 �̃�𝑖 �̃�
−1
𝑗 )

𝑛−𝑟∏
𝑖=1

( �̃�𝑑𝑖
𝑖 𝑞

𝑑𝑖 (𝑑𝑖−1)
2 )𝑙∏𝑑𝑖

𝑘=1
∏𝑛

𝑚=1(1 − 𝑞𝑘 �̃�𝑖Λ𝑚)
.

We want to remark here that the isomorphism between the Grassmannian and its dual would imply
the equivalence of J-function when level l is 0. In fact, the I-function is known to be different from the
J-function with negative levels.

In this paper, we use Theorem 1.2 to show the relations of the equivariant I-function between the
Grassmannian 𝐺𝑟 (𝑟, 𝑛) and that of the dual Grassmannian 𝐺𝑟 (𝑛 − 𝑟, 𝑛) with level structures; here we
find an interval of levels within which two I-functions with levels are the same. On the boundary of that
interval, two I-functions with levels are intertwining with each other. We call this phenomenon the level
correspondence in Grassmann duality. The existence of a specific interval of level is very mysterious to
us. We hope that our result will give some hints on formulating Seiberg-duality for a general target.

Theorem 1.1 (Level correspondence). For the Grassmannian 𝐺𝑟 (𝑟, 𝑛) and its dual Grassmannian
𝐺𝑟 (𝑛 − 𝑟, 𝑛) with standard 𝑇 = (C∗)𝑛 torus action, let 𝐸𝑟 , 𝐸𝑛−𝑟 be the standard representation of
GL(𝑟,C) and GL(𝑛 − 𝑟,C), respectively. Consider the following equivariant I-function:

𝐼𝐺𝑟 (𝑟 ,𝑛) ,𝐸𝑟 ,𝑙
𝑇 =1 +

∞∑
𝑑=1

𝐼𝐺𝑟 (𝑟 ,𝑛) ,𝐸𝑟 ,𝑙
𝑇 ,𝑑 𝑄𝑑 ,

𝐼
𝐺𝑟 (𝑛−𝑟 ,𝑛) ,𝐸∨

𝑛−𝑟 ,−𝑙
𝑇 =1 +

∞∑
𝑑=1

𝐼
𝐺𝑟 (𝑛−𝑟 ,𝑛) ,𝐸∨

𝑛−𝑟 ,−𝑙
𝑇 ,𝑑 𝑄𝑑 .

Then we have the following relations between 𝐼𝐺𝑟 (𝑟 ,𝑛) ,𝐸𝑟 ,𝑙
𝑇 ,𝑑 and 𝐼

𝐺𝑟 (𝑛−𝑟 ,𝑛) ,𝐸∨
𝑛−𝑟 ,−𝑙

𝑇 in 𝐾 𝑙𝑜𝑐
𝑇 (𝐺𝑟 (𝑟, 𝑛)) ⊗

C(𝑞) � 𝐾 𝑙𝑜𝑐
𝑇 (𝐺𝑟 (𝑛 − 𝑟, 𝑛)) ⊗ C(𝑞):
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◦ For 1 − 𝑟 ≤ 𝑙 ≤ 𝑛 − 𝑟 − 1, we have

𝐼𝐺𝑟 (𝑟 ,𝑛) ,𝐸𝑟 ,𝑙
𝑇 ,𝑑 = 𝐼

𝐺𝑟 (𝑛−𝑟 ,𝑛) ,𝐸∨
𝑛−𝑟 ,−𝑙

𝑇 ,𝑑 .

◦ For 𝑙 = 𝑛 − 𝑟 , we have

𝐼𝐺𝑟 (𝑟 ,𝑛) ,𝐸𝑟 ,𝑙
𝑇 ,𝑑 =

𝑑∑
𝑠=0

𝐶𝑠 (𝑛 − 𝑟, 𝑑)𝐼𝐺𝑟 (𝑛−𝑟 ,𝑛) ,𝐸∨
𝑛−𝑟 ,−𝑙

𝑇 ,𝑑−𝑠 ,

where 𝐶𝑠 (𝑘, 𝑑) is defined as

𝐶𝑠 (𝑘, 𝑑) =
(−1)𝑘𝑠

(𝑞; 𝑞)𝑠𝑞𝑠 (𝑑−𝑠+𝑘)
(∧𝑡𝑜𝑝 S𝑛−𝑟

)𝑠 ,
and S𝑛−𝑟 is the tautological bundle of 𝐺𝑟 (𝑛 − 𝑟, 𝑛).

◦ For 𝑙 = −𝑟 , we have

𝐼
𝐺𝑟 (𝑛−𝑟 ,𝑛) ,𝐸∨

𝑛−𝑟 ,−𝑙
𝑇 ,𝑑 =

𝑑∑
𝑠=0

𝐷𝑠 (𝑟, 𝑑)𝐼𝐺𝑟 (𝑟 ,𝑛) ,𝐸𝑟 ,𝑙
𝑇 ,𝑑−𝑠 ,

where

𝐷𝑠 (𝑟, 𝑑) =
(−1)𝑟𝑠

(𝑞; 𝑞)𝑠𝑞𝑠 (𝑑−𝑠)
(∧𝑡𝑜𝑝 S𝑟

)𝑠 ,
and S𝑟 is the tautological bundle of 𝐺𝑟 (𝑟, 𝑛).

Here we use q-Pochhammer symbol notation:

(𝑎; 𝑞)𝑑 :=
⎧⎪⎪⎨⎪⎪⎩

(1 − 𝑎) (1 − 𝑞𝑎) · · · (1 − 𝑞𝑑−1𝑎) 𝑑 > 0
1 𝑑 = 0
1

(1−𝑞−1𝑎) ·· · (1−𝑞−𝑑𝑎) 𝑑 < 0
.

A key step in our proof is the following series of nontrivial q-Pochhammer symbol identities, which
are of independent interest.

Theorem 1.2. Denoted by [𝑛], the set of elements {1, . . . , 𝑛}, let ∅ ≠ 𝐼 � [𝑛] be a subset of [𝑛], |𝐼 | be
its cardinality and denoted by 𝐼�, the complementary set of I in [𝑛]. For constant positive integers d, n
and l such that 1− |𝐼 | ≤ 𝑙 ≤ 𝑛 − |𝐼 | − 1, let 𝐴𝑑 (�𝑥, 𝐼, 𝑙) and 𝐵𝑑 (�𝑥, 𝐼, 𝑙) be two rational functions in �𝑥 and
q with an extra data l

𝐴𝑑 (�𝑥, 𝐼, 𝑙) =
∑

|𝑑𝐼 |=𝑑

(∏
𝑖∈𝐼 𝑥𝑑𝑖𝑖 𝑞

𝑑𝑖 (𝑑𝑖−1)
2

) 𝑙∏
𝑖, 𝑗∈𝐼

(
𝑞𝑑𝑖 𝑗+1𝑥𝑖 𝑗 ; 𝑞

)
𝑑 𝑗

∏
𝑖∈𝐼

∏
𝑗∈𝐼� (𝑞𝑥𝑖 𝑗 ; 𝑞)𝑑𝑖

,

𝐵𝑑 (�𝑥, 𝐼, 𝑙) =
∑

| �𝑑𝐼 |=𝑑

(∏
𝑖∈𝐼 𝑥−𝑑𝑖𝑖 𝑞

𝑑𝑖 (𝑑𝑖+1)
2

) 𝑙∏
𝑖, 𝑗∈𝐼

(
𝑞𝑑𝑖 𝑗+1𝑥 𝑗𝑖; 𝑞

)
𝑑 𝑗

∏
𝑖∈𝐼

∏
𝑗∈𝐼� (𝑞𝑥 𝑗𝑖; 𝑞)𝑑𝑖

,

where �𝑑𝐼 is |𝐼 |-tuple of non negative integers and | �𝑑𝐼 | :=
∑
𝑖∈𝐼 𝑑𝑖 . 𝑥𝑖 , 𝑖 = 1,. . . , 𝑛 are parameters. For

convenience, we use the notation 𝑥𝑖 𝑗 := 𝑥𝑖/𝑥 𝑗 and 𝑑𝑖 𝑗 := 𝑑𝑖 − 𝑑 𝑗 . Then we have

𝐴𝑑 (�𝑥, 𝐼, 𝑙) = 𝐵𝑑

(
�𝑥, 𝐼�,−𝑙

)
.
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Plan of the paper

This paper is arranged as follows. In Subsection 2.1, we prove Theorem 1.2 by constructing the rational
function in equation (2.3) and then using the iterated residue method, which is useful in Nekrasov
partition function [4]. In the following Subsection 2.2, we provide two explicit examples to explain the
proof and also provide a nontrivial identity by using Theorem 1.2. In Subsection 2.3, we expand the
restriction to the boundary: that is, 𝑙 = −|𝐼 | and 𝑙 = 𝑛 − |𝐼 |. In Section 3, we first revisit the K-theoretic
quasi-map theory in which we review some basic definitions and theorems, especially the formula of
equivariant I-function of the Grassmannian 𝐺𝑟 (𝑟, 𝑛). Finally, we apply Theorem 1.2 to obtain the level
correspondence of the I-function in Grassmann duality.

2. The class of q-Pochhammer symbol identities

2.1. The proof of identities

Now we prove Theorem 1.2 for one case 𝐼 = {1, · · · , 𝑟} by constructing the following symmetric
complex rational function 𝑓 (𝑤1, · · · , 𝑤𝑑) with parameters q and 𝑥1, · · · , 𝑥𝑛. We made the following
assumptions for parameters:

|𝑞 | < 1,
𝑥𝑖𝑥

−1
𝑗 ≠ 𝑞𝑘 , ∀𝑖 ≠ 𝑗 ∈ [𝑛],∀𝑘 ∈ Z. (2.1)

Furthermore, there exists some 𝜌 > 0 such that

max
𝑖∈[𝑛]

|𝑥𝑖 | < 𝜌 < min
𝑖∈[𝑛]

|𝑞 |−1 |𝑥𝑖 |, (2.2)

where [𝑛] := {1, · · · , 𝑛} and general situations follow from analytic continuation. Let 𝑓 (𝑤1, · · · , 𝑤𝑑)
be as follows:

𝑓 (𝑤1, · · · , 𝑤𝑑) =
1

(1 − 𝑞)𝑑𝑑!

𝑑∏
𝑖≠ 𝑗

𝑤𝑖 − 𝑤 𝑗

𝑤𝑖 − 𝑞𝑤 𝑗

𝑑∏
𝑖=1

𝑤𝑙−1
𝑖∏𝑟

𝑗=1 (1 − 𝑥 𝑗/𝑤𝑖)
∏𝑛

𝑗=𝑟+1(1 − 𝑞𝑤𝑖/𝑥 𝑗 )
(2.3)

= 𝑔(𝑤1, · · · , 𝑤𝑑)
𝑑∏
𝑖=1

(∏
𝑢∈𝑈

𝑤𝑖 − 𝑞−1𝑢

𝑤𝑖 − 𝑢

∏
𝑖< 𝑗

(𝑤𝑖 − 𝑤 𝑗 )2

(𝑤𝑖 − 𝑞𝑤 𝑗 ) (𝑞𝑤𝑖 − 𝑤 𝑗 )

)
, (2.4)

where U is a set of complex numbers all contained in open disk |𝑤 | < 𝜌, at the moment𝑈 = {𝑥1, · · · , 𝑥𝑟 },
and g is a symmetric function of the form

𝑔( �𝑤) = 1
(1 − 𝑞)𝑑𝑑!

𝑑∏
𝑖=1

𝑤𝑙+𝑟−1
𝑖∏𝑟

𝑗=1 (𝑤𝑖 − 𝑞−1𝑥 𝑗 )
∏𝑛

𝑗=𝑟+1(1 − 𝑞𝑤𝑖/𝑥 𝑗 )
.

From the condition in inequality (2.2) and the restriction of l, we know 𝑔( �𝑤) is analytical in the polydiscs
{(𝑤1, · · · , 𝑤𝑛) : |𝑤𝑖 | ≤ 𝜌,∀𝑖 ∈ [𝑛]} and g can only have possible zeros for some 𝑤 𝑗 = 0.

We consider the following integration

𝐸𝑑 :=
∫
𝐶𝜌

𝑑𝑤𝑑

2𝜋
√
−1

. . .

∫
𝐶𝜌

𝑑𝑤1

2𝜋
√
−1

𝑓 (�̂�1, · · · , �̂�𝑑), (2.5)

where (�̂�1, · · · , �̂�𝑑) is any arrangement of {𝑤1, · · · , 𝑤𝑑} and the integration contour 𝐶𝜌 for each
variable 𝑤𝑖 is the circle centred at origin with radius 𝜌 and takes a counterclockwise direction. The
condition in inequality (2.2) ensures that there isn’t a pole on the integration contour. By Fubini’s

https://doi.org/10.1017/fms.2022.28 Published online by Cambridge University Press

https://doi.org/10.1017/fms.2022.28


Forum of Mathematics, Sigma 5

theorem, we could permute the order of integration variables; and since 𝑓 (𝑤1, · · · , 𝑤𝑑) is a symmetric
function, we can change (𝑤1, · · · , 𝑤𝑑) to another order, such as (�̂�1, · · · , �̂�𝑑).

Suppose we have the following evaluating sequence for some 𝑆1 ≤ 𝑑 by induction,

�̂�1 = 𝑞�̂�2, �̂�2 = 𝑞�̂�3, · · · , �̂�𝑆1−1 = 𝑞�̂�𝑆1 ,

which are all simple poles inside |𝑤 | < 𝜌. Then we have

Res
�̂�𝑆1−1=𝑞�̂�𝑆1

· · · Res
�̂�2=𝑞�̂�3

Res
�̂�1=𝑞�̂�2

𝑓

=
𝑑∏

𝑖=𝑆1+1

(∏
𝑢∈𝑈

�̂�𝑖 − 𝑞−1𝑢

�̂�𝑖 − 𝑢

∏
𝑖< 𝑗

(�̂�𝑖 − �̂� 𝑗 )2

(�̂�𝑖 − 𝑞�̂� 𝑗 ) (𝑞�̂�𝑖 − �̂� 𝑗 )

)
× �̂�𝑆1−1

𝑆1

𝑆1−1∏
𝑘=0

∏
𝑢∈𝑈

𝑞𝑘 �̂�𝑆1 − 𝑞−1𝑢

𝑞𝑘 �̂�𝑆1 − 𝑢
·
∏
𝑆1< 𝑗

(�̂�𝑆1 − �̂� 𝑗 ) (𝑞𝑆1−1�̂�𝑆1 − �̂� 𝑗 )
(�̂�𝑆1 − 𝑞�̂� 𝑗 ) (𝑞𝑆1 �̂�𝑆1 − �̂� 𝑗 )

× (𝑞 − 1)𝑆1

𝑞𝑆1 − 1
𝑞−(𝑆1−1) (𝑑−𝑆1)𝑔(𝑞𝑆1−1�̂�𝑆1 , 𝑞

𝑆1−2�̂�𝑆1 , · · · , �̂�𝑆1 , �̂�𝑆1+1, · · · , �̂�𝑑). (2.6)

Now, integrating variable �̂�𝑆1 , we pick up the residue as �̂�𝑆1 = 𝑞−𝑘1𝑢1 for some 0 ≤ 𝑘1 < 𝑆1 and
𝑢1 ∈ 𝑈 = {𝑥1, · · · , 𝑥𝑟 } because the condition in equation (2.2), |�̂�𝑆1 | < 𝜌, implies that 𝑘1 = 0.
Evaluating �̂�𝑆1 = 𝑢1, we obtain

Res
�̂�𝑆1=𝑢1

Res
�̂�𝑆1−1=𝑞�̂�𝑆1

· · · Res
�̂�2=𝑞�̂�3

Res
�̂�1=𝑞�̂�2

𝑓

=
𝑑∏

𝑖=𝑆1+1

��� �̂�𝑖 − 𝑞𝑆1−1𝑢1

�̂�𝑖 − 𝑞𝑆1𝑢1

∏
𝑢∈𝑈\{𝑢1 }

�̂�𝑖 − 𝑞−1𝑢

�̂�𝑖 − 𝑢

∏
𝑖< 𝑗

(�̂�𝑖 − �̂� 𝑗 )2

(�̂�𝑖 − 𝑞�̂� 𝑗 ) (𝑞�̂�𝑖 − �̂� 𝑗 )
���

× 𝑢𝑆1
1

𝑆1−1∏
𝑘=0

∏
𝑢∈𝑈\{𝑢1 }

𝑞𝑘𝑢1 − 𝑞−1𝑢

𝑞𝑘𝑢1 − 𝑢
· (𝑞 − 1)𝑆1𝑞𝑆1 (𝑆1−1−𝑑)

× 𝑔(𝑞𝑆1−1𝑢1, 𝑞
𝑆1−2𝑢1, · · · , 𝑞𝑢1, 𝑢1, �̂�𝑆1+1, · · · , �̂�𝑑) (2.7)

= �̃�(�̂�𝑆1+1, · · · , �̂�𝑑)
𝑑∏

𝑖=𝑆1+1

(∏
𝑢∈�̃�

�̂�𝑖 − 𝑞−1𝑢

�̂�𝑖 − 𝑢

∏
𝑖< 𝑗

(�̂�𝑖 − �̂� 𝑗 )2

(�̂�𝑖 − 𝑞�̂� 𝑗 ) (𝑞�̂�𝑖 − �̂� 𝑗 )

)
, (2.8)

where

�̃� = 𝑈\{𝑢1} ∪ {𝑞𝑆1𝑢1}. (2.9)

All elements of �̃� are still in the open disk |𝑤 | < 𝜌, and

�̃�(�̂�𝑆1+1, · · · , �̂�𝑑) = 𝑢𝑆1
1

𝑆1−1∏
𝑘=0

∏
𝑢∈𝑈\{𝑢1 }

𝑞𝑘𝑢1 − 𝑞−1𝑢

𝑞𝑘𝑢1 − 𝑢
· (𝑞 − 1)𝑆1𝑞𝑆1 (𝑆1−1−𝑑)

× 𝑔(𝑞𝑆1−1𝑢1, 𝑞
𝑆1−2𝑢1, · · · , 𝑞𝑢1, 𝑢1, �̂�𝑆1+1, · · · , �̂�𝑑). (2.10)

So we just write 𝑓 := Res
�̂�𝑆1=𝑢

Res
�̂�𝑆1−1=𝑞�̂�𝑆1

· · · Res
�̂�2=𝑞�̂�3

Res
�̂�1=𝑞�̂�2

𝑓 in the same pattern as in the original form in

equation (2.4). One could check that setting 𝑆1 = 1 in equation (2.7) is valid.
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If one takes the following evaluation sequence of simple poles by induction

�̂�1 = 𝑢1, �̂�2 = 𝑞𝑢1, · · · , �̂�𝑆1−1 = 𝑞𝑆1−2𝑢1, �̂�𝑆1 = 𝑞𝑆1−1𝑢1, (2.11)

we get

Res
�̂�𝑆1=𝑞

𝑆1−1𝑢1

· · · Res
�̂�2=𝑞𝑢1

Res
�̂�1=𝑢1

𝑓 =
𝑑∏

𝑆1<𝑖

��� �̂�𝑖 − 𝑞𝑆1−1𝑢1

�̂�𝑖 − 𝑞𝑆1𝑢1

∏
𝑢∈𝑈\{𝑢1 }

�̂�𝑖 − 𝑞−1𝑢

�̂�𝑖 − 𝑢

∏
𝑖< 𝑗

(�̂�𝑖 − �̂� 𝑗 )2

(�̂�𝑖 − 𝑞�̂� 𝑗 ) (𝑞�̂�𝑖 − �̂� 𝑗 )
���

× 𝑢𝑆1
1

𝑆1−1∏
𝑘=0

∏
𝑢∈𝑈\{𝑢1 }

𝑞𝑘𝑢1 − 𝑞−1𝑢

𝑞𝑘𝑢1 − 𝑢
· (𝑞 − 1)𝑆1𝑞𝑆1 (𝑆1−1−𝑑)𝑔(𝑢1, 𝑞𝑢1, · · · , 𝑞𝑆1−1𝑢1, �̂�𝑆1+1, · · · �̂�𝑑),

(2.12)

which agrees with equation (2.7), since 𝑔( �𝑤) is a symmetric function. That is to say, we get the same
results from two different evaluation sequences

Res
�̂�𝑆1=𝑞

𝑆1−1𝑢1

· · · Res
�̂�2=𝑞𝑢1

Res
�̂�1=𝑢1

𝑓 = Res
�̂�𝑆1=𝑢1

Res
�̂�𝑆1−1=𝑞�̂�𝑆1

· · · Res
�̂�2=𝑞�̂�3

Res
�̂�1=𝑞�̂�2

𝑓 . (2.13)

As with the evaluation process for the sequence in equation (2.6), we now pick up the residues of 𝑓
in the following sequence:

�̂�𝑆1+1 = 𝑞�̂�𝑆1+2 �̂�𝑆1+2 = 𝑞�̂�𝑆1+3 · · · �̂�𝑆1+𝑆2−1 = 𝑞�̂�𝑆1+𝑆2 . (2.14)

Suppose �̂�𝑆1+𝑆2 = 𝑢2. We have two cases here: 𝑢2 ≠ 𝑞𝑆1𝑢1 or 𝑢2 = 𝑞𝑆1𝑢1. With a little computation, we
obtain the following.

Case 1: 𝑢2 ≠ 𝑞𝑆1𝑢1,

Res
�̂�𝑆1+𝑆2=𝑢2

Res
�̂�𝑆1+𝑆2−1=𝑞�̂�𝑆1+𝑆2

· · · Res
�̂�𝑆1+2=𝑞�̂�𝑆1+3

Res
�̂�𝑆1+1=𝑞�̂�𝑆1+2

Res
�̂�𝑆1=𝑢1

Res
�̂�𝑆1−1=𝑞�̂�𝑆1

· · · Res
�̂�2=𝑞�̂�3

Res
�̂�1=𝑞�̂�2

𝑓

= Res
�̂�𝑆1+𝑆2=𝑢1

Res
�̂�𝑆1+𝑆2−1=𝑞�̂�𝑆1+𝑆2

· · · Res
�̂�𝑆2+2=𝑞�̂�𝑆2+3

Res
�̂�𝑆2+1=𝑞�̂�𝑆2+2

Res
�̂�𝑆2=𝑢2

Res
�̂�𝑆2−1=𝑞�̂�𝑆2

· · · Res
�̂�2=𝑞�̂�3

Res
�̂�1=𝑞�̂�2

𝑓 . (2.15)

Case 2: 𝑢2 = 𝑞𝑆1𝑢1,

Res
�̂�𝑆1+𝑆2=𝑞

𝑆1𝑢1

Res
�̂�𝑆1+𝑆2−1=𝑞�̂�𝑆1+𝑆2

· · · Res
�̂�𝑆1+2=𝑞�̂�𝑆1+3

Res
�̂�𝑆1+1=𝑞�̂�𝑆1+2

Res
�̂�𝑆1=𝑢1

Res
�̂�𝑆1−1=𝑞�̂�𝑆1

· · · Res
�̂�2=𝑞�̂�3

Res
�̂�1=𝑞�̂�2

𝑓

= Res
�̂�𝑆1+𝑆2=𝑞

𝑆1+𝑆2−1𝑢1

Res
�̂�𝑆1+𝑆2−1=𝑞𝑆1+𝑆2−2𝑢1

· · · Res
�̂�𝑆1+2=𝑞𝑆1+1𝑢1

Res
�̂�𝑆1+1=𝑞𝑆1𝑢1

Res
�̂�𝑆1=𝑞

𝑆1−1𝑢
· · · Res

�̂�2=𝑞𝑢1
Res
�̂�1=𝑢1

𝑓 . (2.16)

To summarise all of the above, together with equations (2.13), (2.15) and (2.16), we know that the
iterated residue does not depend on the order of the poles we pick but depends on the final set of poles
we choose. So we can integrate all variables for the integrand of the form as in equation (2.4) with one
less variable each time.

When there is only one variable left

𝑓 (𝑤) = 𝑔(𝑤)
∏
𝑢∈𝑈

𝑤 − 𝑞−1𝑢

𝑤 − 𝑢
, (2.17)

we still update the set U to 𝑈\{𝑢} ∪ {𝑞𝑢} after choosing a pole at �̂� = 𝑢 ∈ 𝑈. Using the same argument
to get equations (2.15) and (2.16) after picking up poles for all 𝑤𝑖 , 𝑖 ∈ [𝑑], the result only depends on
the final set U, which is of the form

{𝑞𝑑1𝑥1, · · · , 𝑞𝑑𝑟 𝑥𝑟 }, (2.18)
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where 𝑑1 + · · · + 𝑑𝑟 = 𝑑, which means for each sequence, the final result can be indexed by a r-tuple
partition of d.

Suppose there is a sequence with final set {𝑞𝑑1𝑥1, · · · , 𝑞𝑑𝑟 𝑥𝑟 }. Then we can compute the result with
the following sequence:

(�̂�1, · · · , �̂�𝑑) = (𝑥1, 𝑞𝑥1 · · · , 𝑞𝑑1−1𝑥1, 𝑥2, · · · , 𝑞𝑑2−1𝑥2, 𝑥𝑟 , · · · , 𝑞𝑑𝑟−1𝑥𝑟 ). (2.19)

Note that we can do permutations on the left side, so for each partition | �𝑑 | = 𝑑, we have 𝑑! possible
evaluation sequences.

In all, we obtain the following lemma to compute 𝐸𝑑 .

Lemma 2.1. We can write E as

𝐸𝑑 =
∑
| �𝑑 |=𝑑

𝑑!𝐸 �𝑑 , (2.20)

where

𝐸 �𝑑 = lim
𝑤𝑑→�̂�𝑑

· · · lim
𝑤1→�̂�1

(
𝑛∏
𝑖=1

(𝑤𝑖 − �̂�𝑖) 𝑓 ( �𝑤)
)
, (2.21)

here

(�̂�1, . . . , �̂�𝑑) = (𝑥1, 𝑞𝑥1, . . . , 𝑞
𝑑1−1𝑥1, 𝑥2, 𝑞𝑥2, . . . , 𝑞

𝑑2−1𝑥2, . . . , 𝑥𝑟 , . . . , 𝑞
𝑑𝑟−1𝑥𝑟 ),

and the order in which to take the limit is from 𝑤1 to 𝑤𝑑 .

We now evaluate one specific configuration of these simple pole residues for given �𝑑 by changing
variables:

𝑤𝑖,𝑛𝑖 = 𝑥𝑖𝑞
𝑛𝑖−1𝑧𝑖,𝑛𝑖 , 𝑖 = 1, . . . , 𝑟 𝑛𝑖 = 1, . . . , 𝑑𝑖 .

Notations: From now on, we frequently use the following notations:

𝑥𝑖 𝑗 := 𝑥𝑖/𝑥 𝑗 𝑛𝑖 𝑗 := 𝑛𝑖 − 𝑛 𝑗 . (2.22)

Then

𝑓 ( �𝑤) = 1
(1 − 𝑞)𝑑𝑑!

∏
𝑖,𝑛𝑖 𝑧𝑖,𝑛𝑖

·
𝑟∏
𝑖=1

𝑑𝑖∏
𝑛𝑖≠𝑛 𝑗

1 − 𝑞𝑛𝑖 𝑗 𝑧𝑖,𝑛𝑖/𝑧𝑖,𝑛 𝑗

1 − 𝑞𝑛𝑖 𝑗+1𝑧𝑖,𝑛𝑖/𝑧𝑖,𝑛 𝑗

×
𝑟∏

𝑖, 𝑗=1 |𝑖≠ 𝑗

𝑑𝑖∏
𝑛𝑖=1

𝑑 𝑗∏
𝑛 𝑗=1

1 − 𝑞𝑛𝑖 𝑗 𝑧𝑖,𝑛𝑖/𝑧 𝑗 ,𝑛 𝑗 𝑥𝑖 𝑗

1 − 𝑞𝑛𝑖 𝑗+1𝑧𝑖,𝑛𝑖/𝑧 𝑗 ,𝑛 𝑗 𝑥𝑖 𝑗

×
∏𝑟

𝑖

∏𝑑𝑖
𝑛𝑖=1 (𝑥𝑖𝑞

𝑛𝑖−1𝑧𝑖,𝑛𝑖 )𝑙∏𝑟
𝑖, 𝑗=1 |𝑖≠ 𝑗

∏𝑑𝑖
𝑛𝑖=1 (1 − 𝑥 𝑗𝑖𝑞1−𝑛𝑖/𝑧𝑖,𝑛𝑖 )

× 1∏𝑟
𝑖=1

∏𝑑𝑖
𝑛𝑖=1 (1 − 𝑞1−𝑛𝑖/𝑧𝑖,𝑛𝑖 )

· 1∏𝑟
𝑖=1

∏𝑛
𝑗=𝑟+1

∏𝑑𝑖
𝑛𝑖=1 (1 − 𝑥𝑖 𝑗𝑞𝑛𝑖 𝑧𝑖,𝑛𝑖 )

.
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Now we pick up the simple pole terms and evaluate the function with 𝑧𝑖, 𝑗 = 1. Note that

lim
𝑧𝑖,𝑑𝑖→1

· · · lim
𝑧𝑖,1→1

(
𝑑𝑖∏
𝑛𝑖=1

(𝑧𝑖,𝑛𝑖 − 1) · 1(
1 − (𝑧𝑖,1)−1) (1 − 𝑧𝑖,1/𝑧𝑖2

)
. . .

(
1 − 𝑧𝑖,𝑑𝑖−1/𝑧𝑖,𝑑𝑖

)
𝑧𝑖,1 · · · 𝑧𝑖,𝑑𝑖

)
= 1,

where the order in which to take the limit is from 𝑧𝑖,1 to 𝑧𝑖,𝑑𝑖 . So this specific configuration of residues is

1
(1 − 𝑞)𝑑𝑑!

·
𝑟∏
𝑖=1

���
𝑑𝑖∏

𝑛𝑖≠𝑛 𝑗 |𝑛𝑖 𝑗≠−1

1 − 𝑞𝑛𝑖 𝑗

1 − 𝑞𝑛𝑖 𝑗+1 ·
𝑑𝑖∏
𝑛𝑖=2

1 − 𝑞−1

1 − 𝑞1−𝑛𝑖
���

×
𝑟∏

𝑖, 𝑗=1 |𝑖≠ 𝑗

𝑑𝑖∏
𝑛𝑖=1

𝑑 𝑗∏
𝑛 𝑗=1

1 − 𝑞𝑛𝑖 𝑗 𝑥𝑖 𝑗

1 − 𝑞𝑛𝑖 𝑗+1𝑥𝑖 𝑗

×
∏𝑟

𝑖

∏𝑑𝑖
𝑛𝑖=1 (𝑥𝑖𝑞

𝑛𝑖−1)𝑙∏𝑟
𝑖, 𝑗=1 |𝑖≠ 𝑗

∏𝑑𝑖
𝑛𝑖=1(1 − 𝑥 𝑗𝑖𝑞1−𝑛𝑖 )

· 1∏𝑟
𝑖=1

∏𝑛
𝑗=𝑟+1

∏𝑑𝑖
𝑛𝑖=1(1 − 𝑥𝑖 𝑗𝑞𝑛𝑖 )

,

and the factor with only 𝑥𝑖 𝑗 for 𝑖 = 1, . . . , 𝑟 and 𝑗 = 𝑟 + 1, . . . , 𝑛 is

𝐴 :=
1∏𝑟

𝑖=1
∏𝑛

𝑗=𝑟+1
∏𝑑𝑖

𝑛𝑖=1(1 − 𝑥𝑖 𝑗𝑞𝑛𝑖 )
=

1∏𝑟
𝑖=1

∏𝑛
𝑗=𝑟+1(𝑞𝑥𝑖 𝑗 ; 𝑞)𝑑𝑖

.

The factor that does not involve any 𝑥𝑖 𝑗 is

𝐵 :=
1

(1 − 𝑞)𝑑
·

𝑟∏
𝑖=1

���
𝑑𝑖∏

𝑛𝑖≠𝑛 𝑗 |𝑛𝑖 𝑗≠−1

1 − 𝑞𝑛𝑖 𝑗

1 − 𝑞𝑛𝑖 𝑗+1 ·
𝑑𝑖∏
𝑛𝑖=2

1 − 𝑞−1

1 − 𝑞1−𝑛𝑖
���.

And define 𝑃𝑑 as

𝑃𝑑 :=

⎧⎪⎪⎪⎨⎪⎪⎪⎩
𝑑∏

𝑖≠ 𝑗 |𝑖− 𝑗≠−1

1 − 𝑞𝑖− 𝑗

1 − 𝑞𝑖− 𝑗+1 ·
𝑑𝑖∏
𝑖=2

1 − 𝑞−1

1 − 𝑞1−𝑖 𝑑 > 1

1 𝑑 = 0, 1
.

By simple induction, it is easy to show that

𝑃𝑑

(1 − 𝑞)𝑑
=

1
(𝑞; 𝑞)𝑑

, 𝑑 ≥ 0,

and

𝐵 =
𝑟∏
𝑖=1

𝑃𝑑𝑖

(1 − 𝑞)𝑑𝑖
=

𝑟∏
𝑖=1

1
(𝑞; 𝑞)𝑑𝑖

.
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The factor left is

𝐶 :=���
𝑟∏

𝑖, 𝑗=1 |𝑖≠ 𝑗

𝑑𝑖∏
𝑛𝑖=1

𝑑 𝑗∏
𝑛 𝑗=1

1 − 𝑞𝑛𝑖 𝑗 𝑥𝑖 𝑗

1 − 𝑞𝑛𝑖 𝑗+1𝑥𝑖 𝑗

���
∏𝑟

𝑖=1
∏𝑑𝑖

𝑛𝑖=1 (𝑥𝑖𝑞
𝑛𝑖−1)𝑙∏𝑟

𝑖, 𝑗=1 |𝑖≠ 𝑗
∏𝑑𝑖

𝑛𝑖=1(1 − 𝑥 𝑗𝑖𝑞1−𝑛𝑖 )

=
𝑟∏
𝑖≠ 𝑗

𝑑 𝑗∏
𝑛 𝑗=1

((
𝑑𝑖∏
𝑛𝑖=1

1 − 𝑞𝑛𝑖 𝑗 𝑥𝑖 𝑗

1 − 𝑞𝑛𝑖 𝑗+1𝑥𝑖 𝑗

)
· 1

1 − 𝑥𝑖 𝑗𝑞1−𝑛 𝑗

)
·

𝑟∏
𝑖=1

𝑥𝑙𝑑𝑖𝑖 𝑞
𝑙𝑑𝑖 (𝑑𝑖−1)

2

=
𝑟∏
𝑖≠ 𝑗

𝑑 𝑗∏
𝑛 𝑗=1

1
1 − 𝑞𝑑𝑖−𝑛 𝑗+1𝑥𝑖 𝑗

·
𝑟∏
𝑖=1

𝑥𝑙𝑑𝑖𝑖 𝑞
𝑙𝑑𝑖 (𝑑𝑖−1)

2

=
𝑟∏
𝑖=1

𝑥𝑙𝑑𝑖𝑖 𝑞
𝑙𝑑𝑖 (𝑑𝑖−1)

2 ·
𝑟∏
𝑖≠ 𝑗

1
(𝑞𝑑𝑖 𝑗+1𝑥𝑖 𝑗 ; 𝑞)𝑑 𝑗

.

The above equations prove that the summand in equation (2.20) corresponding to a given �𝑑 equals
to one summand in 𝐴𝑑 (�𝑥, 𝐼, 𝑙). Thus we have

𝐴𝑑 (�𝑥, 𝐼, 𝑙) =
∑
| �𝑑 |=𝑑

𝑑!𝐸 �𝑑 = 𝐸𝑑 .

Now calculate the integration in a clockwise direction:

𝐸 ′
𝑑 :=

∫
𝐶′

𝜌

𝑑𝑤𝑖𝑑

2𝜋
√
−1

. . .

∫
𝐶′

𝜌

𝑑𝑤𝑖1

2𝜋
√
−1

𝑓 (𝑤𝑖1 , · · · , 𝑤𝑖𝑑 ). (2.23)

The assumption with l ensures that when integrating in any order, for each variable w, the residue at
infinity is 0. By definition, we can calculate this integration by taking the sum of residues outside the
circle |𝑤𝑖 | = 𝜌.

The iterated residues, in this case, are similar to the previous counterclockwise direction. Arguments
similar to those in equation (2.1) show

𝐸 ′
𝑑 =

∑
| �𝑑′ |=𝑑

𝑑!𝐸 ′
�𝑑′
,

where

𝐸 ′
�𝑑′
= lim

𝑤𝑑→�̂�𝑑

· · · lim
𝑤1→�̂�1

(
𝑛∏
𝑖=1

(𝑤𝑖 − �̂�𝑖) 𝑓 ( �𝑤)
)
,

here

{�̂�1, . . . , �̂�𝑑} =
{
𝑥𝑟+1𝑞

−1, 𝑥𝑟+1𝑞
−2, . . . , 𝑥𝑟+1𝑞

−𝑑𝑟+1 , . . . , 𝑥𝑛𝑞
−1, 𝑥𝑛𝑞

−2, . . . , 𝑥𝑛𝑞
−𝑑𝑛},

and the order in which to take the limit is from 𝑤1 to 𝑤𝑑 .
We now do the following, changing variables and calculating the residues:

𝑤𝑖,𝑛𝑖 = 𝑥𝑖𝑞
−𝑛𝑖 𝑧𝑖,𝑛𝑖 , 𝑖 = 𝑟 + 1, . . . , 𝑛 𝑛𝑖 = 1, . . . , 𝑑𝑖 .
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Similarly,

𝑓 ( �𝑤) = 1
(1 − 𝑞)𝑑𝑑!

∏
𝑖,𝑛𝑖 𝑧𝑖,𝑛𝑖

·
𝑛∏

𝑖=𝑟+1

𝑑𝑖∏
𝑛𝑖≠𝑛 𝑗

1 − 𝑞𝑛 𝑗𝑖 𝑧𝑖,𝑛𝑖/𝑧𝑖,𝑛 𝑗

1 − 𝑞𝑛 𝑗𝑖+1𝑧𝑖,𝑛𝑖/𝑧𝑖,𝑛 𝑗

×
𝑛∏

𝑖, 𝑗=𝑟+1 |𝑖≠ 𝑗

𝑑𝑖∏
𝑛𝑖=1

𝑑 𝑗∏
𝑛 𝑗=1

1 − 𝑞𝑛 𝑗𝑖 𝑧𝑖,𝑛𝑖/𝑧 𝑗 ,𝑛 𝑗 𝑥𝑖 𝑗

1 − 𝑞𝑛 𝑗𝑖+1𝑧𝑖,𝑛𝑖/𝑧 𝑗 ,𝑛 𝑗 𝑥𝑖 𝑗

×
∏𝑛

𝑖=𝑟+1
∏𝑑𝑖

𝑛𝑖=1 (𝑥𝑖𝑞
−𝑛𝑖 𝑧𝑖,𝑛𝑖 )𝑙−1∏𝑛

𝑖, 𝑗=𝑟+1 |𝑖≠ 𝑗
∏𝑑𝑖

𝑛𝑖=1 (1 − 𝑥𝑖 𝑗𝑞1−𝑛𝑖 𝑧𝑖,𝑛𝑖 )

× 1∏𝑛
𝑖=𝑟+1

∏𝑑𝑖
𝑛𝑖=1(1 − 𝑞1−𝑛𝑖 𝑧𝑖,𝑛𝑖 )

· 1∏𝑛
𝑖=𝑟+1

∏𝑟
𝑗=1

∏𝑑𝑖
𝑛𝑖=1(1 − 𝑥 𝑗𝑖𝑞𝑛𝑖/𝑧𝑖,𝑛𝑖 )

.

Note that

lim
𝑧𝑖,𝑑𝑖→1

· · · lim
𝑧𝑖,1→1

(
𝑑𝑖∏
𝑛𝑖=1

(𝑧𝑖,𝑛𝑖 − 1) · 1(
1 − 𝑧𝑖,1

) (
1 − 𝑧𝑖,2/𝑧𝑖,1

)
. . .

(
1 − 𝑧𝑖,𝑑𝑖/𝑧𝑖,𝑑𝑖−1

)
𝑧𝑖,1 · · · 𝑧𝑖,𝑑𝑖

)
= (−1)𝑑𝑖 ,

where the order in which to take the limits is from 𝑧𝑖,1 to 𝑧𝑖,𝑑𝑖 . So the residues for one specific
configuration of residues of type �𝑑 ′ are

(−1)𝑑

(1 − 𝑞)𝑑𝑑!
·

𝑛∏
𝑖=𝑟+1

���
𝑑𝑖∏

𝑛𝑖≠𝑛 𝑗 |𝑛 𝑗𝑖≠−1

1 − 𝑞𝑛 𝑗𝑖

1 − 𝑞𝑛 𝑗𝑖+1 ·
𝑑𝑖∏
𝑛𝑖=2

1 − 𝑞−1

1 − 𝑞1−𝑛𝑖
���

×
𝑛∏

𝑖, 𝑗=𝑟+1 |𝑖≠ 𝑗

𝑑𝑖∏
𝑛𝑖=1

𝑑 𝑗∏
𝑛 𝑗=1

1 − 𝑞𝑛 𝑗𝑖𝑥𝑖 𝑗

1 − 𝑞𝑛 𝑗𝑖+1𝑥𝑖 𝑗

×
∏𝑛

𝑖=𝑟+1
∏𝑑𝑖

𝑛𝑖= (𝑥𝑖𝑞
−𝑛𝑖 )𝑙∏𝑛

𝑖, 𝑗=𝑟+1 |𝑖≠ 𝑗
∏𝑑𝑖

𝑛𝑖=1 (1 − 𝑥𝑖 𝑗𝑞1−𝑛𝑖 )
· 1∏𝑛

𝑖=𝑟+1
∏𝑟

𝑗=1
∏𝑑𝑖

𝑛𝑖=1 (1 − 𝑥 𝑗𝑖𝑞𝑛𝑖 )
.

After almost the same computation as for 𝐸 �𝑑 , we can simplify the above equation to

(−1)𝑑
∏𝑛

𝑖=𝑟+1 𝑥𝑙𝑑𝑖𝑖 𝑞−
𝑙𝑑𝑖 (𝑑𝑖+1)

2∏𝑛
𝑖=𝑟+1(𝑞; 𝑞)𝑑𝑖

∏𝑛
𝑖≠ 𝑗 |𝑖, 𝑗=𝑟+1

(
𝑞𝑑𝑖 𝑗+1𝑥 𝑗𝑖; 𝑞

)
𝑑 𝑗

∏𝑛
𝑖=𝑟+1

∏𝑟
𝑗=1 (𝑞𝑥 𝑗𝑖; 𝑞)𝑑𝑖

,

which proves

𝐸 ′
𝑑 = (−1)𝑑𝐵𝑑

(
�𝑥, 𝐼�,−𝑙

)
.

Since the residue at infinity is zero, using the Cauchy Residue Theorem d times,∫
𝐶𝜌

. . .

∫
𝐶𝜌

𝑓 ( �𝑤) 𝑑𝑤1

2𝜋
√
−1𝑤1

. . .
𝑑𝑤𝑑

2𝜋
√
−1𝑤𝑑

= (−1)𝑑
∫
𝐶

′
𝜌

. . .

∫
𝐶

′
𝜌

𝑓 ( �𝑤) 𝑑𝑤1

2𝜋
√
−1𝑤1

. . .
𝑑𝑤𝑑

2𝜋
√
−1𝑤𝑑

,

we arrive at equations (2.24), (2.25) and (2.26) of the following theorem stated in the introduction.
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Theorem 2.2. Denoted by [𝑛], the set of elements {1, . . . , 𝑛}, let ∅ ≠ 𝐼 � [𝑛] be a subset of [𝑛], |𝐼 | be
its cardinality, and denoted by 𝐼�, the complementary set of I in [𝑛]. Then for constant positive integers
d, n and integer l with restriction 1 − |𝐼 | ≤ 𝑙 ≤ 𝑛 − |𝐼 | − 1, let 𝐴𝑑 (�𝑥, 𝐼, 𝑙) and 𝐵𝑑 (�𝑥, 𝐼, 𝑙) be two rational
functions in �𝑥 and q with an extra data l:

𝐴𝑑 (�𝑥, 𝐼, 𝑙) =
∑

|𝑑𝐼 |=𝑑

(∏
𝑖∈𝐼 𝑥𝑑𝑖𝑖 𝑞

𝑑𝑖 (𝑑𝑖−1)
2

) 𝑙∏
𝑖, 𝑗∈𝐼

(
𝑞𝑑𝑖 𝑗+1𝑥𝑖 𝑗 ; 𝑞

)
𝑑 𝑗

∏
𝑖∈𝐼

∏
𝑗∈𝐼� (𝑞𝑥𝑖 𝑗 ; 𝑞)𝑑𝑖

, (2.24)

𝐵𝑑 (�𝑥, 𝐼, 𝑙) =
∑

| �𝑑𝐼 |=𝑑

(∏
𝑖∈𝐼 𝑥−𝑑𝑖𝑖 𝑞

𝑑𝑖 (𝑑𝑖+1)
2

) 𝑙∏
𝑖, 𝑗∈𝐼

(
𝑞𝑑𝑖 𝑗+1𝑥 𝑗𝑖; 𝑞

)
𝑑 𝑗

∏
𝑖∈𝐼

∏
𝑗∈𝐼� (𝑞𝑥 𝑗𝑖; 𝑞)𝑑𝑖

, (2.25)

where �𝑑𝐼 is an |𝐼 |-tuple of nonnegative integers and | �𝑑𝐼 | :=
∑
𝑖∈𝐼 𝑑𝑖 . 𝑥𝑖 , 𝑖 = 1,. . . , 𝑛 are parameters. For

convenience, we use the notation 𝑥𝑖 𝑗 := 𝑥𝑖/𝑥 𝑗 and 𝑑𝑖 𝑗 := 𝑑𝑖 − 𝑑 𝑗 . Then we have

𝐴𝑑 (�𝑥, 𝐼, 𝑙) = 𝐵𝑑

(
�𝑥, 𝐼�,−𝑙

)
. (2.26)

2.2. Examples

In the following two examples, we show how the proof of Theorem 2.2 works.
Example 2.3 (d=1). For the case l=0, d=1, r=2, n=3, equation (2.3) becomes the following simple form:

𝑓 (𝑤) = 1
(1 − 𝑞)

𝑤−1

(1 − 𝑥1/𝑤) (1 − 𝑥2/𝑤) (1 − 𝑞𝑤/𝑥3)
.

Consider the integration in equation (2.5). Then there are simple poles of type (1, 0) and (0, 1) in the
counter 𝐶𝜌:
◦ type (1,0): 𝑤 = 𝑥1,
◦ type (0,1): 𝑤 = 𝑥2.
Then the residue for each type is as follows:
◦ type (1, 0):

𝐸 (1,0) = Res
�̂�=𝑥1

𝑓 =
1

(1 − 𝑞) (1 − 𝑥21) (1 − 𝑞𝑥13)
,

◦ type (0, 1):

𝐸 (0,1) = Res
�̂�=𝑥2

𝑓 =
1

(1 − 𝑞) (1 − 𝑥12) (1 − 𝑞𝑥23)
.

And there is only one simple pole 𝑤 = 𝑞−1𝑥3 in the counter 𝐶 ′
𝜌, so

◦ type 1:

𝐸 ′
1 = Res

�̂�=𝑞−1𝑥3
𝑓 =

−1
(1 − 𝑞) (1 − 𝑞𝑥13) (1 − 𝑞𝑥23)

.

It is easy to obtain
1

(1 − 𝑞) (1 − 𝑥21) (1 − 𝑞𝑥13)
+ 1
(1 − 𝑞) (1 − 𝑥12) (1 − 𝑞𝑥23)

=
1

(1 − 𝑞) (1 − 𝑞𝑥13) (1 − 𝑞𝑥23)
,

which agrees with equation (2.26).
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Example 2.4 (d=2). For the case l=0, d=2, r=2, n=3, equation (2.3) becomes the following simple form:

𝑓 ( �𝑤) = 1
2(1 − 𝑞)2

2∏
𝑖≠ 𝑗

1 − 𝑤𝑖/𝑤 𝑗

1 − 𝑞𝑤𝑖/𝑤 𝑗

2∏
𝑖=1

𝑤−1
𝑖∏2

𝑗=1 (1 − 𝑥 𝑗/𝑤𝑖) · (1 − 𝑞𝑤𝑖/𝑥3)
.

Consider the integration in equation (2.5). Then there are simple poles of type (2, 0), (1, 1) and (0, 2)
in the counter 𝐶𝜌𝑖 :

◦ type (2,0): {𝑤1, 𝑤2} = {𝑥1, 𝑥1𝑞},
◦ type (1,1): {𝑤1, 𝑤2} = {𝑥1, 𝑥2},
◦ type (0,2): {𝑤1, 𝑤2} = {𝑥2, 𝑥2𝑞}.

Then the residue for each type is as follows:

◦ type (2, 0):

2!𝐸 (2,0) = Res
�̂�2=𝑞𝑥1

Res
�̂�1=𝑥1

𝑓 + Res
�̂�2=𝑥1

Res
�̂�1=𝑞𝑤2

𝑓

=
1

2(1 − 𝑞)2
1

(1 + 𝑞) (1 − 𝑞𝑥13) (1 − 𝑞2𝑥13) (1 − 𝑥21) (1 − 𝑞−1𝑥21)

+ 1
2(1 − 𝑞)2

1
(1 + 𝑞) (1 − 𝑞2𝑥13) (1 − 𝑞𝑥13) (1 − 𝑞−1𝑥21) (1 − 𝑥21)

=
1

(1 − 𝑞)2
1

(1 + 𝑞) (1 − 𝑞2𝑥13) (1 − 𝑞𝑥13) (1 − 𝑞−1𝑥21) (1 − 𝑥21)
,

◦ type (1, 1):

2!𝐸 (1,1) = Res
�̂�2=𝑥2

Res
�̂�1=𝑥1

𝑓 + Res
�̂�2=𝑥1

Res
�̂�1=𝑥2

𝑓

=
1

2(1 − 𝑞)2
1

(1 − 𝑞𝑥12) (1 − 𝑞𝑥21) (1 − 𝑞𝑥13) (1 − 𝑞𝑥23)

+ 1
2(1 − 𝑞)2

1
(1 − 𝑞𝑥21) (1 − 𝑞𝑥12) (1 − 𝑞𝑥23) (1 − 𝑞𝑥13)

=
1

(1 − 𝑞)2
1

(1 − 𝑞𝑥21) (1 − 𝑞𝑥12) (1 − 𝑞𝑥23) (1 − 𝑞𝑥13)
,

◦ type (0, 2):

2!𝐸 (0,2) = Res
�̂�2=𝑞𝑥2

Res
�̂�1=𝑥2

𝑓 + Res
�̂�2=𝑥2

Res
�̂�1=𝑞𝑤2

𝑓

=
1

2(1 − 𝑞)2
1

(1 + 𝑞) (1 − 𝑥12) (1 − 𝑞𝑥23) (1 − 𝑞−1𝑥12) (1 − 𝑞2𝑥23)

+ 1
2(1 − 𝑞)2

1
(1 + 𝑞) (1 − 𝑞−1𝑥12) (1 − 𝑞2𝑥23) (1 − 𝑥12) (1 − 𝑞𝑥23)

=
1

(1 − 𝑞)2
1

(1 + 𝑞) (1 − 𝑞−1𝑥12) (1 − 𝑞2𝑥23) (1 − 𝑥12) (1 − 𝑞𝑥23)
.

Consider the integration in equation (2.23). Then there are simple poles of type 2 in the counter 𝐶 ′
𝜌𝑖 :

◦ type 2: {𝑤1, 𝑤2} = {𝑞−1𝑥3, 𝑞
−2𝑥3}.
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Then the residue for each type 2 is as follows:
◦ type 2:

(−1)22!𝐸 ′
2 = Res

�̂�2=𝑞−2𝑥3
Res

�̂�1=𝑞−1𝑥3
𝑓 + Res

�̂�2=𝑞−1𝑥3
Res

�̂�1=𝑞−1𝑤2
𝑓

=
1

(1 + 𝑞) (1 − 𝑞)2(1 − 𝑞2𝑥13) (1 − 𝑞𝑥13) (1 − 𝑞2𝑥23) (1 − 𝑞𝑥23)
.

By a little computation, we have

𝐸2 = 2!𝐸 (2,0) + 2!𝐸 (1,1) + 2!𝐸 (0,2) = 𝐸 ′
2.

Example 2.5. From Proposition 1.2, if we take 𝑛 = 3, 𝑙 = 0 and 𝐼 = [2], we know that 𝐴𝑑 (�𝑥, [2], 0) =
𝐵𝑑 (�𝑥, [3]\[2], 0). By the following computation, there is a phenomenon that we can extract from
𝐴𝑑 (�𝑥, [2], 0) to get 𝐵𝑑 (�𝑥, [3]\[2], 0) times another factor when 𝑑 = 1, 2: that is, 𝐴𝑑 (�𝑥, [2], 0) =
𝐵𝑑 (�𝑥, [3]\[2], 0) ×𝐺 (�𝑥), 𝑑 = 1, 2. Thus we can conclude that 𝐺 (�𝑥) = 1. Furthermore, this is a general
phenomenon for all d; see the following Corollary 2.1.

By definition, �𝑥 = {𝑥1, 𝑥2, 𝑥3}, so

𝐴𝑑 (�𝑥, [2], 0) =
∑

𝑑1+𝑑2=𝑑

1
(𝑞; 𝑞)𝑑1 (𝑞; 𝑞)𝑑2 (𝑞𝑑12+1𝑥12; 𝑞)𝑑2 (𝑞𝑑21+1𝑥12; 𝑞)𝑑1 (𝑞𝑥13; 𝑞)𝑑1 (𝑞𝑥23; 𝑞)𝑑2

, (2.27)

𝐵𝑑 (�𝑥, [3]\[2], 0) = 1
(𝑞; 𝑞)𝑑 (𝑞𝑥13; 𝑞)𝑑 (𝑞𝑥23; 𝑞)𝑑

. (2.28)

For 𝑑 = 1 – that is, (𝑑1, 𝑑2) = (1, 0) or (0, 1) – we have

𝐴1(�𝑥, [2], 0) =
∑

𝑑1+𝑑2=1

1
(𝑞; 𝑞)𝑑1 (𝑞; 𝑞)𝑑2 (𝑞𝑑12+1𝑥12; 𝑞)𝑑2 (𝑞𝑑21+1𝑥12; 𝑞)𝑑1 (𝑞𝑥13; 𝑞)𝑑1 (𝑞𝑥23; 𝑞)𝑑2

=
∑

𝑑1+𝑑2=1

1
(𝑞; 𝑞)1 (𝑞𝑥13; 𝑞)1(𝑞𝑥23; 𝑞)1

· (𝑞; 𝑞)1 (𝑞𝑥13; 𝑞)1(𝑞𝑥23; 𝑞)1
(𝑞; 𝑞)𝑑1 (𝑞; 𝑞)𝑑2 (𝑞𝑑12+1𝑥12; 𝑞)𝑑2 (𝑞𝑑21+1𝑥12; 𝑞)𝑑1 (𝑞𝑥13; 𝑞)𝑑1 (𝑞𝑥23; 𝑞)𝑑2

=𝐵1(�𝑥, [3]\[2], 0) ×
∑

(𝑑1 ,𝑑2)=(1,0) , (0,1)

(𝑞; 𝑞)1
(𝑞; 𝑞)𝑑1 (𝑞; 𝑞)𝑑2

2∏
𝑖=1

( 2∏
𝑗≠𝑖

(𝑞𝑑𝑖+1𝑥𝑖3; 𝑞)1−𝑑𝑖
(𝑞𝑑𝑖 𝑗+1𝑥𝑖 𝑗 ; 𝑞)𝑑 𝑗

)
=𝐵1(�𝑥, [3]\[2], 0) ×

(
1 − 𝑞𝑥23
1 − 𝑥21

+ 1 − 𝑞𝑥13
1 − 𝑥12

)
=𝐵1(�𝑥, [3]\[2], 0).

For 𝑑 = 2 – that is, (𝑑1, 𝑑2) = (2, 0), (1, 1) or (0, 2) – similarly we have

𝐴2(�𝑥, [2], 0) = 𝐵2(�𝑥, [3]\[2], 0) ×
∑

(𝑑1 ,𝑑2)=(2,0) , (1,1) , (0,2)

(𝑞; 𝑞)2
(𝑞; 𝑞)𝑑1 (𝑞; 𝑞)𝑑2

2∏
𝑖=1

( 2∏
𝑗≠𝑖

(𝑞𝑑𝑖+1𝑥𝑖3; 𝑞)2−𝑑𝑖
(𝑞𝑑𝑖 𝑗+1𝑥𝑖 𝑗 ; 𝑞)𝑑 𝑗

)
= 𝐵2(�𝑥, [3]\[2], 0)

×
(
(1 − 𝑞𝑥13) (1 − 𝑞2𝑥13)
(1 − 𝑞−1𝑥21) (1 − 𝑥21)

+ (1 + 𝑞) (1 − 𝑞2𝑥13) (1 − 𝑞2𝑥23)
(1 − 𝑞𝑥12) (1 − 𝑞𝑥21)

+ (1 − 𝑞𝑥13) (1 − 𝑞2𝑥13)
(1 − 𝑞−1𝑥12) (1 − 𝑥12)

)
= 𝐵2(�𝑥, [3]\[2], 0).

More generally, we have the following corollary.
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Corollary 2.1.

∑
𝑑1+𝑑2=𝑑

(𝑞; 𝑞)𝑑
(𝑞; 𝑞)𝑑1 (𝑞; 𝑞)𝑑2

2∏
𝑗≠𝑖

(𝑞𝑑𝑖+1𝑥𝑖3; 𝑞)𝑑−𝑑𝑖
(𝑞𝑑𝑖−𝑑 𝑗+1𝑥𝑖 𝑗 ; 𝑞)𝑑 𝑗

= 1.

Proof. Set 𝑙 = 0, 𝑟 = 2, 𝑛 = 3 in equation (2.26). We have

𝐴𝑑 (�𝑥, [2], 0) =
∑

𝑑1+𝑑2=𝑑

2∏
𝑖, 𝑗=1

1
(𝑞𝑑𝑖 𝑗+1𝑥𝑖 𝑗 ; 𝑞)𝑑 𝑗

2∏
𝑖=1

1
(𝑞𝑥𝑖3; 𝑞)𝑑𝑖

=
∑

𝑑1+𝑑2=𝑑

2∏
𝑖=1

(
1

(𝑞; 𝑞)𝑑𝑖

2∏
𝑗≠𝑖

1
(𝑞𝑑𝑖 𝑗+1𝑥𝑖 𝑗 ; 𝑞)𝑑 𝑗

· 1
(𝑞𝑥𝑖3; 𝑞)𝑑𝑖

)
=

∑
𝑑1+𝑑2=𝑑

(𝑞𝑑1+1𝑥13; 𝑞)𝑑−𝑑1 (𝑞𝑑2+1𝑥23; 𝑞)𝑑−𝑑2

(𝑞𝑥13; 𝑞)𝑑 (𝑞𝑥23; 𝑞)𝑑

2∏
𝑗≠𝑖

(
1

(𝑞; 𝑞)𝑑𝑖
1

(𝑞𝑑𝑖−𝑑 𝑗+1𝑥𝑖 𝑗 ; 𝑞)𝑑 𝑗

)
=

∑
𝑑1+𝑑2=𝑑

(𝑞; 𝑞)𝑑
(𝑞; 𝑞)𝑑 (𝑞𝑥13; 𝑞)𝑑 (𝑞𝑥23; 𝑞)𝑑

2∏
𝑗≠𝑖

(
(𝑞𝑑𝑖+1𝑥𝑖3; 𝑞)𝑑−𝑑𝑖

(𝑞; 𝑞)𝑑𝑖 (𝑞𝑑𝑖 𝑗+1𝑥𝑖 𝑗 ; 𝑞)𝑑 𝑗

)
=

∑
𝑑1+𝑑2=𝑑

𝐵𝑑 (�𝑥, [𝑛]\[2], 0) · (𝑞; 𝑞)𝑑
(𝑞; 𝑞)𝑑1 (𝑞; 𝑞)𝑑2

2∏
𝑗≠𝑖

(
(𝑞𝑑𝑖+1𝑥𝑖3; 𝑞)𝑑−𝑑𝑖
(𝑞𝑑𝑖 𝑗+1𝑥𝑖 𝑗 ; 𝑞)𝑑 𝑗

)
.

Since we know 𝐴𝑑 (�𝑥, 𝐼, 0) equals 𝐵𝑑 (�𝑥, 𝐼�, 0), we get the conclusion. �

2.3. Boundary cases

For 𝑙 = −|𝐼 |, 𝑙 = 𝑛 − |𝐼 |, equation (2.26) no longer holds, since the residue at infinity is nonzero, but we
can compare the behaviour of some special limit in equation (2.26) to obtain following results.

Corollary 2.2. ◦ For 𝑙 = 𝑛 − |𝐼 |, we have

𝐴𝑑 (�𝑥, 𝐼, 𝑙) =
𝑑∑
𝑠=0

𝐶𝑠 (�𝑥, 𝐼�, 𝑑)𝐵𝑑−𝑠
(
�𝑥, 𝑞, 𝐼�,−𝑙

)
, (2.29)

where 𝐶𝑠 (�𝑥, 𝐼, 𝑑) is defined as

𝐶𝑠 (�𝑥, 𝐼, 𝑑) =
(−1) |𝐼 | ·𝑠

∏
𝑖∈𝐼� 𝑥𝑠𝑖

(𝑞; 𝑞)𝑠𝑞𝑠 (𝑑−𝑠+|𝐼 |)
.

◦ For 𝑙 = −|𝐼 |, we have

𝐵𝑑

(
�𝑥, 𝐼�,−𝑙

)
=

𝑑∑
𝑠=0

𝐷𝑠 (�𝑥, 𝐼, 𝑑)𝐴𝑑−𝑠 (�𝑥, 𝑞, 𝐼, 𝑙), (2.30)

where

𝐷𝑠 (�𝑥, 𝐼, 𝑑) =
(−1) |𝐼 | ·𝑠

∏
𝑖∈𝐼 𝑥−𝑠𝑖

(𝑞; 𝑞)𝑠𝑞𝑠 (𝑑−𝑠)
.
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Proof. Consider [𝑛 + 1], 𝐼 � [𝑛 + 1], {𝑛 + 1} ∉ 𝐼, 𝑙 = 𝑛 − |𝐼 | in equation (2.26). Then we have

∑
| �𝑑𝐼 |=𝑑

(∏
𝑖∈𝐼 𝑥𝑑𝑖𝑖 𝑞

𝑑𝑖 (𝑑𝑖−1)
2

) 𝑙∏
𝑖, 𝑗∈𝐼

(
𝑞𝑑𝑖 𝑗+1𝑥𝑖 𝑗 ; 𝑞

)
𝑑 𝑗

∏
𝑖∈𝐼

∏
𝑗∈𝐼� (𝑞𝑥𝑖 𝑗 ; 𝑞)𝑑𝑖

(2.31)

=
∑

| �𝑑
𝐼�

|=𝑑

(∏
𝑖∈𝐼� 𝑥−𝑑𝑖𝑖 𝑞

𝑑𝑖 (𝑑𝑖+1)
2

)−𝑙∏
𝑖, 𝑗∈𝐼�

(
𝑞𝑑𝑖 𝑗+1𝑥 𝑗𝑖; 𝑞

)
𝑑 𝑗

∏
𝑖∈𝐼�

∏
𝑗∈𝐼 (𝑞𝑥 𝑗𝑖; 𝑞)𝑑𝑖

. (2.32)

It is easy to see that taking lim𝑥𝑛+1→∞ in equation (2.31), we obtain

lim
𝑥𝑛+1→∞

(2.31) = 𝐴𝑑 (�𝑥, 𝐼, 𝑙), for 𝑙 = 𝑛 − |𝐼 |.

Now let’s take limit lim𝑥𝑛+1→∞ in equation (2.32):

∑
| �𝑑

𝐼�
|=𝑑

(∏
𝑖∈𝐼� 𝑥−𝑑𝑖𝑖 𝑞

𝑑𝑖 (𝑑𝑖+1)
2

)−𝑙∏
𝑖, 𝑗∈𝐼�

(
𝑞𝑑𝑖 𝑗+1𝑥 𝑗𝑖; 𝑞

)
𝑑 𝑗

∏
𝑖∈𝐼�

∏
𝑗∈𝐼 (𝑞𝑥 𝑗𝑖; 𝑞)𝑑𝑖

=
∑

| �𝑑
𝐼�

|=𝑑

1
(𝑞; 𝑞)𝑑𝑛+1

· 1∏
𝑗∈𝐼 (𝑞𝑥 𝑗 ,𝑛+1; 𝑞)𝑑𝑛+1

· 1∏
𝑗∈{[𝑛]\𝐼 } (𝑞𝑑𝑛+1−𝑑 𝑗+1𝑥 𝑗 ,𝑛+1; 𝑞)𝑑 𝑗

(2.33)

×
(𝑥𝑑𝑛+1

𝑛+1 𝑞−
𝑑𝑛+1 (𝑑𝑛+1+1)

2 )𝑙∏
𝑖∈{[𝑛]\𝐼 } (𝑞𝑑𝑖−𝑑𝑛+1+1𝑥𝑛+1,𝑖; 𝑞)𝑑𝑛+1

(2.34)

×
∏

𝑖∈{[𝑛]\𝐼 }

��� 1∏
𝑗∈{[𝑛]\𝐼 } (𝑞𝑑𝑖−𝑑 𝑗+1𝑥 𝑗𝑖; 𝑞)𝑑 𝑗

·
(𝑥𝑑𝑖𝑖 𝑞

−𝑑𝑖 (𝑑𝑖+1)
2 )𝑙∏

𝑗∈𝐼 (𝑞𝑥 𝑗𝑖; 𝑞)𝑑𝑖
���.

The limits of the last two terms in equation (2.33) equal 1, and by a little computation, we obtain that
equation (2.34) equals

(−1)𝑑𝑛+1 (𝑛−𝑟 ) · 𝑞−(
∑

𝑖∈{[𝑛]\𝐼 } 𝑑𝑖 )𝑑𝑛+1−(𝑛−𝑟 )𝑑𝑛+1
∏

𝑖∈{[𝑛]\𝐼 }
𝑥𝑑𝑛+1
𝑖 .

Then we obtain

lim
𝑥𝑛+1→∞

∑
| �𝑑

𝐼�
|=𝑑

∏
𝑖∈𝐼�

��� 1∏
𝑗∈𝐼� (𝑞𝑑𝑖−𝑑 𝑗+1𝑥 𝑗𝑖; 𝑞)𝑑 𝑗

·
(𝑥𝑑𝑖𝑖 𝑞

−𝑑𝑖 (𝑑𝑖+1)
2 )𝑙∏

𝑗∈𝐼 (𝑞𝑥 𝑗𝑖; 𝑞)𝑑𝑖
���

=
∑

| �𝑑
𝐼�

|=𝑑

1
(𝑞; 𝑞)𝑑𝑛+1

· (−1)𝑑𝑛+1 (𝑛−|𝐼 |)

𝑞 (
∑

𝑖∈{[𝑛]\𝐼 } 𝑑𝑖)𝑑𝑛+1+(𝑛−|𝐼 |)𝑑𝑛+1
· 1∏

𝑖∈{[𝑛]\𝐼 } 𝑥
−𝑑𝑛+1
𝑖

×
∏

𝑖∈{[𝑛]\𝐼 }

��� 1∏
𝑗∈{[𝑛]\𝐼 } (𝑞𝑑𝑖−𝑑 𝑗+1𝑥 𝑗𝑖; 𝑞)𝑑 𝑗

·
(𝑥𝑑𝑖𝑖 𝑞

−𝑑𝑖 (𝑑𝑖+1)
2 )𝑙∏

𝑗∈𝐼 (𝑞𝑥 𝑗𝑖; 𝑞)𝑑𝑖
���

=
𝑑∑
𝛼=0

1
(𝑞; 𝑞)𝑑−𝛼

· (−1) (𝑑−𝛼) (𝑛−|𝐼 |)

𝑞 (𝑛−|𝐼 |+𝛼) (𝑑−𝛼) · 1∏𝑛
𝑖=𝑟+1 𝑥−(𝑑−𝛼)𝑖

· 𝐵𝛼

(
�𝑥, 𝐼�,−𝑙

)
.

We obtain the conclusion.
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Similarly, consider 𝐴𝑑
(
�𝑥 ∪ 𝑥𝑛+1, 𝐼, 𝑙

)
and 𝐵𝑑

(
�𝑥 ∪ 𝑥𝑛+1, 𝐼

�,−𝑙
)
. For 𝐼 = 𝐼 ∪ {𝑛 + 1} and 𝑙 = −|𝐼 |,

from equation (2.26), we have

∑
| �𝑑𝐼 |=𝑑

∏
𝑖∈𝐼

��� 1∏
𝑗∈𝐼 (𝑞𝑑𝑖−𝑑 𝑗+1𝑥𝑖 𝑗 ; 𝑞)𝑑 𝑗

·
(𝑥𝑑𝑖𝑖 𝑞

𝑑𝑖 (𝑑𝑖−1)
2 )𝑙∏

𝑗∈𝐼� (𝑞𝑥𝑖 𝑗 ; 𝑞)𝑑𝑖
��� (2.35)

=
∑

| �𝑑
𝐼�

|=𝑑

∏
𝑖∈𝐼�

��� 1∏
𝑗∈𝐼� (𝑞𝑑𝑖−𝑑 𝑗+1𝑥 𝑗𝑖; 𝑞)𝑑 𝑗

·
(𝑥𝑑𝑖𝑖 𝑞

−𝑑𝑖 (𝑑𝑖+1)
2 )−𝑙∏

𝑗∈𝐼 (𝑞𝑥 𝑗𝑖; 𝑞)𝑑𝑖
���. (2.36)

It is easy to see that after taking lim𝑥𝑛+1→0 in equation (2.36), we obtain

𝐵𝑑

(
�𝑥, 𝐼�, 𝑙

)
, for 𝑙 = −|𝐼 |.

First, rewrite equation (2.35) as follows:

∑
| �𝑑𝐼 |=𝑑

∏
𝑖∈𝐼

��� 1∏
𝑗∈𝐼 (𝑞𝑑𝑖−𝑑 𝑗+1𝑥𝑖 𝑗 ; 𝑞)𝑑 𝑗

·
(𝑥𝑑𝑖𝑖 𝑞

𝑑𝑖 (𝑑𝑖−1)
2 )−|𝐼 |∏

𝑗∈𝐼� (𝑞𝑥𝑖 𝑗 ; 𝑞)𝑑𝑖
���

=
∑

| �𝑑𝐼 |=𝑑

(
∏

𝑖∈𝐼 𝑥𝑑𝑖𝑖 𝑞
𝑑𝑖 (𝑑𝑖−1)

2 )−|𝐼 |∏
𝑖, 𝑗∈𝐼 (𝑞𝑑𝑖 𝑗+1𝑥𝑖 𝑗 ; 𝑞)𝑑 𝑗

∏
𝑖∈𝐼

∏
𝑗∈{[𝑛]\𝐼 } (𝑞𝑥𝑖 𝑗 ; 𝑞)𝑑𝑖

×
(𝑥𝑑𝑛+1

𝑛+1 𝑞
𝑑𝑛+1 (𝑑𝑛+1−1)

2 )−|𝐼 |

(𝑞; 𝑞)𝑑𝑛+1

∏
𝑖∈𝐼 (𝑞𝑑𝑖−𝑑𝑛+1+1𝑥𝑖,𝑛+1; 𝑞)𝑑𝑛+1

∏
𝑗∈𝐼 (𝑞𝑑𝑛+1−𝑑 𝑗+1𝑥𝑛+1, 𝑗 ; 𝑞)𝑑 𝑗

∏
𝑗∈{[𝑛]\𝐼 } (𝑞𝑥𝑛+1, 𝑗 ; 𝑞)𝑑𝑛+1

.

Now let’s take limit lim𝑥𝑛+1→0 in the above formula. We obtain

lim
𝑥𝑛+1→0

∑
| �𝑑𝐼 |=𝑑

∏
𝑖∈𝐼

��� 1∏
𝑗∈𝐼 (𝑞𝑑𝑖−𝑑 𝑗+1𝑥𝑖 𝑗 ; 𝑞)𝑑 𝑗

·
(𝑥𝑑𝑖𝑖 𝑞

𝑑𝑖 (𝑑𝑖−1)
2 )−|𝐼 |∏

𝑗∈𝐼� (𝑞𝑥𝑖 𝑗 ; 𝑞)𝑑𝑖
���

=
∑

| �𝑑𝐼 |=𝑑

(
∏

𝑖∈𝐼 𝑥𝑑𝑖𝑖 𝑞
𝑑𝑖 (𝑑𝑖−1)

2 )−|𝐼 |∏
𝑖, 𝑗∈𝐼 (𝑞𝑑𝑖 𝑗+1𝑥𝑖 𝑗 ; 𝑞)𝑑 𝑗

∏
𝑖∈𝐼

∏
𝑗∈{[𝑛]\𝐼 } (𝑞𝑥𝑖 𝑗 ; 𝑞)𝑑𝑖

× (−1) |𝐼 | ·𝑑𝑛+1

(𝑞; 𝑞)𝑑𝑛+1𝑞
𝑑𝑛+1 (𝑑−𝑑𝑛+1)

∏
𝑖∈𝐼 𝑥𝑑𝑛+1

𝑖

=
𝑑∑
𝑠=0

(−1) |𝐼 | ·𝑠

(𝑞; 𝑞)𝑠𝑞𝑠 (𝑑−𝑠)
∏

𝑖∈𝐼 𝑥𝑠𝑖
× 𝐴𝑑−𝑠 (�𝑥, 𝐼,−|𝐼 |).

�

3. K-theoretic I-function with level structure

3.1. Definitions

Let X be a GIT quotient 𝑉//𝜃𝐺, where V is a vector space and 𝐺 is a connected reductive com-
plex Lie group. Let Q𝜖

𝑔,𝑛 (𝑋, 𝛽) be the moduli stack of 𝜖-stable quasimaps [3] parametrising data
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(𝐶, 𝑝1,. . . , 𝑝𝑛,P, 𝑠), where C is an n-pointed genus g Riemann surface, P is a principal G-bundle over
C, s is a section and 𝛽 ∈ Hom(Pic𝐺 (𝑉)). There are natural maps

𝑒𝑣𝑖 : Q𝜖
𝑔,𝑛 (𝑋, 𝑑) → 𝑋, 𝑖 = 1, . . . , 𝑛

given by evaluation at the ith marked point: that is,

𝑒𝑣𝑖 (𝐶, 𝑝1, . . . , 𝑝𝑛,P, 𝑠) = 𝑠(𝑝𝑖) ∈ 𝑋.

There are line bundles

𝐿𝑖 → Q𝜖
𝑔,𝑛 (𝑋, 𝑑), 𝑖 = 1, . . . , 𝑛,

which are called universal cotangent line bundles. The fibre of 𝐿𝑖 over the point (𝐶 𝜖 , 𝑝1,. . . , 𝑝𝑛,P, 𝑠)
is the cotangent line to C at the point 𝑝𝑖 .

The permutation-equivariant K-theoretic quasimap invariants with level structures [14] are holomor-
phic Euler characteristics over Q𝜖

𝑔,𝑛 (𝑋, 𝑑) of the sheaves

〈t(𝐿), . . . , t(𝐿)〉𝑅,𝑙,𝑆𝑛 , 𝜖𝑔,𝑛,𝑑 := 𝜒

(
Q𝜖
𝑔,𝑛 (𝑋, 𝑑);O𝑣𝑖𝑟𝑡

𝑔,𝑛,𝑑 ⊗
∏
𝑚,𝑖

𝐿𝑘
𝑖 𝑡𝑘,𝑖ev∗𝑖 (𝜙𝑖) ⊗ D𝑅,𝑙

)
, (3.1)

where O𝑣𝑖𝑟
𝑔,𝑛,𝑑 is called the virtual structure sheaf [9]. t(𝑞) is defined as follows:

t(𝑞) =
∑
𝑚∈Z

𝑡𝑚𝑞𝑚, 𝑡𝑚 =
∑
𝛼

𝑡𝑚,𝛼𝜙𝛼,

{𝜙𝛼} is a basis in 𝐾0(𝑋) ⊗𝑄 and 𝑡𝑘,𝛼 are formal variables. The last term in equation (3.1) is the level l
determinant line bundle over Q𝜖

𝑔,𝑛 (𝑋, 𝑑) defined as

D𝑅,𝑙 := (det𝑅•𝜋∗(P ×𝐺 𝑅))−𝑙 ,

where 𝜋 is the forgetful map from the universal curve: that is,

𝜋 : C → Q𝜖
𝑔,𝑛 (𝑋, 𝑑).

The bundle P is the universal principal bundle over the universal curve, and R is a G-representation.
Similarly, we can define a quasimap graph space QG𝜖

0,𝑛 (𝑋, 𝛽), which parametrises quasimaps with
parametrised component P1, so there is a natural C∗-action on the quasimap graph space. It is denoted
by F0,𝛽 , the special fixed loci in (QG𝜖

0,𝑛 (𝑋, 𝛽))C∗ , and denoted by q, the weight of the cotangent bundle
at 0 := [1, 0] of P1; for details, see [3].

Definition 3.1 ([14].). The permutation-equivariant K-theoretic J 𝑅,𝑙, 𝜖 -function of 𝑉//𝐺 of level l is
defined as

J𝑅,𝑙, 𝜖
𝑆∞

(t(𝑞), 𝑄) :=
∑

𝑘≥0,𝛽∈Eff (𝑉 ,G, 𝜃)
𝑄𝛽 (𝑒𝑣•)∗ [ResF0,𝛽 (QG𝜖

0,𝑛 (𝑉//G, 𝛽)0)vir ⊗ D𝑅,𝑙 ⊗𝑛
𝑖=1 t(𝐿𝑖)]𝑆𝑛

:= 1 + t(𝑞)
1 − 𝑞

+
∑
𝑎

∑
𝛽≠0

𝑄𝛽𝜒

(
F0,𝛽 ,Ovir

F0,𝛽
⊗ 𝑒𝑣∗•(𝜙𝑎) ⊗

(
trC∗ D𝑅,𝑙

𝜆C
∗

−1𝑁
∨
F0,𝛽

))
𝜙𝑎

+
∑
𝑎

∑
𝑛≥1𝑜𝑟𝛽 (𝐿𝜃 )≥

1
𝜖

(𝑛,𝛽)≠(1,0)

𝑄𝛽

〈
𝜙𝑎

(1 − 𝑞) (1 − 𝑞𝐿) , t(𝐿), . . . , t(𝐿)
〉𝑅,𝑙, 𝜖 ,𝑆𝑛

0,𝑛+1,𝛽
𝜙𝑎,
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where {𝜙𝛼} is a basis of 𝐾0(𝑉//𝐺) and {𝜙𝛼} is the dual basis with respect to twisted pairing ( , )𝑅,𝑙:
that is,

(𝑢, 𝑣)𝑅,𝑙 := 𝜒
(
𝑋, 𝑢 ⊗ 𝑣 ⊗ det−𝑙 (𝑉 𝑠𝑠 ×𝐺 𝑅)

)
.

Definition 3.2 ([14].). When taking 𝜖 small enough, denoted by 𝜖 = 0+, we call J𝑅,𝑙,0+ (0) the small
I-function of level l: that is,

𝐼𝑅,𝑙 (𝑞;𝑄) := J𝑅,𝑙,0+
𝑆∞

(0, 𝑄) = 1 +
∑
𝛽≥0

𝑄𝛽 (𝑒𝑣•)∗

(
Ovir

F0,𝛽
⊗

(
trC∗ D𝑅,𝑙

𝜆C
∗

−1𝑁
∨
F0,𝛽

))
· det𝑙 (𝑉 𝑠𝑠 ×𝐺 𝑅).

3.2. Level correspondence in Grassmann duality

Let V be 𝑟 × 𝑛 matrixes 𝑀𝑟×𝑛, G be the general linear group 𝐺𝐿𝑟 and 𝜃 be the det : 𝐺𝐿𝑟 → C∗. Then
we have

𝑉//det𝐺 = 𝑀𝑟×𝑛//det𝐺 = 𝐺𝑟 (𝑟, 𝑛).

There is a natural 𝑇 = (C∗)𝑛-action on C𝑛 with weights C𝑛 = Λ1 + · · · +Λ𝑛. Then deducing an action
on 𝐺𝑟 (𝑟, 𝑛) by 𝑇 · 𝐴 = 𝐴𝑇 , 𝐴 ∈ 𝑀𝑟×𝑛. Using general abelian/nonabelian correspondence in [20] for
𝐺𝑟 (𝑟, 𝑛), we have

𝐼𝐺𝑟 (𝑟 ,𝑛)
𝑇 =1 +

∑
𝑑

∑
| �𝑑 |=𝑑

∑
𝜔∈𝑆𝑟 /𝑆𝑟1×···×𝑆𝑟ℎ+1

𝜔

⎡⎢⎢⎢⎢⎢⎢⎣
∏

1� 𝑗<𝑖�𝑟
∏

1�𝑚�𝑑𝑖−𝑑 𝑗

(
1 − 𝐿𝑖𝐿

−1
𝑗 𝑞𝑚

)
∏

1�𝑖< 𝑗�𝑟 𝑗
1�𝑚�𝑑𝑗−𝑑𝑖−1

(
1 − 𝐿𝑖𝐿

−1
𝑗 𝑞−𝑚

) ∏
1�𝑖< 𝑗�𝑟

(
1 − 𝐿−1

𝑖 𝐿 𝑗
) 𝑟∏
𝑖=1

𝑑𝑖∏
𝑘=1

𝑛∏
𝑚=1

1
(1 − 𝑞𝑘𝐿𝑖Λ−1

𝑚 )

⎤⎥⎥⎥⎥⎥⎥⎦𝑄
𝑑 ,

where �𝑑 = {𝑑1 ≤ 𝑑2 ≤ · · · ≤ 𝑑𝑟 } such that 𝑑1 = 𝑑2 = · · · = 𝑑𝑟1 < 𝑑𝑟1+1 = · · · = 𝑑𝑟1+𝑟2 < 𝑑𝑟1+···+𝑟ℎ · · · =
𝑑𝑟1+···+𝑟ℎ+𝑟ℎ+1 : that is, 𝑟1 + · · · + 𝑟ℎ+1 = 𝑟 . 𝜔 is the Weyl group acting on 𝐿𝑖 to change the index,
{𝐿𝑖}𝑟𝑖=1 come from the filtration of tautological bundle S𝑟 of 𝐺𝑟 (𝑟, 𝑛). We could rewrite the equivariant
I-function in the following way

𝐼𝐺𝑟 (𝑟 ,𝑛)
𝑇 =1 +

∑
𝑑

∑
| �𝑑 |=𝑑

∑
𝜔∈𝑆𝑟 /𝑆𝑟1×···×𝑆𝑟ℎ+1

𝜔

⎡⎢⎢⎢⎢⎣
𝑟∏

𝑖, 𝑗=1

∏𝑑𝑖−𝑑 𝑗

𝑘=−∞(1 − 𝑞𝑘𝐿𝑖𝐿
−1
𝑗 )∏0

𝑘=−∞(1 − 𝑞𝑘𝐿𝑖𝐿
−1
𝑗 )

𝑟∏
𝑖=1

𝑑𝑖∏
𝑘=1

𝑛∏
𝑚=1

1
(1 − 𝑞𝑘𝐿𝑖Λ−1

𝑚 )

⎤⎥⎥⎥⎥⎦𝑄𝑑 .

(3.2)

Suppose 𝜔 changes 𝑖1 to 𝑖2 and 𝑗1 to 𝑗2. Then one of the factors changes from∏𝑑𝑖1−𝑑 𝑗1
𝑘=−∞ (1 − 𝑞𝑘𝐿𝑖1 𝐿

−1
𝑗1
)∏0

𝑘=−∞(1 − 𝑞𝑘𝐿𝑖1 𝐿
−1
𝑗1
)

·
∏𝑑𝑖2−𝑑 𝑗2

𝑘=−∞ (1 − 𝑞𝑘𝐿𝑖2 𝐿
−1
𝑗2
)∏0

𝑘=−∞(1 − 𝑞𝑘𝐿𝑖2 𝐿
−1
𝑗2
)

, (3.3)

to ∏𝑑𝑖1−𝑑 𝑗1
𝑘=−∞ (1 − 𝑞𝑘𝐿𝑖2 𝐿

−1
𝑗2
)∏0

𝑘=−∞(1 − 𝑞𝑘𝐿𝑖2 𝐿
−1
𝑗2
)

·
∏𝑑𝑖2−𝑑 𝑗2

𝑘=−∞ (1 − 𝑞𝑘𝐿𝑖1 𝐿
−1
𝑗1
)∏0

𝑘=−∞(1 − 𝑞𝑘𝐿𝑖1 𝐿
−1
𝑗1
)

. (3.4)

https://doi.org/10.1017/fms.2022.28 Published online by Cambridge University Press

https://doi.org/10.1017/fms.2022.28


Forum of Mathematics, Sigma 19

Since 𝜔 ∈ 𝑆𝑟/𝑆𝑟1 × · · · × 𝑆𝑟ℎ+1 , we have 𝑑𝑖1 ≠ 𝑑𝑖2 , 𝑑 𝑗1 ≠ 𝑑 𝑗2 . In equation (3.2), we have an order
of partition �𝑑; one can see from equation (3.3) to equation (3.4) that 𝜔-action is just {𝑑𝑖} rearranged
without changing the form. There is a unique 𝜔 ∈ 𝑆𝑟/

(
𝑆𝑟1 × . . . × 𝑆𝑟ℎ+1

)
whose inverse 𝜔−1 arranges

(𝑑1, . . . , 𝑑𝑟 ) in nondecreasing order 𝑑1 ≤ 𝑑2 ≤ . . . ≤ 𝑑𝑟 . Then we have

𝐼𝐺𝑟 (𝑟 ,𝑛)
𝑇 =

∑
𝑑

∑
𝑑1+𝑑2+···+𝑑𝑟=𝑑

𝑄𝑑
𝑟∏

𝑖, 𝑗=1

∏𝑑𝑖−𝑑 𝑗

𝑘=−∞(1 − 𝑞𝑘𝐿𝑖𝐿
−1
𝑗 )∏0

𝑘=−∞(1 − 𝑞𝑘𝐿𝑖𝐿
−1
𝑗 )

𝑟∏
𝑖=1

𝑑𝑖∏
𝑘=1

𝑛∏
𝑚=1

1
(1 − 𝑞𝑘𝐿𝑖Λ−1

𝑚 )
.

Note that in [15], the author claimed a version of the mirror theorem with a different I-function.
If we consider the standard representation of 𝐺𝐿𝑟 , denoted by 𝐸𝑟 , then the associated bundle

P ×𝐺 𝑅 |𝐹0,𝛽 can be identified with ⊕𝑟
𝑖=1𝐿𝑖 ⊗ OP1 (−𝑑𝑖)

D𝐸𝑟 ,𝑙 |𝐹0,𝛽 = det−𝑙𝑅•𝜋∗(⊕𝑟
𝑖=1𝐿𝑖 ⊗ OP1 (−𝑑𝑖))

= det−𝑙 (⊕𝑟
𝑖=1 [𝐿𝑖 ⊗ 𝑅1𝜋∗(OP1 (−𝑑𝑖))]−1)

= ⊗𝑟
𝑖=1

(
𝐿𝑑𝑖−1
𝑖 · 𝑞

𝑑𝑖 (𝑑𝑖−1)
2

) 𝑙
.

Similarly, if we take a dual standard representation, denoted by 𝐸∨
𝑟 , then

D𝐸∨
𝑟 ,𝑙 |𝐹0,𝛽 = det−𝑙 (⊕𝑟

𝑖=1𝐿
−1
𝑖 ⊗ 𝑅0𝜋∗(OP1 (𝑑𝑖)))

= ⊗𝑟
𝑖=1

(
𝐿𝑑𝑖+1
𝑖 · 𝑞

𝑑𝑖 (𝑑𝑖+1)
2

) 𝑙
.

So the equivariant I-function of 𝐺𝑟 (𝑟, 𝑛) with a level structure is as follows:

𝐼𝐺𝑟 (𝑟 ,𝑛) ,𝐸𝑟 ,𝑙
𝑇 ,𝑑 =

∑
𝑑1+𝑑2+···+𝑑𝑟=𝑑

𝑄𝑑
𝑟∏

𝑖, 𝑗=1

∏𝑑𝑖−𝑑 𝑗

𝑘=−∞(1 − 𝑞𝑘𝐿𝑖𝐿
−1
𝑗 )∏0

𝑘=−∞(1 − 𝑞𝑘𝐿𝑖𝐿
−1
𝑗 )

𝑟∏
𝑖=1

(𝐿𝑑𝑖
𝑖 𝑞

𝑑𝑖 (𝑑𝑖−1)
2 )𝑙∏𝑑𝑖

𝑘=1
∏𝑛

𝑚=1(1 − 𝑞𝑘𝐿𝑖Λ−1
𝑚 )

, (3.5)

and

𝐼
𝐺𝑟 (𝑟 ,𝑛) ,𝐸∨

𝑟 ,𝑙
𝑇 ,𝑑 =

∑
𝑑1+𝑑2+···+𝑑𝑟=𝑑

𝑄𝑑
𝑟∏

𝑖, 𝑗=1

∏𝑑𝑖−𝑑 𝑗

𝑘=−∞(1 − 𝑞𝑘𝐿𝑖𝐿
−1
𝑗 )∏0

𝑘=−∞(1 − 𝑞𝑘𝐿𝑖𝐿
−1
𝑗 )

𝑟∏
𝑖=1

(𝐿𝑑𝑖
𝑖 𝑞

𝑑𝑖 (𝑑𝑖+1)
2 )𝑙∏𝑑𝑖

𝑘=1
∏𝑛

𝑚=1 (1 − 𝑞𝑘𝐿𝑖Λ−1
𝑚 )

. (3.6)

Remark. For the dual Grassmannian 𝐺𝑟 (𝑛 − 𝑟, 𝑛), the (C∗)𝑛-action on C𝑛 is the dual action, so the
weights are C𝑛 = Λ−1

1 + · · · + Λ−1
𝑛 . The deduced action on 𝐺𝑟 (𝑛 − 𝑟, 𝑛) is as follows: 𝑇 · 𝐵 = 𝐵𝑇 ,

𝐵 ∈ 𝑀𝑛−𝑟×𝑛. So the corresponding equivariant I-function is as follows

𝐼𝐺𝑟 (𝑛−𝑟 ,𝑛) ,𝐸𝑛−𝑟 ,𝑙
𝑇 ,𝑑 =

∑
𝑑1+𝑑2+···+𝑑𝑛−𝑟=𝑑

𝑄𝑑
𝑛−𝑟∏
𝑖, 𝑗=1

∏𝑑𝑖−𝑑 𝑗

𝑘=−∞(1 − 𝑞𝑘 �̃�𝑖 �̃�
−1
𝑗 )∏0

𝑘=−∞(1 − 𝑞𝑘 �̃�𝑖 �̃�
−1
𝑗 )

𝑛−𝑟∏
𝑖=1

( �̃�𝑑𝑖
𝑖 𝑞

𝑑𝑖 (𝑑𝑖−1)
2 )𝑙∏𝑑𝑖

𝑘=1
∏𝑛

𝑚=1 (1 − 𝑞𝑘 �̃�𝑖Λ𝑚)

and

𝐼
𝐺𝑟 (𝑛−𝑟 ,𝑛) ,𝐸∨

𝑛−𝑟 ,𝑙
𝑇 ,𝑑 =

∑
𝑑1+𝑑2+···+𝑑𝑛−𝑟=𝑑

𝑄𝑑
𝑛−𝑟∏
𝑖, 𝑗=1

∏𝑑𝑖−𝑑 𝑗

𝑘=−∞(1 − 𝑞𝑘 �̃�𝑖 �̃�
−1
𝑗 )∏0

𝑘=−∞(1 − 𝑞𝑘 �̃�𝑖 �̃�
−1
𝑗 )

𝑛−𝑟∏
𝑖=1

( �̃�𝑑𝑖
𝑖 𝑞

𝑑𝑖 (𝑑𝑖+1)
2 )𝑙∏𝑑𝑖

𝑘=1
∏𝑛

𝑚=1(1 − 𝑞𝑘 �̃�𝑖Λ𝑚)
,

where �̃�𝑖 for 𝑖 = 1, . . . , 𝑛 − 𝑟 come from the filtration of tautological bundle S𝑛−𝑟 over 𝐺𝑟 (𝑛 − 𝑟, 𝑛).
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Let T act on the Grassmannian 𝐺𝑟 (𝑟, 𝑛) as before. Then there are
(𝑛
𝑟

)
fixed points: that is, denoted

by {𝑒1, . . . , 𝑒𝑛}, the basis of C𝑛. Then the subspace V spanned by {𝑒𝑖1 , . . . , 𝑒𝑖𝑟 } is a T-fixed point for
{𝑖1, · · · , 𝑖𝑟 } ⊂ [𝑛]. Let

𝔩∗ : 𝐾𝑇

(
𝐺𝑟 (𝑟, 𝑛)𝑇

)
→ 𝐾𝑇 (𝐺𝑟 (𝑟, 𝑛))

be the map induced from the close embedding 𝔩 : 𝐺𝑟 (𝑟, 𝑛)𝑇 ↩→ 𝐺𝑟 (𝑟, 𝑛). The kernel and cokernel are
𝐾𝑇 (𝑝𝑡)-modules and have some support in the torus T. From a very general localisation theorem of
Thomason [16], we know

supp Coker 𝔩∗ ⊂
⋃
𝜇

{𝔱𝜇 = 1},

where the union is over finitely many nontrivial characters 𝜇. The same is true of ker 𝔩∗, but since

𝐾𝑇

(
𝐺𝑟 (𝑟, 𝑛)𝑇

)
= 𝐾 (𝐺𝑟 (𝑟, 𝑛)) ⊗Z 𝐾𝑇 (𝑝𝑡)

has no such torsion, this forces ker 𝔩∗ = 0, so after inverting finitely many coefficients of the form 𝑡𝜇 −1,
we obtain an isomorphism: that is,

𝐾 𝑙𝑜𝑐
𝑇 (𝐺𝑟 (𝑟, 𝑛)𝑇 ) � 𝐾 𝑙𝑜𝑐

𝑇 (𝐺𝑟 (𝑟, 𝑛)).

We denote 𝐾 𝑙𝑜𝑐
𝑇 (−) by

𝐾 𝑙𝑜𝑐
𝑇 (−) = 𝐾𝑇 (−) ⊗𝑅 (𝑇 ) R,

where R � Q(𝑡1, . . . , 𝑡𝑛) and {𝑡𝑖} are the charaters of torus T.
Similarly, 𝑇 = (C∗)𝑛-action on 𝐺𝑟 (𝑛 − 𝑟, 𝑛) also has

( 𝑛
𝑛−𝑟

)
=

(𝑛
𝑟

)
isolated fixed points, which are

indexed by (𝑛 − 𝑟)-element subsets of [𝑛], so identification of 𝐺𝑟 (𝑟, 𝑛)𝑇 with 𝐺𝑟 (𝑛 − 𝑟, 𝑛)𝑇 gives an
R-module isomorphism of 𝐾 𝑙𝑜𝑐

𝑇 (𝐺𝑟 (𝑟, 𝑛)) with 𝐾 𝑙𝑜𝑐
𝑇 (𝐺𝑟 (𝑛 − 𝑟, 𝑛)). Indeed, suppose W is a subspace

of dimension r in a vector space V of dimension n. Then we have a natural short exact sequence

0 → 𝑊 → 𝑉 → 𝑉/𝑊 → 0.

Taking the dual of this short exact sequence yields an inclusion of (𝑉/𝑊)∗ in 𝑉∗ with quotient 𝑊∗

0 → (𝑉/𝑊)∗ → 𝑉∗ → 𝑊∗ → 0,

so 𝜓 : 𝑊 ↦→ (𝑉/𝑊)∗ gives a cannocial equivariant isomorphism 𝐺𝑟 (𝑟,𝑉) � 𝐺𝑟 (𝑛 − 𝑟,𝑉∗), where the
action of𝑇 = (C∗)𝑛 on𝑉∗ is induced from the action of T on V. Thus, 𝜓 gives the canonical identification
of fixed points

𝜓 : 𝐺𝑟 (𝑟, 𝑛)𝑇 −→ 𝐺𝑟 (𝑛 − 𝑟, 𝑛)𝑇 , < 𝑒 𝑗 > 𝑗∈𝐼 ↦−→< 𝑒 𝑗 > 𝑗∈𝐼� , (3.7)

where I is a set of [𝑛] with |𝐼 | = 𝑟 and {𝑒𝑖}𝑛𝑖=1 is the dual basis of {𝑒𝑖}𝑛𝑖=1. Now we can state the following
Level correspondence in Grassmann duality.
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Theorem 3.1 (Level correspondence). For the Grassmannian 𝐺𝑟 (𝑟, 𝑛) and its dual Grassmannian
𝐺𝑟 (𝑛 − 𝑟, 𝑛) with standard 𝑇 = (C∗)𝑛 torus action, let 𝐸𝑟 , 𝐸𝑛−𝑟 be the standard representation of
GL(𝑟,C) and GL(𝑛 − 𝑟,C), respectively. Consider the following equivariant I-function:

𝐼𝐺𝑟 (𝑟 ,𝑛) ,𝐸𝑟 ,𝑙
𝑇 =1 +

∞∑
𝑑=1

𝐼𝐺𝑟 (𝑟 ,𝑛) ,𝐸𝑟 ,𝑙
𝑇 ,𝑑 𝑄𝑑 ,

𝐼
𝐺𝑟 (𝑛−𝑟 ,𝑛) ,𝐸∨

𝑛−𝑟 ,−𝑙
𝑇 =1 +

∞∑
𝑑=1

𝐼
𝐺𝑟 (𝑛−𝑟 ,𝑛) ,𝐸∨

𝑛−𝑟 ,−𝑙
𝑇 ,𝑑 𝑄𝑑 .

Then we have the following relations between 𝐼𝐺𝑟 (𝑟 ,𝑛) ,𝐸𝑟 ,𝑙
𝑇 ,𝑑 and 𝐼

𝐺𝑟 (𝑛−𝑟 ,𝑛) ,𝐸∨
𝑛−𝑟 ,−𝑙

𝑇 ,𝑑 in 𝐾 𝑙𝑜𝑐
𝑇 (𝐺𝑟 (𝑟, 𝑛)) ⊗

C(𝑞) (which equals 𝐾 𝑙𝑜𝑐
𝑇 (𝐺𝑟 (𝑛 − 𝑟, 𝑛)) ⊗ C(𝑞)):

◦ For 1 − 𝑟 ≤ 𝑙 ≤ 𝑛 − 𝑟 − 1, we have

𝐼𝐺𝑟 (𝑟 ,𝑛) ,𝐸𝑟 ,𝑙
𝑇 ,𝑑 = 𝐼

𝐺𝑟 (𝑛−𝑟 ,𝑛) ,𝐸∨
𝑛−𝑟 ,−𝑙

𝑇 ,𝑑 .

◦ For 𝑙 = 𝑛 − 𝑟 , we have

𝐼𝐺𝑟 (𝑟 ,𝑛) ,𝐸𝑟 ,𝑙
𝑇 ,𝑑 =

𝑑∑
𝑠=0

𝐶𝑠 (𝑛 − 𝑟, 𝑑)𝐼𝐺𝑟 (𝑛−𝑟 ,𝑛) ,𝐸∨
𝑛−𝑟 ,−𝑙

𝑇 ,𝑑−𝑠 ,

where 𝐶𝑠 (𝑘, 𝑑) is defined as

𝐶𝑠 (𝑘, 𝑑) =
(−1)𝑘𝑠

(𝑞; 𝑞)𝑠𝑞𝑠 (𝑑−𝑠+𝑘)
(∧𝑡𝑜𝑝 S𝑛−𝑟

)𝑠 ,
and S𝑛−𝑟 is the tautological bundle of 𝐺𝑟 (𝑛 − 𝑟, 𝑛).

◦ For 𝑙 = −𝑟 , we have

𝐼
𝐺𝑟 (𝑛−𝑟 ,𝑛) ,𝐸∨

𝑛−𝑟 ,−𝑙
𝑇 ,𝑑 =

𝑑∑
𝑠=0

𝐷𝑠 (𝑟, 𝑑)𝐼𝐺𝑟 (𝑟 ,𝑛) ,𝐸𝑟 ,𝑙
𝑇 ,𝑑−𝑠 ,

where

𝐷𝑠 (𝑟, 𝑑) =
(−1)𝑟𝑠

(𝑞; 𝑞)𝑠𝑞𝑠 (𝑑−𝑠)
(∧𝑡𝑜𝑝 S𝑟

)𝑠 ,
and S𝑟 is the tautological bundle of 𝐺𝑟 (𝑟, 𝑛).

Proof. From the discussion above, we prove the above identity by comparing 𝑖∗𝐼 𝐼
𝐸𝑟 ,𝑙
𝑇 and 𝑖∗

𝐼�
𝐼
𝐸∨
𝑛−𝑟 ,−𝑙

𝑇 ;
here 𝑖𝐼 and 𝑖𝐼� are inclusion maps from the corresponding fixed points: that is, we compare two I-
functions by restricting them to corresponding fixed points. Let 𝐼 = ( 𝑗1, · · · , 𝑗𝑟 ) be the subset of
[𝑛] = {1, . . . , 𝑛}, with |𝐼 | = 𝑟 . Denote 𝑣1, 𝑣2, · · · , 𝑣𝑟 , the fibre coordinates in the fibre of S at fixed point
< 𝑒 𝑗 > 𝑗∈𝐼 , ∀(𝑡1, · · · , 𝑡𝑛) ∈ (C∗)𝑛, with weights C𝑛 = Λ1 + · · · + Λ𝑛 and

(𝑡1, · · · , 𝑡𝑛) · (𝑒 𝑗1 , · · · , 𝑒 𝑗𝑟 ; 𝑣1, 𝑣2, · · · , 𝑣𝑟 ) = (𝑡 𝑗1𝑒 𝑗1 , · · · , 𝑡 𝑗𝑟 𝑒 𝑗𝑟 ; 𝑣1, 𝑣2, · · · , 𝑣𝑟 )
∼ diag(𝑡 𝑗1 , · · · , 𝑡 𝑗𝑟 ) · (𝑡 𝑗1𝑒 𝑗1 , · · · , 𝑡 𝑗𝑟 𝑒 𝑗𝑟 ; 𝑣1, 𝑣2, · · · , 𝑣𝑟 ) = (𝑒 𝑗1 , · · · , 𝑒 𝑗𝑟 ; 𝑡 𝑗1𝑣1, 𝑡 𝑗2𝑣2, · · · , 𝑡 𝑗𝑟 𝑣𝑟 ).
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So the weights of 𝑖∗𝐼S𝑟 are {Λ𝑖}𝑖∈𝐼 and the weights of 𝑖∗
𝐼�
S𝑛−𝑟 are {Λ−1

𝑖 }𝑖∈𝐼� . Since the I-function is
symmetric with respect to {𝐿𝑖}, we can take any choice of weights

𝑖∗𝐼 𝐼
𝐺𝑟 (𝑟 ,𝑛) ,𝐸𝑟 ,𝑙
𝑇 ,𝑑 =

∑
| �𝑑𝐼 |=𝑑

∏
𝑖, 𝑗∈𝐼

∏𝑑𝑖−𝑑 𝑗

𝑘=−∞(1 − 𝑞𝑘Λ𝑖Λ−1
𝑗 )∏0

𝑘=−∞(1 − 𝑞𝑘Λ𝑖Λ−1
𝑗 )

∏
𝑖∈𝐼

(Λ𝑑𝑖
𝑖 𝑞

𝑑𝑖 (𝑑𝑖−1)
2 )𝑙∏𝑑𝑖

𝑘=1
∏

𝑚∈[𝑛] (1 − 𝑞𝑘Λ𝑖Λ−1
𝑚 )

,

and

𝑖∗
𝐼�

𝐼
𝐺𝑟 (𝑛−𝑟 ,𝑛) ,𝐸∨

𝑛−𝑟 ,−𝑙
𝑇 ,𝑑 =

∑
| �𝑑

𝐼�
|=𝑑

∏
𝑖, 𝑗∈𝐼�

∏𝑑𝑖−𝑑 𝑗

𝑘=−∞(1 − 𝑞𝑘Λ−1
𝑖 Λ 𝑗 )∏0

𝑘=−∞(1 − 𝑞𝑘Λ−1
𝑖 Λ 𝑗 )

∏
𝑖∈𝐼�

(Λ−𝑑𝑖
𝑖 𝑞

𝑑𝑖 (𝑑𝑖+1)
2 )−𝑙∏𝑑𝑖

𝑘=1
∏

𝑚∈[𝑛] (1 − 𝑞𝑘Λ−1
𝑖 Λ𝑚)

.

Using notation Λ𝑖 𝑗 = Λ𝑖Λ−1
𝑗 and the following Lemma 3.2, we obtain

𝑖∗𝐼 𝐼
𝐺𝑟 (𝑟 ,𝑛) ,𝐸𝑟 ,𝑙
𝑇 ,𝑑 =

∑
| �𝑑𝐼 |=𝑑

∏
𝑖∈𝐼

��� 1∏
𝑗∈𝐼 (𝑞𝑑𝑖−𝑑 𝑗+1Λ𝑖 𝑗 ; 𝑞)𝑑 𝑗

·
(Λ𝑑𝑖

𝑖 𝑞
𝑑𝑖 (𝑑𝑖−1)

2 )𝑙∏
𝑗∈𝐼� (𝑞Λ𝑖 𝑗 ; 𝑞)𝑑𝑖

���, (3.8)

and

𝑖∗
𝐼�

𝐼
𝐺𝑟 (𝑛−𝑟 ,𝑛) ,𝐸∨

𝑛−𝑟 ,−𝑙
𝑇 ,𝑑 =

∑
| �𝑑

𝐼�
|=𝑑

∏
𝑖∈𝐼�

��� 1∏
𝑗∈𝐼� (𝑞𝑑𝑖−𝑑 𝑗+1Λ 𝑗𝑖; 𝑞)𝑑 𝑗

·
(Λ𝑑𝑖

𝑖 𝑞
−𝑑𝑖 (𝑑𝑖+1)

2 )𝑙∏
𝑗∈𝐼 (𝑞Λ 𝑗𝑖; 𝑞)𝑑𝑖

���. (3.9)

Comparing equations (3.8) and (3.9) with equations (2.24) and (2.25), we obtain the conclusion. �

Lemma 3.2. Let I be the subset of [𝑛] = {1, . . . , 𝑛}. We have

∏
𝑖, 𝑗∈𝐼

(∏𝑑𝑖 𝑗
𝑘=−∞(1 − 𝑞𝑘𝑥𝑖 𝑗 )∏0
𝑘=−∞(1 − 𝑞𝑘𝑥𝑖 𝑗 )

1∏𝑑𝑖
𝑘=1(1 − 𝑞𝑘𝑥𝑖 𝑗 )

)
=

∏
𝑖, 𝑗∈𝐼

1
(𝑞𝑑𝑖 𝑗+1𝑥𝑖 𝑗 ; 𝑞)𝑑 𝑗

.

Proof. It is sufficient to consider one term. If 𝑑𝑖 ≥ 𝑑 𝑗 , then

𝐿𝐻𝑆 =

∏𝑑𝑖 𝑗
𝑘=1 (1 − 𝑞𝑘𝑥𝑖 𝑗 )∏𝑑𝑖
𝑘=1 (1 − 𝑞𝑘𝑥𝑖 𝑗 )

=
1∏𝑑𝑖

𝑘=𝑑𝑖 𝑗+1(1 − 𝑞𝑘𝑥𝑖 𝑗 )
= 𝑅𝐻𝑆.

If 𝑑𝑖 ≤ 𝑑 𝑗 , then

𝐿𝐻𝑆 =
1∏0

𝑘=𝑑𝑖 𝑗+1 (1 − 𝑞𝑘𝑥𝑖 𝑗 )
∏𝑑𝑖

𝑘=1(1 − 𝑞𝑘𝑥𝑖 𝑗 )
=

1∏𝑑𝑖
𝑘=𝑑𝑖 𝑗+1 (1 − 𝑞𝑘𝑥𝑖 𝑗 )

= 𝑅𝐻𝑆.

�
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