
The Review of Symbolic Logic

Volume 18, Number 3, September 2025

IS THERE A COUNTABLE OMEGA-UNIVERSAL LOGIC?

ALEXANDER C. PASEAU

Faculty of Philosophy, University of Oxford
and

FELIX WEITKÄMPER
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Abstract. Some informal arguments are valid, others are invalid. A core application of logic
is to tell us which is which by capturing these validity facts. Philosophers and logicians have
explored how well a host of logics carry out this role, familiar examples being propositional,
first-order and second-order logic. Since natural language and standard logics are countable,
a natural question arises: is there a countable logic guaranteed to capture the validity patterns
of any language fragment? That is, is there a countable omega-universal logic? Our article
philosophically motivates this question, makes it precise, and then answers it. It is a self-
contained, concise sequel to ‘Capturing Consequence’ by A.C. Paseau (RSL vol. 12, 2019).

§1. Introduction. Some informal arguments are valid, others invalid. One of logic’s
roles is to tell us which is which. A logic succeeds in this role to the extent that it
underwrites the validity of valid informal arguments and the invalidity of invalid ones.
These informal arguments may be drawn from mathematics or elsewhere.

Consider a fragment of natural language consisting of sentences s1, ... , sn. These
sentences stand in logical relations to one another: perhaps, say, s1 and s2 imply s3 but
not s4; s5 and s6 imply one another; and so on. The pattern of these implications and
non-implications might be called the sentences’ implicational structure or implicational
network.

In its core application, the job of a logic is to capture implicational structure. To
do so, the logic associates to each sentence si in the target domain a formal sentence
�i of its language.1 It discharges its function of capturing implicational structure
perfectly just when: a subset S of {s1, ... , sn} implies a sentence s if and only if
the corresponding subset Σ of formal sentences implies, according to the logic, the
sentence � corresponding to s. For example, {s1, s2} implies s3 just when {�1, �2}
implies �3.

Some logics are better suited to this role than others. One reason for the success of
first-order logic is its ability to capture the implicational structure of large swathes of
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translation, consequence isomorphism.
1 As should be clear, in this informal introduction we are using the word ‘domain’ in the

everyday sense, not the model-theoretic one.
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informal language, especially mathematical language. An obvious failing of a logic, as
far as this role is concerned, is if it is too small to capture the relevant implicational
structure. As a limiting case, take a logic with just one sentence. A one-sentence logic
is incapable of capturing the implicational structure of any target domain consisting
of two logically inequivalent sentences. By the same token, a logic consisting of finitely
many sentences fails to capture the implicational structure of any target domain
consisting of infinitely many logically inequivalent sentences. In each case, we can
tell from the outset—merely on cardinality grounds—that no logic of that kind is up
to the job.

In certain cases, we may be able to guarantee that a logic can capture the implicational
structure of target domains of a certain kind. Suppose we are interested in target
domains consisting of fewer than 10 sentences, and that some logicL provably captures
the implicational structure of any domain consisting of fewer than 10 sentences. Then
L is guaranteed to capture the implicational structure of any of the target domains of
interest.

A one-sentence logic, we observed, cannot capture the implicational structure of a
domain of two logically inequivalent sentences; nor can a finite-sentence logic do the
same vis-à-vis a domain of infinitely many logically inequivalent sentences. There is
a metaphorical but very useful way of describing this common failing. In each case,
the logic is not capacious enough to model the respective implicational structures. It
simply does not contain not enough ‘room’ to do so. Conversely, a logic that captures
the implicational structure of any domain consisting of fewer than 10 sentences
has enough ‘room’ to capture any of these. More generally, one logic may be more
capacious or roomy than another by dint of its ability to capture more implicational
structures.

A natural question is whether a single logic can do the job of capturing any informal
target domain. Philosophers and linguists have made considerable progress on this
question, closely examining parts of technical and less technical language, for example
the domain of arithmetic (think of Peano Arithmetic) or temporal locutions (think
of tense logic). This progress notwithstanding, we are still far from the final or even
near-final answer. A closely related question is whether there is a logic so capacious
that, whatever implicational structure a target domain might have, the logic can
accommodate it. That is, is there a logic guaranteed to be capacious enough so far as
informal arguments go? And if so, how large must such a logic be? Although a logic may
have other failings, if it is maximally capacious then it can capture any implicational
structure. Conversely, whatever its other virtues, if a logic is not maximally capacious
in this sense, it may fail to capture some implicational structures.

The next section will make these motivating remarks and our question more precise.
The remaining sections will then establish some results that answer it.

§2. The set-up. Informal arguments are expressed in natural language, including
its technical parts. For example, algebraic geometry, although highly technical, is
an informal practice: algebraic geometers give arguments and express claims in
mathematical English, French, etc. The same goes for topologists, cosmologists,
biologists, lawyers, and so on.

We may call the target domain (algebraic geometry, cosmology, etc.) T. The set
of natural-language sentences is countably infinite, since the lexicon of any natural
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language is finite and its formation rules allow for sentences of arbitrarily large finite
length. This assumption is completely standard in both philosophy and linguistics. It
also applies to natural language augmented with technical vocabulary. It follows that
T, the target domain, consists of a countable (i.e., finite or countably infinite) set of
sentences. We may also assume that T has a determinate implicational structure that
logic tries to capture. This structure may be opaque and part of the role of the logic
may be to elucidate it. Moreover, T ’s implicational structure may only crystallise if we
theorise about T in a certain way.

Suppose we use logic L, with set of sentences Sen(L) and consequence relation �L,
to try to capture T ’s implicational structure. If L is to do this, we must formalise the
sentences of T in L, that is, use a formalisation Form which we can think of as a
function mapping the elements of Sen(T ) to Sen(L). Logic L perfectly captures the
required implicational structure just when, for any subset S of Sen(T ) and element s
of Sen(T ), S implies s if and only if Form(S) �L Form(s).

Now let’s think about logics, each logic being characterised by a set of sentences and
consequence relation on that set. When comparing logics, the informal idea we would
like to capture is that one logic is more capacious than another if any implicational
structure found in the latter can be found in the former. To that end, suppose L1 and
L2 are two logics with respective sentence sets Sen(L1) and Sen(L2) and consequence
relations �L1 and �L2 . The map j : Sen(L1) → Sen(L2) is a conservative translation
from L1 to L2 just when, for all Γ ⊆ Sen(L1) and φ ∈ Sen(L1),

Γ �L1 φ if and only if j(Γ) �L2 j(φ).

We write L1 ≤ L2 when there is a conservative translation from L1 to L2, thereby
defining a partial order on logics, and L1 < L2 when there is a conservative translation
from L1 to L2 but none from L2 to L1.2

As an illustration, consider PLn, propositional logic with n ≥ 1 sentence letters and
PL� , propositional logic with a countable infinity of sentence letters. The logicsPLn and
PL� have a countable and expressively adequate set of connectives and are equipped
with their usual consequence relation. It is easy to check that for natural numbers m
and n, PLm ≤ PLn if and only ifm ≤ n, and that PLn < PL� for all natural numbers n.

Predicate logics provide another illustration. Let FOL� be first-order logic with a
countable infinity of variables, constants, predicate and function symbols of all arities,
a countable and expressively adequate set of truth-functional connectives, standard
formation rules and its standard consequence relation. Perhaps surprisingly, it may be
shown that there is a map j : Sen(PL�) → Sen(FOL�) that is (a) a bijection, (b) a
conservative translation and (c) has an inverse that is also a conservative translation.3

Next, let SOL� be second-order logic with a countable infinity of first-order variables
and for each arity a countable infinity of second-order predicate and function variables
of that arity, a countable infinity of constants, predicate and function symbols of
all arities, a countable and expressively adequate set of truth-functional connectives,
standard formation rules and its standard consequence relation. In contrast to the
result relating PL� and FOL� , we note the strict inequality FOL� < SOL� . The fact

2 The notion of conservative translation is usually applied to deductive systems. Here, it is
adapted to semantic consequence relations.

3 See Paseau [2] for the proof and Paseau [3] for follow-up philosophical discussion.
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that FOL� ≤ SOL� follows trivially from the fact that FOL� is a sublogic of SOL� , so
that the inclusion map from Sen(FOL�) to Sen(SOL�) is a conservative translation.
The fact that there is no conservative translation from SOL� to FOL� follows from the
fact that FOL� is compact, whereas SOL� is not.4

The natural question prompted by these examples, raised at the end of Paseau [2],
is whether there is a logic that is as capacious as possible, as far as countable domains
go. If so, what is it? Could it be any of the well-known and well-studied logics, such as
SOL� for example? And what is its minimum size—can it be countable or must it be
uncountable? To make these questions more precise, let us say that logic L is countable
just when Sen(L) is countable (i.e., countably infinite or finite). And say that logic
UL� is �-universal just when, for any other countable logic L, L ≤ UL� . So, our
question is this: is there a countable UL�?

In the remainder of this paper, we show that there is no countable UL� . In fact,
we show that the cardinality of any �-universal logic must exceed 2� . Under the
assumption that there is no cardinal properly between 2� and 22� , a consequence
of the Generalised Continuum Hypothesis, we can even conclude that the smallest
�-universal logic has a sentence set of precisely size ℵ2.

§3. Definitions. To address these questions, we begin by noting three standard
features of a consequence relation for a logic. Here, A and B are sets of sentences of
the logic in question, and φ a sentence.

1. If φ ∈ A then A � φ. (Any set of sentences implies any sentence of that set.)
2. If A ⊆ B and A � φ then B � φ. (If a set of sentences implies a sentence then

so does any of its supersets.)
3. If B = {φ : A � φ} then B = {φ : B � φ}. (The closure of the closure of a set

of sentences is its closure.)

These features noted, it will be useful to change perspective slightly to facilitate
the formal discussion. We now take as our central notion the closure of the set of
sentences. We write 〈A〉 = {φ : A � φ} and call 〈〉 the hull function.5 The hull function
is a function from sets of sentences of a logic to other sets of sentences (specifically:
the former’s closure). Hull functions and consequence relations are interdefinable:
〈A〉 = {φ : A � φ} and A � φ if and only if φ ∈ 〈A〉. The hull function may therefore
be referred to as the consequence structure of the logic.

For our general results, we take a logic to consist of a set of sentences, and a hull
function, which represents its consequence relation. The three properties noted above
are then captured by the following.

Definition 1. We take a logic or logical system to be a pair (L, 〈〉) of a set L and a hull
function 〈〉 : P(L) → P(L) satisfying the following conditions:

1. For all A ⊆ L, A ⊆ 〈A〉.
2. For all A ⊆ B ⊆ L, 〈A〉 ⊆ 〈B〉.
3. For all A ⊆ L, 〈〈A〉〉 = 〈A〉.

4 See Paseau [2] for details.
5 This should not be confused with the notion of a Skolem hull.
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These three conditions are minimal abstract conditions to impose on any logic of the
sort we are interested in. The size of the logic (L, 〈〉) is the size of L, i.e., the size of the
logic’s set of sentences. Our abstract perspective allows these sentences to be whatever
we would like them to be.6

As we would like to investigate relations between logical systems, we will need an
appropriate notion of embedding between them. In the present context, this is given
naturally as follows.

Definition 2. If (X, 〈〉) and (Y, 〈〉) are logical systems, an embedding (of logical
systems) of (X, 〈〉) in (Y, 〈〉) is an injective map f from X to Y such that for all A ⊆ X ,
〈f(A)〉 ∩ f(X ) = f(〈A〉). A bijective embedding is called an isomorphism of logical
systems.

It is easy to check that an embedding is a conservative translation as defined in the
previous section.

§4. The cardinality of �-universal logics. We begin by noting that, as already
demonstrated by Paseau [2], �-universal logics do exist. In fact, we easily obtain
an�-universal logic by taking the disjoint union of all possible countable consequence
structures. Since a consequence structure is given as a map from the power set of a
countable set to itself, there can only be at most (2�)2� = 22� consequence structures
on a countable set. Consider a logic with 22� copies of � such that the consequence
structure on the �th copy, for � < 22� , is given by the �th of the 22� such possible
structures. This logic, the disjoint union of all the countable consequence structures,
is an �-universal logic of cardinality 22� .

We proceed to show that this construction is best possible if there is no
cardinal properly between 2� and 22� , a consequence of the Generalised Continuum
Hypothesis, and that unconditionally there is no �-universal logic of cardinality less
than or equal to 2� .

We proceed in two steps. First we investigate how many mutually non-isomorphic
countable logics there actually are. We will see that the naı̈ve upper bound of the
number of maps from the power set of � to itself is indeed sharp: there are in fact 22�

mutually non-isomorphic countable logics. Then, the main result follows by simple
cardinal arithmetic.

We start with a lemma taken from Harzheim [1], where it is a special case of Theorem
9.1.25. Let (O,≤) be a partially ordered set. Then an antichain of O is a subset A of O
such that for no a, b ∈ A, a ≤ b or b ≤ a.

Lemma 1. The power set (P(�),⊆) of � has an antichain of cardinality 2� .

Since the proof is rather elementary, we include it here.

Proof. Partition � into two disjoint infinite sets M and N, and enumerate their
elements as (m1, m2, ... ) and (n1, n2, ... ) respectively. Now for any subset S ⊆ �,
consider the set

�S := {mi | i ∈ S} ∪ {ni | i /∈ S}.

6 For instance, despite the name, the set of sentences can include open formulas.
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Then for any two distinct subsets S and T of �, neither �S ⊆ �T nor �T ⊆ �S . Thus,
{�S | S ⊆ �} is an antichain of cardinality 2� .

We note that this result does not require the use of any high-powered principles such
as the Axiom of Choice, since the partition of � into M and N is definable (e.g., take
M to be the even numbers and N the odd ones). In any case, we shall make use of any
standard set-theoretic principles we need freely in the metatheory, as usual.

We can use this antichain to pin down the number of mutually non-isomorphic
countable logics.

Proposition 1. There are 22� mutually non-isomorphic countable logics.

Proof. Let A be an antichain of (P(�),⊆) of cardinality 2� . Then A has itself 22�

distinct subsets X ⊆ A.
Consider a logic whose set of sentences L is defined as � ∪ {φ}, with φ /∈ �. Thus

the sentences in L are the natural numbers (think of these as representing a countably
infinite collection of sentences) plus some other sentence, which for suggestiveness we
have called φ.

For every X ⊆ A and set of sentences A ⊆ L, let

〈A〉
X

:=

{
A ∪ {φ} ∃X ∈ X : X ⊆ A
A otherwise.

.

Because A is an antichain, the logics (L, 〈〉
X

) are distinct for distinct X. For suppose
that X1 and X2 are distinct subsets of the antichain A, such that without loss of
generality A is an element of X1 but not X2. Then 〈A〉

X1
= A ∪ {φ}. However, because

A is an antichain, there is no X ∈ X2 : X ⊆ A, and so 〈A〉
X2

= A. Thus the (L, 〈〉
X

)
are distinct for distinct X.

For the rest of the argument, note that every (L, 〈〉
X

) is a countable logic. We have
shown that because A is an antichain, the (L, 〈〉

X
) are distinct for distinct X. Since,

however, there are only 2� mappings from L to itself, each isomorphism class can only
have at most 2� distinct members. Finally, since 2� < 22� , the pigeonhole principle
implies that there are indeed 22� isomorphism types.

We can now conclude the argument.

Theorem 1. There is no �-universal logic of cardinality not exceeding 2� . If there is no
cardinal properly between 2� and 22� , the smallest �-universal logic has cardinality 22� .

Proof. Let L be a logic of cardinality not exceeding 2� . Then L has at most (2�)� =
2� countable subsets. Therefore, no more than 2� mutually non-isomorphic countable
logics can be embedded in L. It follows that L is not �-universal as there are 22�

mutually non-isomorphic countable logics.
As we have shown there to exist an �-universal logic of cardinality 22� , this implies

that when there is no cardinal properly between 2� and 22� , the smallest �-universal
logic has cardinality 22� .

By way of conclusion, we note that if the Generalised Continuum Hypothesis holds,
the smallest �-universal logic has cardinality ℵ2 = 22� . This is because under it, the
first two uncountable cardinals are ℵ1 = 2� and ℵ2 = 22� .
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§5. Conclusion. We have answered, in the negative, the question of whether a
countable�-universal logic exists. No countable logic, including well-known and well-
studied ones such as PL� , FOL� , SOL� , can be �-universal. This is a limitative result
on the power of countable logics.

We end with two sets of philosophical comments on this result. The first consists
of three brief comparisons with other well-known limitative results. The comparisons
will help clarify the nature of our result.

(i) Unlike Gödelian incompleteness, the present result has nothing to do with
deductive systems. We have shown there is no logic of countable size into
which all countable logics embed. Logics are here thought of as sets of
sentences with a consequence relation, which may or may not be capturable
by a deductive system. The notion of an embedding is the corresponding one;
it too is not deductively constrained. Unlike Gödelian incompleteness, our
result is therefore purely on the semantic side of things.

(ii) Our result belongs to the abstract study of logical systems. It is therefore
more general than, say, an independence result such as that the Continuum
Hypothesis is independent of the axioms of ZFC. It is also more general than a
generalisation of that same independence result to a class of set theories. This
is because our result is about any countable logical system, not just set theories.
It is also, of course, not an independence result. It reveals that no countable
logic can be ‘as capacious is possible’, where capaciousness is understood as
the ability to embed a countable logic.

(iii) Another famous limitative result is the undecidability of first-order logic. Our
result differs from this one in two main ways. First, it is not about decidability
or computable notions. In our treatment, logical systems are individuated by
their sets of sets of sentences and their consequence structure. These are not
constrained to be computable, or semi-computable, etc. Second, our result
is about all countable logical systems. So it is much more general than a
fact about a particular one such as first-order logic, or any restricted class of
countable systems.

The second comment concerns the result’s import. We have shown that no countable
logic can capture the implicational structure of any countable target domain. It would
be a mistake—a quantifer-shift fallacy—to think this means that no countable logic
can capture the implicational structure of some given target domain. Given a target
domain (e.g., a mathematical or scientific theory ‘in the wild’), it might be that a well-
known countable logic such as first-order logic can completely capture its implicational
structure. More strongly, such a logic may even be able to capture the implicational
structure of any target domain of interest, perhaps because the target domains found in
mathematics, the sciences, etc. exhibit a limited range of implicational structures. But
what this article proves is that we cannot identify a single countable logic L capacious
enough to capture the implicational structure of any countable target domain, whatever
it might be. Any sufficiently capacious L must have more sentences than the cardinality
of the continuum.
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