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MODULI SPACES OF VECTOR BUNDLES OVER

RULED SURFACES

MARIAN APRODU and VASILE BRÎNZǍNESCU

Abstract. We study moduli spaces M(c1, c2, d, r) of isomorphism classes of
algebraic 2-vector bundles with fixed numerical invariants c1, c2, d, r over a ruled
surface. These moduli spaces are independent of any ample line bundle on the
surface. The main result gives necessary and sufficient conditions for the non-
emptiness of the space M(c1, c2, d, r) and we apply this result to the moduli
spaces ML(c1, c2) of stable bundles, where L is an ample line bundle on the
ruled surface.

Introduction

Let π : X → C be a ruled surface over a smooth algebraic curve

C, defined over the complex number field C. Let f be a fibre of π. Let

c1 ∈ Num(X) and c2 ∈ H4(X,Z) ∼= Z be fixed. For any polarization L,

denote the moduli space of rank-2 vector bundles stable with respect to L in

the sense of Mumford-Takemoto by ML(c1, c2). Stable 2-vector bundles over

a ruled surface have been investigated by many authors; see, for example

[T1], [T2], [H-S], [Q1]. Let us mention that Takemoto [T1] showed that

there is no rank-2 vector bundle (having c1.f even) stable with respect

to every polarization L. In this paper we shall study algebraic 2-vector

bundles over ruled surfaces, but we adopt another point of view: we shall

study moduli spaces of (algebraic) 2-vector bundles over a ruled surface X,

which are defined independent of any ample divisor (line bundle) on X, by

taking into account the special geometry of a ruled surface (see [B], [B-St1],

[B-St2] and also [Br1], [Br2], [W]).

In Section 1 (put for the convenience of the reader) we present (see [B])

two numerical invariants d and r for a 2-vector bundle with fixed Chern

classes c1 and c2 and we define the set M(c1, c2, d, r) of isomorphism classes

of bundles with fixed invariants c1, c2, d, r. The integer d is given by the

splitting of the bundle on the general fibre and the integer r is given by

some normalization of the bundle. Recall that the set M(c1, c2, d, r) carries
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a natural structure of an algebraic variety (see [B], [B-St1], [B-St2]). In

Section 2 we study uniform vector bundles and we prove the existence of

algebraic vector bundles given by extensions of line bundles and which are

not uniform. In Section 3 the main result gives necessary and sufficient

conditions for the non-emptiness of the space M(c1, c2, d, r) and we apply

this result to the moduli space of stable bundles ML(c1, c2).

§1. Moduli spaces of rank-2 vector bundles

In this section we shall recall from ([B], [B-St1], [B-St2]) some basic

notions and facts.

The notations and the terminology are those of Hartshorne’s book [Ha].

Let C be a nonsingular curve of genus g over the complex number field and

let π : X→C be a ruled surface over C. We shall write X ∼= P(E) where E

is normalized. Let us denote by e the divisor on C corresponding to
∧2 E

and by e = − deg(e). We fix a point p0 ∈ C and a fibre f0 = π−1(p0) of X.

Let C0 be a section of π such that OX(C0) ∼= OP(E)(1).

Any element of Num(X) ∼= H2(X,Z) can be written aC0 + bf0 with

a, b ∈ Z. We shall denote by OC(1) the invertible sheaf associated to the

divisor p0 on C. If L is an element of Pic(C) we shall write L = OC(k)⊗L0,

where L0 ∈ Pic0(C) and k = deg(L). We also denote by F (aC0 + bf0) =

F ⊗OX(a) ⊗ π∗OC(b) for any sheaf F on X and any a, b ∈ Z.

Let E be an algebraic rank-2 vector bundle on X with fixed numerical

Chern classes c1 = (α, β) ∈ H2(X,Z) ∼= Z × Z, c2 = γ ∈ H4(X,Z) ∼= Z,

where α, β, γ ∈ Z.

Since the fibres of π are isomorphic to P
1 we can speak about the generic

splitting type of E and we have E|f ∼= Of (d) ⊕ Of (d
′

) for a general fibre

f , where d
′

≤ d, d + d
′

= α. The integer d is the first numerical invariant

of E.

The second numerical invariant is obtained by the following normaliza-

tion:

−r = inf{l| ∃L ∈ Pic(C),deg(L) = l, s.t. H0(X,E(−dC0) ⊗ π∗L) 6= 0}.

We shall denote by M(α, β, γ, d, r) or M(c1, c2, d, r) or M the set of

isomorphism classes of algebraic rank-2 vector bundles on X with fixed

Chern classes c1, c2 and invariants d and r.

With these notations we have the following result (see [B]):
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Theorem 1. For every vector bundle E ∈ M(c1, c2, d, r) there exist

L1, L2 ∈ Pic0(C) and Y ⊂ X a locally complete intersection of codimension

2 in X, or the empty set, such that E is given by an extension

0→OX(dC0 + rf0)⊗π
∗L2→E→OX(d

′

C0 + sf0)⊗π
∗L1⊗IY →0,(1)

where c1 = (α, β) ∈ Z × Z, c2 = γ ∈ Z, d + d
′

= α, d ≥ d
′

, r + s = β,

l(c1, c2, d, r) := γ + α(de− r) − βd+ 2dr − d2e = deg(Y ) ≥ 0.

Remark. By applying Theorem 1 we can obtain the canonical exten-

sions used in [Br1], [Br2].

Indeed, let us suppose first that d > d
′

. From the exact sequence (1) it

follows that

OC(r) ⊗ L2
∼= π∗E(−dC0)

so

OX(rf0) ⊗ π∗L2
∼= π∗π∗E(−dC0)

and

OX(dC0 + rf0) ⊗ π∗L2
∼= (π∗π∗E(−dC0))(dC0).

If d = d
′

then, by applying π∗ to the short exact sequence

0→OX(rf0) ⊗ π∗L2→E(−dC0)→OX(sf0) ⊗ π∗L1 ⊗ IY →0

it follows the exact sequence

0→OC(r) ⊗ L2→π∗E(−dC0)→OC(s) ⊗ L1 ⊗OC(−Z1)→0,

where Z1 is an effective divisor on C with the support π(Y ). With the

notation Z = π−1(Z1), by applying π∗ (π is a flat morphism) we obtain the

following commutative diagram with exact rows

0 -OX(rf0) ⊗ π∗L2
- E(−dC0) -OX(sf0) ⊗ π∗L1 ⊗ IY - 0

0 -OX(rf0) ⊗ π∗L2
- π∗π∗E(−dC0) - OX(sf0) ⊗ π∗L1 ⊗ IZ - 0

6o id 6ϕ 6ψ
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From the injectivity of ψ we obtain the injectivity of ϕ. Because of

OX(sf0) ⊗ π∗L1 ⊗ IY ⊂Z
∼= Coker ψ ∼= Coker ϕ

we conclude.

Recall that a set M of vector bundles on a C−scheme X is called

bounded if there exists an algebraic C-scheme T and a vector bundle V on

T × X such that every E ∈ M is isomorphic with Vt = V |t×X for some

closed point t ∈ T (see [K]).

For the next result see [B]:

Theorem 2. The set M(c1, c2, d, r) is bounded.

§2. Uniform bundles

In what follows, we keep the notations from Section 1.

Definition 3. A 2-vector bundle E is called an uniform bundle if the

splitting type is preserved on all fibres of X.

Theorem 1 allows us to give a criterion for uniformness.

Lemma 4. Let f be a fibre of X and let us suppose that IY ∩f⊂f
∼=

Of (−n). Then E|f ∼= Of (d+ n) ⊕Of (d
′

− n).

Proof. We suppose that E|f ∼= Of (a)⊕Of (a
′

), where a ≥ a
′

. Then we

have a surjective morphism

E|f→Of (d
′

) ⊗ IY ⊗Of

in virtue of Theorem 1. On the other hand, the restriction of the sequence

0→IY →OX→OY →0

to f gives a surjective morphism

IY ⊗Of→IY ∩f⊂f
∼= Of (−n).

So, we obtain another surjective morphism

Of (a) ⊕Of (a
′

)→Of (d
′

− n).

By using the inequalities a ≥ a
′

, d ≥ d
′

≥ d
′

− n and the equality a+ a
′

=

d+ d
′

= α it follows that a
′

= d
′

− n and a = d+ n.
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Corollary 5. E is an uniform bundle if and only if l(c1, c2, d, r) = 0.

By means of Corollary 5 the uniform bundles are given by extensions

of line bundles. It is naturally to ask if the converse is true. Unfortunately,

this question has a negative answer, as proved by the following

Proposition 6. On the rational ruled surface Fe with e ≥ 1 there

exist non-uniform bundles given by extensions of line bundles.

For the proof we need some preparations.

Let E be a 2-vector bundle given by an extension

0→F→E→G→0,(2)

where F = OX(aC0 + r
′

f0)⊗π
∗L

′

2 , G = OX(a
′

C0 + s
′

f0)⊗π
∗L

′

1 (L
′

1, L
′

2 ∈

Pic0(C)) are line bundles on X. By means of Theorem 1, E sits also in a

canonical extension (1). If a ≥ a
′

then E is obviously uniform. Then, we

shall suppose that a < a
′

.

Lemma 7. With the above notations we have d ≤ a
′

.

Proof. Indeed, by the restriction of the sequence (2) to a general fibre

f we obtain a surjective morphism

Of (d) ⊕Of (d
′

)→Of (a
′

).

If d > a
′

, then it follows that d
′

= a
′

which contradicts the inequalities

a < a
′

, d ≥ d
′

(a+ a′ = d+ d′).

Lemma 8. If d = a
′

then E is uniform.

Proof. Let f be a fibre of X such that the splitting type of E|f is

different from the generic splitting type of E. According to Lemma 4

E|f ∼= Of (d+ n) ⊕Of (d
′

− n),

where n > 0.

By the restriction of (2) to f we obtain a surjective morphism

Of (d+ n) ⊕Of (d
′

− n)→Of (d).

Because of d+ n > d it follows d
′

− n = d, contradiction.
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Lemma 9. In the above hypotheses, if d = a
′

, then E ∼= F ⊕G.

Proof. Let us observe that we can suppose, without loss of general-

ity, that a = 0 and r
′

= 0 (by twisting the sequences (1) and (2) with

OX(−aC0 − r
′

f0)). Then, it follows that d = a
′

= α > 0, s
′

= β and d
′

= 0.

Therefore, the sequences (1) and (2) become:

0 -OX(αC0 + rf0) ⊗ π∗L2
-E - OX(sf0) ⊗ π∗L1 ⊗ IY - 0

�
���

OX(αC0 + βf0) ⊗ π∗L
′

1

6

0

6

π∗L
′

2

6

6

0

ψ
ϕχ

(1′)

The computation of c2(E) in (1′) gives deg(Y ) = −αs. Moreover, by

means of Lemma 8, deg(Y ) = 0, so s = 0 (we supposed α > 0).

The homomorphism χ = ϕψ is non-zero, otherwise OX(αC0 + βf0) ⊂
π∗(L

′

2) (which would contradict the condition α > 0), so L2 = L
′

1 and χ is

the multiplication by a λ ∈ C
∗, and the assertion follows.

In this moment, we are able to give the counter-example announced in

Proposition 6.

Proof of Proposition 6. Let G be OX(2C0) and let F be OX . Then:

dimH1(G−1) = e+ 1 6= 0.

For E given by an extension ξ ∈ Ext1(G,OX ), keeping the notations

from Section 1, we have d ≤ 2 (Lemma 7) , d ≥ d
′

, d+d
′

= 2 and r+s = 0.

There are only two possibilities:

(a) d = 2 , d
′

= 0, which implies E ∼= OX ⊕OX(2C0) (Lemma 9).

(b) d = d
′

= 1 and, in this case, in the canonical extension (1) of E, we

have

https://doi.org/10.1017/S0027763000025332 Published online by Cambridge University Press

https://doi.org/10.1017/S0027763000025332


MODULI VECTOR BUNDLES OVER RULED SURFACES 117

deg(Y ) = dd
′

e− ds− d
′

r = e ≥ 1.

By applying Corollary 5, all vector bundles given by non-zero extensions

from Ext1(G,OX ) are non-uniform.

§3. Non-emptiness of moduli spaces

For a rank-2 vector bundle E, we shall denote by dE and rE the invari-

ants of E, when confusions may appear.

Theorem 10. M(c1, c2, d, r) is non-empty if and only if l := l(c1, c2,

d, r) ≥ 0 and one of the following conditions holds:

(I) 2d > α or,

(II) 2d = α, β − 2r ≤ g + l.

Proof. We observe that if M 6= ∅ then, by means of Theorem 1, the

elements of M lie among 2-vector bundles given by extensions of type (1).

Therefore, we conclude that M 6= ∅ if and only if in the extensions of type

(1) there are 2-vector bundles with dE = d and rE = r.

It is clear that all the vector bundles given by an extension of type (1)

have dE = d so we shall look for bundles with rE = r.

We fix L1, L2 ∈ Pic0(C) and Y ⊂ X a locally complete intersection (or

the empty set) and we denote

N1 = OX(d
′

C0 + sf0) ⊗ π∗L1

N2 = OX(dC0 + rf0) ⊗ π∗L2

and l = deg(Y ).

Consider the spectral sequence of terms

Ep,q
2 = Hp(X,Extq(IY ⊗N1, N2))

which converges to

Extp+q(IY ⊗N1, N2).

We have

Ext0(IY ⊗N1, N2) ∼= N2 ⊗N−1
1 and Ext1(IY ⊗N1, N2) ∼= OY .

But H2(X,N2 ⊗N−1
1 ) = 0 so the exact sequence of lower terms becomes

0→H1(X,N2 ⊗N−1
1 )→Ext1(IY ⊗N1, N2)→H0(Y,OY )→0.
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Now, by a result due to Serre (see [O-S-S], Chap.I, 5, [Se]), any element

in the group Ext1(IY ⊗N1, N2) which has an invertible image in H0(Y,OY )

defines an extension of the desired form with E a 2-vector bundle.
We write the sequence (1) under the equivalent form

0→OX→E(−dC0) ⊗ π∗L
′′

→OX((d
′

− d)C0 + (s− r)f0) ⊗ π∗(L̃) ⊗ IY →0(3)

where L̃ = L1 ⊗ L−1
2 , L

′′

= OC(−r) ⊗ L−1
2 and deg(L

′′

) = −r.
From the definition, it follows r ≤ rE for every bundle E given by an

extension (1). We distinguish three cases:

(I) d > d
′

. In this case we shall prove that M is non-empty if and only if

l ≥ 0. To do this we prove that all vector bundles from extension (1) have

rE = r.

We verify that for all L
′

∈ Pic(C) with deg(L
′

) < 0 we have

H0(E(−dC0) ⊗ π∗(L
′′

⊗ L
′

)) = 0,

which is true because H0(L
′

) = 0 and

H0(OX((d
′

− d)C0 + (s− r)f0) ⊗ π∗(L1 ⊗ L−1
2 ⊗ L

′

) ⊗ IY ) = 0.

(II) a◦. d = d
′

, r ≥ s. Then M is non-empty if and only if l ≥ 0. The proof

runs like in the first case with the remark deg(OC(s−r)⊗L1⊗L
−1
2 ⊗L

′

) < 0.

(II) b◦. d = d
′

, r < s. Then M is non-empty if and only if l ≥ 0 and

β − 2r ≤ g + l.

Let us see first that the natural isomorphism

M(2d, β, γ, d, r)−→M(0, β, l, 0, r)

E−→E(−dC0)

allows us to suppose d = d
′

= 0.

In this case, the sequence (3) becomes

0→OX→E ⊗OX(−rf0)⊗ π∗L−1
2 →OX((s− r)f0)⊗ π∗(L1 ⊗L−1

2 )⊗ IY →0.

The definition of the second invariant implies that rE = r if and only

if E
′

:= π∗E ⊗OC(−rp0) ⊗ L−1
2 is normalised. E

′

belong to an extension

0→OC→E
′

→L→0(4)

where L = OC((s−r)p0)⊗L1⊗L
−1
2 ⊗OC(−Z1) with Z1 an effective divisor

on C with support π(Y ) and card(Y ) ≤ deg(Z1) ≤ l = deg(Y ).

According to a result of Nagata ([N] or [Ha] Ex.V.2.5) , if E
′

is nor-

malised, then
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− deg(E
′

) = r − s+ deg(Z1) ≥ −g

which proves “only if” part of (II) b◦.

For “if” part we choose Y reduced, obtained by intersection between

C0 and l distinct fibres of X. In this case, we have the following short exact

sequence

0→IZ→IY →IY ⊂Z→0(5)

where Z1 = π(Y ) = p1 + · · ·+ pl , Y ⊂ Z = π−1(Z1) = f1 + · · ·+ fl with fi

distinct fibres, OZ = Of1
⊕ · · · ⊕ Ofl

, IY ⊂Z = Of1
(−1) ⊕ · · · ⊕ Ofl

(−1) .

So, the sequence (5) becomes

0→IZ→IY →Of1
(−1) ⊕ · · · ⊕ Ofl

(−1)→0.

Tensoring by KX ⊗N−1
2 ⊗N1 and taking the long cohomology sequence

we obtain an injective map:

H1(KX ⊗N−1
2 ⊗N1 ⊗ IZ)−→H1(KX ⊗N−1

2 ⊗N1 ⊗ IY ).

By dualizing, it follows that the natural map

Ext1(IY ⊗N1, N2)
ϕ

−→ Ext1(IZ ⊗N1, N2) ∼= Ext1(L,OC)

is surjective, which shows that all bundles in (4) are coming from (1) by

applying π∗.

According to [Ha] (Ex. V.2.5), there is a non-empty open set V ⊂

Ext1(L,OC) (don’t forget the condition s− r ≤ g+ l !) such that all ξ ∈ V

define normalised vector bundles on C.

Now, in Ext1(IY ⊗ N1, N2) the set of vector bundles is a non-empty

open set U . It is clear that ϕ−1(V ) ∩ U 6= ∅ (being open sets in Zariski

topology), so we conclude.

§4. Moduli of stable bundles

There is an interesting relation between the moduli spacesM(c1, c2, d, r)

and the Qin’s sets Eζ(c1, c2) (see [Q1], [Q2] for precised definitions).

As in the proof of Theorem 10, case (I) we conclude that if ζ is a

normalized class reprezenting a non-empty wall of type (c1, c2) such that

lζ(c1, c2) > 0 then, for (2d−α, 2r−β) = ζ , Eζ(c1, c2) and M(c1, c2, d, r) are

coincident modulo a factor of Pic0(C) (Qin workes with first Chern class c1
as an element in Pic(X)).

This is a consequence of the following facts:
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(a) lζ(c1, c2) = l(c1, c2, d, r)

(b) condition ζ2 < 0 implies 2d > α

(c) in the case 2d > α the bundles L1, L2 and the set Y from the

sequence (1) are uniquely determined by E.

(d) if l(c1, c2, d, r) > 0 then in the sequence (1) the bundles are given

only by non-trivial extensions.

In fact it is not hard to see that M(c1, c2, d, r) 6= ∅ iff Eζ(c1, c2) 6= ∅ so,

by means of Theorem 10, Eζ(c1, c2) 6= ∅ if lζ(c1, c2) > 0. But we have even

more:

Corollary 11. Let X be a ruled surface different from P
1 × P

1 and

let C be a chamber of type (c1, c2) different from Cf0
. Then the moduli space

MC(c1, c2) 6= ∅.

Proof. From Theorem 1.3.3 in [Q2] it follows that

MC(c1, c2) = (MC1
(c1, c2) −

⊔

ζ

E(−ζ)(c1, c2))
⊔

ζ

Eζ(c1, c2) ,

where C1 is the chamber lying above C and sharing with C a non-empty

common wall W and ζ runs over all normalised classes representing W . By

the above considerations, it follows that Eζ(c1, c2) 6= ∅ if l(c1, c2, d, r) > 0.

It remains the case l(c1, c2, d, r) = 0 and it will be sufficient to prove that

h1(X,N2 ⊗N−1
1 ) := dim H1(X,N2 ⊗N−1

1 ) > 0

(see the proof of Theorem 10).

We have

N2 ⊗N−1
1 = OX((d− d′)C0 + (r − s)f0) ⊗ π∗(L2 ⊗ L−1

1 ) ,

where d− d′ = 2d− α = u and r − s = 2r − β = v. But ζ = uC0 + vf0 is a

normalized class and this implies that u > 0 and v < 0 (see [Q1]).
Because H2(X,N2 ⊗N−1

1 ) = 0, the Riemann-Roch Theorem gives the
equality:

χ = h0(X,N2⊗N
−1

1
)−h1(X,N2⊗N

−1

1
) = 1−g+(1/2)((u+1)(2v−ue)+u(2−2g)).

But ζ2 < 0 gives u(2v − ue) < 0; it follows 2v − ue < 0.

If g ≥ 1, then obviously χ < 0. If g = 0, then e ≥ 0 and

χ = 1 + v + (u/2)(2(v + 1) − e(u+ 1)).
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If e ≥ 1, then χ < 0. For e = 0 we get X = P
1 × P

1, which we excluded.

Thus, in all cases χ < 0; it follows h1(X,N2 ⊗ N−1
1 ) > 0 and the proof is

over.

Remark. Let us suppose that X = P
1 × P

1 and that C is a chamber

of type (c1, c2) lying below a non-empty wall defined by a normalized class

ζ = uC0 + vf0 with v ≤ −2. Then the same conclusion as in the above

corollary holds.

Indeed, in this case we have χ = (1 + v)(1 + u). Since v < −1, then

again χ < 0.
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