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MODULI SPACES OF VECTOR BUNDLES OVER
RULED SURFACES

MARIAN APRODU anND VASILE BRINZANESCU

Abstract. We study moduli spaces M(ci1,c2,d,r) of isomorphism classes of
algebraic 2-vector bundles with fixed numerical invariants c1, c2, d, r over a ruled
surface. These moduli spaces are independent of any ample line bundle on the
surface. The main result gives necessary and sufficient conditions for the non-
emptiness of the space M(ci,c2,d,r) and we apply this result to the moduli
spaces Mr(c1,c2) of stable bundles, where L is an ample line bundle on the
ruled surface.

Introduction

Let 7 : X — C be a ruled surface over a smooth algebraic curve
C, defined over the complex number field C. Let f be a fibre of 7. Let
c1 € Num(X) and co € H*(X,Z) = 7Z be fixed. For any polarization L,
denote the moduli space of rank-2 vector bundles stable with respect to L in
the sense of Mumford-Takemoto by M (¢, c2). Stable 2-vector bundles over
a ruled surface have been investigated by many authors; see, for example
[T1], [T2], [H-S], [Ql]. Let us mention that Takemoto [T1] showed that
there is no rank-2 vector bundle (having c¢i.f even) stable with respect
to every polarization L. In this paper we shall study algebraic 2-vector
bundles over ruled surfaces, but we adopt another point of view: we shall
study moduli spaces of (algebraic) 2-vector bundles over a ruled surface X,
which are defined independent of any ample divisor (line bundle) on X, by
taking into account the special geometry of a ruled surface (see [B], [B-St1],
[B-St2] and also [Brl], [Br2], [W]).

In Section 1 (put for the convenience of the reader) we present (see [B])
two numerical invariants d and r for a 2-vector bundle with fixed Chern
classes ¢; and ¢y and we define the set M (cq, co, d, r) of isomorphism classes
of bundles with fixed invariants c1, co, d, r. The integer d is given by the
splitting of the bundle on the general fibre and the integer r is given by
some normalization of the bundle. Recall that the set M (c1, ca,d,r) carries
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a natural structure of an algebraic variety (see [B], [B-St1], [B-St2]). In
Section 2 we study uniform vector bundles and we prove the existence of
algebraic vector bundles given by extensions of line bundles and which are
not uniform. In Section 3 the main result gives necessary and sufficient
conditions for the non-emptiness of the space M(cy,ca,d, ) and we apply
this result to the moduli space of stable bundles My (cq, c2).

§1. Moduli spaces of rank-2 vector bundles

In this section we shall recall from ([B], [B-St1], [B-St2]) some basic
notions and facts.

The notations and the terminology are those of Hartshorne’s book [Ha].
Let C be a nonsingular curve of genus g over the complex number field and
let m: X—C be a ruled surface over C. We shall write X = P(£) where £
is normalized. Let us denote by e the divisor on C' corresponding to /\2 &
and by e = — deg(e). We fix a point py € C and a fibre fy = 7 1(pg) of X.
Let Cp be a section of 7 such that Ox (Cp) = Op(g)(1).

Any element of Num(X) & H?(X,Z) can be written aCy + bfy with
a, b € Z. We shall denote by O¢c(1) the invertible sheaf associated to the
divisor pg on C. If L is an element of Pic(C') we shall write L = O¢ (k) ® Lo,
where Ly € Pico(C) and k = deg(L). We also denote by F(aCy + bfy) =
F ® Ox(a) ® m™O¢c(b) for any sheaf F' on X and any a,b € Z.

Let E be an algebraic rank-2 vector bundle on X with fixed numerical
Chern classes ¢; = (o, 3) € H*(X,Z) 2 Z x 7, co = v € H*X,Z) = 7,
where «, 3,v € Z.

Since the fibres of 7 are isomorphic to P! we can speak about the generic
splitting type of E and we have E|f = O¢(d) ® Of(d/) for a general fibre
f, where d <d, d+d = a. The integer d is the first numerical invariant
of E.

The second numerical invariant is obtained by the following normaliza-
tion:

—r = inf{l| AL € Pic(C),deg(L) =1, s.t. H'(X, E(—~dCy) ® m*L) # 0}.

We shall denote by M(«, 3,v,d,r) or M(c1,ca,d,r) or M the set of
isomorphism classes of algebraic rank-2 vector bundles on X with fixed
Chern classes ¢q, ¢o and invariants d and r.

With these notations we have the following result (see [B]):
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THEOREM 1. For every vector bundle E € M(cy,ca,d,r) there exist
Ly, Ly € Picy(C) andY C X a locally complete intersection of codimension
2 in X, or the empty set, such that E is given by an extension

(1) OHOX(dC() + Tfo)@ﬂ*LQHEHOX(d/CO + 8f0)®7T*L1®Iy—>0,

where ¢ = (,8) € ZXZ, o =y €Z, d+d =a,d>d,r+s =0,
l(c1,c0,d,7) := v+ a(de — 1) — Bd + 2dr — d?e = deg(Y') > 0.

Remark. By applying Theorem 1 we can obtain the canonical exten-
sions used in [Brl], [Br2].
Indeed, let us suppose first that d > d. From the exact sequence (1) it
follows that

Oc(r) ® Ly = m, E(—dCy)
o)
Ox(rfo) ® m* Ly = m*m, E(—dCy)
and
Ox (dCy + rfo) @ m* Lo = (7w E(—dCy))(dCy).

If d = d then, by applying . to the short exact sequence

0—Ox(rfy) @ 7 Lay—E(—dCy)—Ox (sfo) @ 7L @ Iy —0
it follows the exact sequence

0—0c(r) @ Ly—m E(—dCy)—Oc(s) ® L1 @ Oc(—Z1)—0,

where Z; is an effective divisor on C' with the support 7(Y’). With the
notation Z = 7=1(Z;), by applying 7* (7 is a flat morphism) we obtain the
following commutative diagram with exact rows

0 —Ox(rfy) ® n*Ly—— E(—dCy) — Ox(sfo) @ m*L1 & Iy—0
)| id © (0

0 —>Ox(7“f0) X 7T*L2—>7T*7T*E(—d00) —>Ox(8f0) QL1 Iz;—0
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From the injectivity of ¢ we obtain the injectivity of ¢. Because of
Ox (sfo) ® 7Ly @ Iycz = Coker ¥ = Coker ¢
we conclude.

Recall that a set M of vector bundles on a C—scheme X is called
bounded if there exists an algebraic C-scheme T and a vector bundle V' on
T x X such that every E € M is isomorphic with V; = V|;xx for some
closed point t € T' (see [K]).

For the next result see [B]:

THEOREM 2. The set M(cy,ca,d,r) is bounded.

§2. Uniform bundles

In what follows, we keep the notations from Section 1.

DEFINITION 3. A 2-vector bundle F is called an uniform bundle if the
splitting type is preserved on all fibres of X.

Theorem 1 allows us to give a criterion for uniformness.

LEMMA 4. Let f be a fibre of X and let us suppose that Iynpcp =
(’)f(—n). Then E‘f = (’)f(d+n) S Of(d, —n).

Proof. We suppose that E|; = Of(a)®Oy(a’), where a > a'. Then we
have a surjective morphism

E|;—04(d)® Iy @ Oy
in virtue of Theorem 1. On the other hand, the restriction of the sequence
0—Iy—0x—0y—0
to f gives a surjective morphism
Iy @ Op=lIynscp = Op(—n).
So, we obtain another surjective morphism
Of(a) ® Of(a)—Of(d —n).

By using the inequalities a > a ,d>d >d —nand the equality a + a =
d+d = a it follows that ¢ =d —n and a = d + n.
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COROLLARY 5. FE is an uniform bundle if and only if l(c1,ca,d,r) = 0.

By means of Corollary 5 the uniform bundles are given by extensions
of line bundles. It is naturally to ask if the converse is true. Unfortunately,
this question has a negative answer, as proved by the following

PROPOSITION 6. On the rational ruled surface ¥, with e > 1 there
exist non-uniform bundles given by extensions of line bundles.

For the proof we need some preparations.
Let E be a 2-vector bundle given by an extension

(2) 0—F—E—G—0,

where ' = Ox(CLCO-l-’I”,fo) ®7T*L/2 , G = Ox(a,CO-FS/fo) ®7T*L,1 (L;,L,Q S
Pico(C')) are line bundles on X. By means of Theorem 1, E sits also in a
canonical extension (1). If @ > a  then E is obviously uniform. Then, we
shall suppose that a < a.

LEMMA 7. With the above notations we have d < a.

Proof. Indeed, by the restriction of the sequence (2) to a general fibre
f we obtain a surjective morphism

Of(d) & Op(d )—=Oy(a’).

If d > a', then it follows that d = a' which contradicts the inequalities
a<d,d>d (a+d =d+d).

LEMMA 8. Ifd=ad then E is uniform.

Proof. Let f be a fibre of X such that the splitting type of E|; is
different from the generic splitting type of E. According to Lemma 4

E|; = O0s(d+n) ® Os(d —n),
where n > 0.
By the restriction of (2) to f we obtain a surjective morphism
Op(d+n)® Op(d —n)—0(d).

Because of d +n > d it follows d — n = d, contradiction.

https://doi.org/10.1017/50027763000025332 Published online by Cambridge University Press


https://doi.org/10.1017/S0027763000025332

116 M. APRODU AND V. BRINZANESCU

LEMMA 9. In the above hypotheses, if d = d,then EXF&G.

Proof. Let us observe that we can suppose, without loss of general-
ity, that « = 0 and 7 = 0 (by twisting the sequences (1) and (2) with
Ox(—aCy—r"fy)). Then, it follows that d =a = > 0, s = fand d = 0.

Therefore, the sequences (1) and (2) become:

0

Ox (aCy + Bfo) ® T L}
X ®
(1) 0—0x(aCo+rfy) @ Lo ip’E —Ox(sfo)@m*L1 @ Iy — 0

’

*
T Ly

0

The computation of c2(E) in (1') gives deg(Y) = —as. Moreover, by
means of Lemma 8, deg(Y) =0, so s = 0 (we supposed a > 0).

The homomorphism y = ¢ is non-zero, otherwise Ox (aCy + Sfy) C
7*(Ly) (which would contradict the condition o > 0), so Ly = L and x is
the multiplication by a A € C*, and the assertion follows.

In this moment, we are able to give the counter-example announced in
Proposition 6.

Proof of Proposition 6. Let G be Ox(2C)) and let F be Ox. Then:
dim HY{(G™ ) =e+1#0.

For E given by an extension ¢ € Ext!(G,Ox), keeping the notations
from Section 1, we have d < 2 (Lemma 7) , d > d,d+d =2and r+s=0.
There are only two possibilities:
(a) d=2,d =0, which implies E = Ox ® Ox(2Cp) (Lemma 9).
(b) d =d =1 and, in this case, in the canonical extension (1) of E, we
have
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deg(Y)=dde—ds—dr=e>1.
By applying Corollary 5, all vector bundles given by non-zero extensions

from Ext!(G,Ox) are non-uniform.

§3. Non-emptiness of moduli spaces
For a rank-2 vector bundle E, we shall denote by dg and rg the invari-

ants of F/, when confusions may appear.

THEOREM 10. M(cy,ca,d,r) is non-empty if and only if | := l(c1, ca,
d,r) > 0 and one of the following conditions holds:
(I) 2d> a or,
(ID) 2d=a, B—2r<g+l.

Proof. We observe that if M # () then, by means of Theorem 1, the
elements of M lie among 2-vector bundles given by extensions of type (1).
Therefore, we conclude that M # () if and only if in the extensions of type
(1) there are 2-vector bundles with dg = d and rg = r.

It is clear that all the vector bundles given by an extension of type (1)
have dg = d so we shall look for bundles with rg = r.

We fix L1, Ly € Picg(C) and Y C X a locally complete intersection (or
the empty set) and we denote

N1 = Ox(d Cy+ sfy) @ 7Ly
Ny = OX(dCo + ’I”fo) X 7T*L2

and [ = deg(Y).
Consider the spectral sequence of terms

EPT = HP(X, Ext(Iy ® Ny, N))
which converges to
ExtPT(Iy ® Ny, Ny).
We have
Ext®(Iy ® N1, Ny) = No @ Ny ' and Ext!(Iy © Ny, Na) = Oy
But H?(X, N2 ® N7 1) = 0 so the exact sequence of lower terms becomes

0—HY(X, Ny ® Ny 1) —Ext!(Iy @ Ny, No)—HO(Y, Oy)—0.
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Now, by a result due to Serre (see [O-S-S], Chap.1, 5, [Se]), any element
in the group Ext!(Iy ® N1, No) which has an invertible image in H°(Y, Oy)
defines an extension of the desired form with E a 2-vector bundle.

We write the sequence (1) under the equivalent form

(3) 0—Ox—E(—dCo) @ 7L —Ox((d — d)Co + (s — 1) fo) @ " (L) ® Iy —0

where L =L ® Ly, L' = Oc(—r) ® Ly* and deg(L") = —r.

From the definition, it follows r < rg for every bundle E given by an
extension (1). We distinguish three cases:
() d > d'. In this case we shall prove that M is non-empty if and only if
[ > 0. To do this we prove that all vector bundles from extension (1) have
g =T.

We verify that for all L' € Pic(C) with deg(L’) < 0 we have

HOYE(—dCy) @ n*(L" @ L)) =0,
which is true because HO(L') = 0 and
H(Ox((d —d)Co+ (s —r)fo) @ (L1 ® Ly @ L') @ Iy) = 0.

(IT) a°. d = d,r > s. Then M is non-empty if and only if [ > 0. The proof
runs like in the first case with the remark deg(Oc(s—r)®L1® Ly '®L") < 0.
(I)b°. d = d',r < s. Then M is non-empty if and only if I > 0 and
B—2r<g+1L
Let us see first that the natural isomorphism
M(2d7 ﬁa Vs da T)_HM(Ov ﬁa la 0; T)
E—FE(—dCy)

allows us to suppose d = d =0.
In this case, the sequence (3) becomes

0—O0x—E® Ox(—rfo) @7 Ly ' —Ox((s — ) fo) @ 7 (L1 ® Ly ") @ Iy —0.

The definition of the second invariant implies that rg = r if and only
if B :=mE® Oc(—rpo) ® Ly !is normalised. E' belong to an extension
(4) 0—-Oc—E —L—0

where L = Oc((s—7)po) @ L1 ® Ly ' @ Oc(—Z1) with Z; an effective divisor
on C with support 7(Y) and card(Y) < deg(Z;1) <1 = deg(Y).

According to a result of Nagata ([N] or [Ha] Ex.V.2.5) , if E' is nor-
malised, then
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—deg(E') =1 — s+ deg(Z1) > g

which proves “only if” part of (II) b°.

For “if” part we choose Y reduced, obtained by intersection between
Cy and [ distinct fibres of X. In this case, we have the following short exact
sequence
(5) 0—Iz—Iy—Iycz—0

where Zy =7(Y)=p1+-+p ,Y CZ=n"YZ1) = fi+ -+ f; with f;
distinct fibres, Oz = Op, @ --- @ Oy, , Iycz = Of (-1) ®--- & Op(—1) .
So, the sequence (5) becomes

0—1z7—Iy—0Of(-1) @ - ® O (—1)—0.

Tensoring by Kx ® Ny L N, and taking the long cohomology sequence
we obtain an injective map:

H' (Kx @ Ny' @ Ny @ I)—H' (Kx © Nyt © Ny @ Iy).
By dualizing, it follows that the natural map
Ext!(Iy ® Ny, No) = BExt!'(Iz ® Ny, No) = Ext'(L, O¢)

is surjective, which shows that all bundles in (4) are coming from (1) by
applying 7.

According to [Ha] (Ex. V.2.5), there is a non-empty open set V C
Ext!(L,O¢) (don’t forget the condition s — 7 < g+ 1!) such that all £ € V
define normalised vector bundles on C.

Now, in Ext!(Iy ® N1, N3) the set of vector bundles is a non-empty
open set U. It is clear that ¢~ 1(V) N U # () (being open sets in Zariski
topology), so we conclude.

84. Moduli of stable bundles

There is an interesting relation between the moduli spaces M (c1, 2, d, 1)
and the Qin’s sets E¢(cy,c2) (see [Q1], [Q2] for precised definitions).

As in the proof of Theorem 10, case (I) we conclude that if ¢ is a
normalized class reprezenting a non-empty wall of type (c1,c2) such that
l¢(c1,c2) > 0 then, for (2d—a,2r—3) = ¢, E¢(c1,c2) and M(c1, co,d,r) are
coincident modulo a factor of Picy(C') (Qin workes with first Chern class ¢;
as an element in Pic(X)).

This is a consequence of the following facts:
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(a) le(er,c2) =l(c1,c0,d,7)

(b) condition ¢? < 0 implies 2d > «

(c) in the case 2d > « the bundles L;, Ly and the set Y from the
sequence (1) are uniquely determined by E.

(d) if I(e1,c2,d,7) > 0 then in the sequence (1) the bundles are given
only by non-trivial extensions.

In fact it is not hard to see that M(c1, cp,d,r) # 0 iff E¢(c1,c2) # 0 so,
by means of Theorem 10, E¢(c1,c2) # 0 if l¢c(c1,¢2) > 0. But we have even
more:

COROLLARY 11. Let X be a ruled surface different from P! x P! and
let C be a chamber of type (c1,c2) different from Cy,. Then the moduli space

Me(cr,e2) # 0.
Proof. From Theorem 1.3.3 in [Q2] it follows that
Me(er, e2) = (Mg, (er,e2) = U E(—¢)(c1,e2)) L Ec(ex, e2)
¢ ¢

where C; is the chamber lying above C and sharing with C a non-empty
common wall W and ¢ runs over all normalised classes representing W. By
the above considerations, it follows that E¢(c1,c2) # 0 if I(c1, c2,d,7) > 0.
It remains the case [(c;, ¢, d,r) = 0 and it will be sufficient to prove that

WYX, No @ Ni1) = dim H'Y(X, Na @ Ni1) >0

(see the proof of Theorem 10).
We have

No@ N7l = Ox((d—d)Co+ (r—s)fo) @n*(La @ LT,

whered —d =2d—a=wandr—s=2r— 3 =v. But ( =uCy+vfyisa
normalized class and this implies that « > 0 and v < 0 (see [Q1]).

Because H?(X, Ny ® N;') = 0, the Riemann-Roch Theorem gives the
equality:

x = hO(X, No@N; Y ) —h' (X, No@N; 1) = 1—g+(1/2) ((u+1) (20 —ue) +u(2—29)).

But ¢? < 0 gives u(2v — ue) < 0; it follows 2v — ue < 0.
If g > 1, then obviously x < 0. If g = 0, then e > 0 and

x=14+v+ (u/2)2(v+1) —e(u+1)).

https://doi.org/10.1017/50027763000025332 Published online by Cambridge University Press


https://doi.org/10.1017/S0027763000025332

MODULI VECTOR BUNDLES OVER RULED SURFACES 121

If e > 1, then x < 0. For e = 0 we get X = P! x P!, which we excluded.
Thus, in all cases x < 0; it follows h'(X, No ® Nfl) > (0 and the proof is
over.

Remark. Let us suppose that X = P! x P! and that C is a chamber
of type (e1,¢2) lying below a non-empty wall defined by a normalized class
¢ = uCy + vfy with v < —2. Then the same conclusion as in the above
corollary holds.

Indeed, in this case we have xy = (1 + v)(1 + u). Since v < —1, then
again x < 0.
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