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Invariant Theory of Abelian
Transvection Groups

Abraham Broer

Abstract. Let G be a finite group acting linearly on the vector space V' over a field of arbitrary char-
acteristic. The action is called coregular if the invariant ring is generated by algebraically independent
homogeneous invariants, and the direct summand property holds if there is a surjective k[V ]C-linear
map 7: k[V] — k[V]C.

The following Chevalley—Shephard—Todd type theorem is proved. Suppose G is abelian. Then the
action is coregular if and only if G is generated by pseudo-reflections and the direct summand property
holds.

1 Introduction

Let V be a vector space of dimension # over a field k. A linear transformation7: V —
V is called a pseudo-reflection if its fixed-points space V™ = {v € V ; 7(v) = v} isa
linear subspace of codimension one. Let G < GL(V') be a finite group acting linearly
on V. Then G acts by algebra automorphisms on the coordinate ring k[V'], which is
by definition the symmetric algebra on the dual vector space V*. We shall say that G
is a pseudo-reflection group if G is generated by pseudo-reflections; it is called a non-
modular group if the order of G is not divisible by the characteristic of the field. The
action is called coregular if the invariant ring is generated by n algebraically indepen-
dent homogeneous invariants. Finally we say that the direct summand property holds
if there is a surjective k[V']®-linear map 7: k[V] — k[V]° respecting the gradings.

For a non-modular group the direct summand property always holds, because in
that case we can take the transfer Tr® as projection, defined by

T k(V] = k[VIC:TO(f) = > ol ),

0c€G

since for any invariant f we have Tr%(|G|~'f) = f. A theorem of Serre [1, Theo-
rem 6.2.2] implies that if the action is coregular then G is a pseudo-reflection group
and the direct summand property holds. We conjectured that the converse also
holds [2]. The theorem of Chevalley—Shephard-Todd [1, Chapter 6] says that the
converse holds if the group is non-modular. In this note we prove that the converse
holds if G is abelian. Elsewhere we show that the converse is also true if V' is an
irreducible kG-module [3].

Theorem 1.1 Suppose G < GL(V) is an abelian group acting on the finite dimen-
sional vector space V. Then the action is coregular if and only if G is a pseudo-reflection
group and the direct summand property holds.
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As corollary we get a special case of a conjecture made by Shank—Wehlau [8].
Suppose the characteristic of the field is p > 0.

Corollary 1.2 Let G < GL(V) be an abelian p-group acting linearly on the vector
space V. The image of the transfer map Tx is a principal ideal in k[V 1€ if and only if
the action is coregular.

2 Hilbert Ideal and the Direct Summand Property

For elementary facts on the invariant theory of finite groups we refer to [1], for a
discussion of the direct summand property and the different see [2]. We recall that
the different 6 of the action can be defined as the largest degree homogeneous form
in k[V] such that Tr(f/0) € k[V]C for all f € k[V]C; it is unique up to a multi-
plicative scalar. The direct summand property holds if and only if there exists a 0
such that TrG(éc/GG) = 1 and then we can take as k[V']®-linear projection

m k[V] — kIVIC: 7(f) = TrG(ain) .

If ] C k[V]% is an ideal, we define J¢ := J - k[V], the ideal in k[V] generated by J.
If I C k[V], we define I :== I N k[V]%, the ideal in k[V']¢ generated by the invariants
contained in I. An important consequence of the direct summand property is that it
implies ] = J* [2, Proposition 6].

The Hilbert ideal $ C k[V'] is the ideal generated by all positive degree homoge-
neous invariants. Hilbert already noticed that if the direct summand property holds,
then any collection of homogeneous G-invariants generating the Hilbert ideal also
generates the algebra of invariants. We say that the Hilbert ideal is a complete inter-
section ideal, if it can be generated by n homogeneous invariants where n = dim V.
Those invariants necessarily form a (very special) homogeneous system of parame-
ters. We shall use the following criterion for coregularity.

Proposition 2.1 The action is coregular if and only if the Hilbert ideal $ is a complete
intersection ideal and the direct summand property holds.

Proof If the action is coregular, then k[V]¢ = k[ fi,..., fu]andso = (fi,..., fn)
is a complete intersection ideal. Coregularity also implies the direct summand prop-
erty (2, Proposition 5(ii)].

Conversely, suppose the direct summand property holds and = (fi,..., fu),
where fi,. .., f, are homogeneous invariants of positive degree. Now we recall Hil-
bert’s argument showing that R := k[ f;, ..., f,] is equal to k[V]°. Suppose R is not
equal to k[V']¢. Then let f € k[V]© be of minimal degree such that f is not in R. But
f € 9, so there are hy, ..., h, € k[V] of degree strictly smaller than the degree of
f,such that f = h; f; + - -+ + h, f,. By hypothesis there is a k[V ]¢-linear projection
operator 7: k[V] — k[V] respecting grading. We can assume 7(1) = 1. We use
ittoget f = n(f) = w(hy)fi +--- + w(hy,)fy. Each w(h;) is now invariant and of
strictly lower degree than f, hence is in R. But then f € R, which is a contradiction.
It follows that k[V' ] is generated by fi, . .., f,, and so the action is coregular. ]
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Let U C VO be a linear subspace, and U+ C V* = k[V], the space of linear
forms vanishing on U. Let I(U) be the ideal in k[V]¢ generated by U+. We shall
define 9y, the Hilbert ideal relative to U, to be I(U)%, i.e., Hy is the ideal of k[V']
generated by all the invariants contained in I(U). In particular, for U = {0} we get
the original Hilbert ideal 9. Let s be the codimension of U in V. Then we say that
Du is a complete intersection ideal if it can be generated by s homogeneous invariants.

Lemma 2.2 Let Hy be the Hilbert ideal relative to U C VC. If Sy is a complete
intersection ideal then the Hilbert ideal $) is also a complete intersection ideal.

Proof We shall use that the quotient algebra k[V]°/I(U)* is a polynomial ring, a
result due to Nakajima [7, Proof of Lemma 2.11]. We recall the quick proof.

To prove this result we can suppose that k is algebraically closed so that we can use
the language of algebraic geometry. Let 7g: V' — V /G be the quotient map. The
linear algebraic group U acts on V by translations:

UxV —>V:(uv)— u+m.

Since U C V9, the translations commute with the G-action on V, hence the U-action
on V descends to an action on the quotient variety

UxV/G—V/G: (unmg(v) — mglu+v).

It acts simply transitively on itself and on its image 76(U) in V/G. So mg(U) is
isomorphic to U ~ k"7, hence the coordinate ring of 75(U) is isomorphic to a
polynomial ring with n — s variables. The coordinate ring of V /G can be identified
with k[V]¢ and then 7g(U) is defined by I(U)°. Tt follows that k[V]¢/I(U) is a
polynomial ring in # — s variables. This finishes the proof of Nakajima’s result.

So we can find n — s homogeneous invariants f1, fi2, - - -, fn such that

LU+ (firns fosas -5 fKIVIC = KIVIS,
the maximal homogeneous ideal of k[V']¢. So
9 = (k[VIO)® = IU)* + (firts fosrs - - s f)KIV] = Su + (fists frvzs - -5 fu)K[V ]

Now if $y is a complete intersection ideal, hence generated by s elements, it follows
that $) is generated by # elements and is also a complete intersection ideal. ]

3 Abelian Transvection Groups

For any pseudo-reflection p on V there is a vector e, € V such that (p — 1)(V) = ke,
and a functional x, € V* such that p(v) — v = x,(v)e,. Then v € V7 if and only
if x,(v) = 0, or x, is a linear form defining the fixed-points set V”. There also is a
unique linear map A, : k[V] — k[V] such that for f € k[V]

p(f) = f = Bp(f)xp-
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The pseudo-reflection is called a transvection if p(e,) = e,, i.e., e, € V', or equiv-
alently if A,(x,) = 0. The fixed-points set V" is then called a transvection hyper-
plane. Otherwise the pseudo-reflection is diagonalisable over k, and called homology,
i.e., there is a basis of V' consisting of eigenvectors. A transvection group is a group
generated by transvections.

Proposition 3.1 Let G be a finite abelian transvection group acting on V.

(i) Dye is a complete intersection ideal, where Hyc is the Hilbert ideal relative to V°.
(ii) G s an abelian p-group, where p is the characteristic of the field.

Proof (i) Let r; and r, be two transvections in G, whose fixed-point sets are defined
by the two linear forms x; and x,. Then for any f € k[V] there is a unique A;(f)
and A, (f) such that r;(f) = f + A;(f)x;, for i = 1, 2. Since the r; are transvections,
we have A;(x;) = 0. For any linear form y we have that A;(y) is a scalar and

r(r(y) = n(y + A(y)x) =y + Ar(p)xn + Dy(9)x0 + Ag (1) Ay (2)x1,
() =ny+ Ai(p)x) =y + A ()% + Ai(y)x1 + Ar(y) As(x1)x,.

Since G is abelian we get for all y € V* that Ay (y) A1 (x2)x1 = A1 (y) Az (x1)x;.

If x; and x;, are dependent then A;(x;) = 0. Supposing they are independent, we
get Ay (¥)A1(x;) = 0 for all linear forms y, hence A;(x;) = 0. Similarly A, (x;) = 0.
Therefore we get r;(x;) = x;. Since our group is an abelian transvection group,
it follows that any linear form defining a transvection hyperplane is a G-invariant
linear form.

Let T C G be the collection of transvections in G. For any 7 € T fix x; as above.
Since the transvections generate G we get

VOt=(Nv" T = Z(VT)L = Z(xﬁ =(x,;7€T).

TeT reT reT

Since we just proved that each x, € (V*)¢ C k[V]C, it follows that (V©)~ is gener-
ated by linear invariants, say x, . . . , X,—s, and so 9y is a complete intersection ideal,
since

I(VO) = (x1,...,X,s) = I(VO)® = Hye.

(ii) Suppose G is not a p-group. Then (by extending the field if necessary) there
existsa o € Gand alinear form y € V* such that o(y) = cy, where ¢ # 1. Since G is
generated by transvections, there must be a transvection 7 € G, with corresponding
x; and A;, such that 7(y) # y, or A-(y) # 0. Then

or(y) = oy + A-(y)x:) = cy + Ar(y)o(xr)
To(y) =7(cy) = cy + A (y)ex,.

Comparing, we get o(x,;) = cx, and so x, & (V*), which contradicts (i). So Gis a
p-group. |
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4 Reduction to Abelian Transvection Groups and Diagonalisable
Pseudo-Reflection Groups

The following proposition allows us to treat separately abelian transvection groups
and diagonalisable pseudo-reflection groups. The first two parts were known to
Nakajima [6, Proof of Proposition 2.1].

Proposition 4.1 Let G < GL(V) be an abelian pseudo-reflection group G acting on
V. Denote T for the subgroup of G generated by the transvections and D for the subgroup
generated by the homologies in G.

(i)  Then D is a non-modular group, T is a p-group and G = T x D.
(ii) There is a direct sum decomposition of kG-modules V.= VP & Vp, where D acts
trivially on VP and T acts trivially on V. For the invariant rings we get

k[V1¢ ~ k[VP]T @ k[Vp]P.

Consequently, the G-action on 'V is coregular if and only if the T-action on VP (or
on'V') and the D-action on Vp (or on V') are coregular.

(iii) The direct summand property holds for the G-action on V' if and only if the direct
summand property holds for the T-action on VP (or V).

Proof (i) Since every generator of D is diagonalisable over k and D is abelian, the
group D is simultaneously diagonalisable; in particular it is non-modular. Since T is
an abelian transvection group, it is a p-group by LemmaBIl So T N D = {1} and
G=TxD.

(i) Let VP be the space of invariants and Vp, the direct sum of the remaining
eigenspaces of D, so at least V = VP @ V as kG-modules.

If 7 € T, then by commutativity also 7(v) € V2, so V is a kG-submodule.

Let 7 be transvection with corresponding e, € V and x, € V* such that 7(v) —
v = 6(v)e,, for any v € V. Let o be a homology and ov = cv, where v is the
eigenvector for o with eigenvalue ¢ # 1. Then 7ov = Tcv = cv+x,(v)ce; and o7v =
oc(v+x:(v)e;) = cv + x,(v)o(e;). Commutativity implies x.(v)(c(e;) — ce;) = 0. If
x-(v) # 0, it follows that e, is an eigenvector for o with eigenvalue c. So v is a scalar
multiple of e, (since o is a homology, the eigenspace with eigenvalue ¢ # 1 is one-
dimensional). But since e, € V7 (since 7 is a transvection) it follows that 7(v) = v
and so x,(v) = 0, which is a contradiction. So necessarily x,(v) = 0 and 7(v) = v.

Since the eigenvectors of homologies with non-identity eigenvalue span V, (since
those homologies generate D), it follows that T acts trivially on Vp. In particular Vp
is also a kG-submodule and V = VP @ Vp isa decomposition as kG-modules.

Let y1, ...,y be abasis of linear forms vanishing on Vp, and zy, . . . , 2, a basis

fli fi ishi VP, S di functi VP

of linear forms vanishing on V”. So yy,..., y, are coordinate functions on V%,
Z1,...,2Zy_m are coordinate functions on Vp, and

k[V] = k[yl ,)/m,Zl,...,Zn_m] = k[yb'"ayn] ®k[217"'azn—m]
= k[Vp] @ k[V"].

For the invariants we get k[V]¢ ~ k[VP]T @ k[Vp]P.
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(iii) The different of the G-action 6 is a product of linear forms x,, where the
zero-set of x,, say V,, := {v € V;x,(v) = 0}, is the fixed-point set of a pseudo-
reflection [2, Proposition 9]. The same holds for 67 and 6p. If 7 is a transvec-
tion, then V™ D Vp; if 7 is diagonalisable, then V™ D VP, It follows that §; €
kly1,...,ym] = k[VP] and 0p € k[z1,...,2,—m] € k[Vp] and 05 = 07 - O0p. In
particular T acts trivially on 6p and D acts trivially on 67.

Suppose the direct summand property holds for the G-action, i.e, there exists a

Oc € k[V] such that TrG(g—g) = 1. Put Oy := TrD(g—;'), then

Tw@Q:ﬁqéwxipznqwxisz

since Tr® = Tr” o Tr” and 67 is D-invariant. So the direct summand property holds
for the G-action V.
Suppose that Or is not in k[VP] = kly1,--.,¥n]. SO we can write

n—m
Or =07+ zf,
i-1

where 01 € k[VP] and f; € k[V]. Then

since Tr! ( fi/0r) is of negative degree, hence 0. It follows that the direct summand
property also holds for the T-action on V?.

Conversely, suppose the direct summand property holds for the T-action on V.
Then by the foregoing argument the direct summand property also holds for the
T-action on VP. Hence there is a O € kly1,...,ym] such that TrT(gT/GT) = 1. Put
0 := |D|=! - Op - Or. This makes sense since D is non-modular. Then

19 00) <o (1200 0y _r (O ooy <

and so the direct summand property also holds for the G-action on V. ]

5 Proofs of Main Results

We now prove our main theorem and its corollary.

Theorem[L.Il Suppose G < GL(V) is an abelian group acting on the finite-dimen-
sional vector space V. Then the action is coregular if and only if G is a pseudo-reflection
group and the direct summand property holds.
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Proof Even when G is not abelian, by a theorem of Serre it is generally true that if the
action is coregular, then G acts as a pseudo-reflection group and the direct summand
property holds [2].

Suppose that G is an abelian pseudo-reflection group and the direct summand
property holds. Then G = T x D, where T is the subgroup generated by transvections
and D the subgroup generated by diagonalisable reflections, as in Proposition [4.1]
We use the notation of that proposition. Since D is a non-modular pseudo-reflection
group acting on Vp, it follows from the classical Chevalley—Shephard—Todd theorem
that k[Vp]? is a polynomial ring. From Proposition A1 it also follows that T is an
abelian transvection group acting on V' and that this action has the direct summand
property. From Proposition[3.Iland Lemma 2.2]it follows that the Hilbert ideal § of
this action is a complete intersection ideal. So by the criterion in Proposition R.1] it
follows that the T-action on V' is coregular, and so k[V"]7 is a polynomial ring. So
k[V1¢ = k[VP]T @ k[Vp]P (see Proposition@Ilagain) is a polynomial ring. Hence
the G-action is coregular. ]

We get a special case of Shank—Wehlau’s conjecture [8].

Corollary[1.2l Let G < GL(V) be an abelian p-group acting linearly on the vector
space V. The image of the transfer map TrC is a principal ideal in k[V 1€ if and only if
the action is coregular.

Proof In [2] it was already shown for p-groups that the direct summand property
holds if and only if the image of the transfer map Tr” is a principal ideal in k[V]®
and that this condition implies that G is a transvection group, and if G is abelian,
then Theorem [[LTlimplies that the action is even coregular. Conversely, if the action
is coregular, then the direct summand property holds and the image of the transfer is
a principal ideal. ]

Example 1 The simplest example of an abelian transvection group that satisfies
neither the direct summand property nor the coregularity property is the following.
Take p = 2,k = IFp, G = {(01,02,03) =~ (2/27)°,V = I3 and the action is defined
by the three matrices

100 0 100 0 100 0
010 0] 010 0] 010 0
711 01 0727 loo 1 0’7111 0
00 0 1 010 1 110 1

In fact 0y, 0,, and o3 are the only transvections in the group, with transvection hy-
perplanes defined by x;, x,, and x; + x,, respectively. So the ideal I defining V¢ is
I = (x1,x;) and the Dedekind different is 8 = x1x,(x; + x;). A minimal generating
set of invariants is (see [5]) x1, x, and

f5i= xix3(x1 + x3) + %04 (062 + %4
N(x3) = x30x3 +x1)(x3 + %) (x5 + %1 +x2)5

N(xs) = x4(xs +x1) (x4 + 22) (x4 + %1 + X2).
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There is one generating relation among the generators.

The Hilbert ideals are complete intersection ideal $ = (x;, x,, N(x3), N(x4)), and

9ve = (x1,x2). But the direct summand property does not hold, since if it would
hold we would have for J = (x1,x,)k[V]© that ] = J%, but J* = (x1,x,, f3)k[V]°.
Or more directly, a calculation shows that if f € k[V] is of degree 3, then
Tr°(f/06) = 0.
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