APPROXIMATION OF L_p -CONTRACTIONS BY ISOMETRIES

M. A. AKCOGLU* AND D. BOIVIN

ABSTRACT. We construct a positive linear contraction T of all $L_p(X,\mu)$ -spaces, $1 \le p \le \infty$, $\mu(X) = 1$ such that T1 = 1, $T^*1 = 1$ and also Tf > 0 a.e. for all $f \ge 0$ a.e., $f \not\equiv 0$ but for which there is an $f \in L_\infty$ such that $(T^nf - \int f d\mu)$ does not converge in L_1 -norm. We also show that if T is a contraction of a Hilbert space H, there exists an isometry Q and a contraction R such that $\|T^nx - Q^nRx\| \to 0$ as $n \to \infty$ for all x in H.

0. **Introduction.** Let (X, Σ, μ) be a measure space and $\mu(X) = 1$. Let T be a positive linear transformation acting on the (equivalent classes of) measurable functions on X such that T1 = 1 and T is contraction of all L_p -spaces with μ an invariant measure; i.e. $\int |Tf|^p d\mu \le \int |f|^p d\mu$ for all $p, 1 \le p \le \infty$, and for all measurable $f: X \to \mathbb{R}$. It is known [2], [3] that there is a sub σ -algebra $\Sigma_d \subset \Sigma$ such that if 1 , then

$$L_p(\Sigma_d) = \{ f \text{ in } L_p : ||T^n f||_p = ||f||_p \text{ for all } n \ge 0 \}$$

and $T^n f$ converges weakly to $E(f|\Sigma_d)$ in $L_2(\mu)$ for all f in L_2 , where $E(\cdot|\Sigma_d)$ is the conditional expectation with respect to Σ_d .

If, moreover, T is recurrent in the sense of Harris and aperiodic (see [2]), then $T^n f$ converges to $\int f d\mu$ in L_1 -norm. In [5, pp. 113–115], Rosenblatt gave an example where Σ_d is trivial but $T^n f$ does not converge to $\int f d\mu$ in norm for some indicator functions, I_A . However, in section 1, we show that for any contraction T of a Hilbert space H, there is an isometry Q and a contraction R such that for all f in H, $(T^n f - Q^n R f)$ converges in norm to 0 as $n \to \infty$.

If T, as in the beginning, is also Harris recurrent then it has the following property [4, p. 160]: there is a set C, $\mu(C) \neq 0$ and an integer N > 0 such that if $f \geq 0$, $fI_C \neq 0$ then $T^n f > 0$ on C for all $n \geq N$. Then one might ask whether $T^n f$ converges to $\int f d\mu$ in L_1 -norm for all f in L_1 for a contraction T with the property: Tf > 0 for all $f \geq 0$, $f \neq 0$. In section 2, we show that this is not so. Rosenblatt's example does not satisfy this property. Note that if T is Harris recurrent with this property then it must be aperiodic.

Received by the editors January 19, 1988 and, in revised form, October 4, 1988.

^{*}The research of this author is supported in part by NSERC Grant A 3974.

¹⁹⁸⁰ Mathematics Subject Classification: Primary: 60J05 Secondary: 47A37.

[©] Canadian Mathematical Society 1988.

1. Contractions on Hilbert Spaces. Let H be a Hilbert space. Recall that a linear operator $S: H \to H$ is called a contraction if $||S|| \le 1$, an isometry if ||Sf|| = ||f|| for all $f \in H$, self-adjoint if $S = S^*$ and positive definite if $(Sf, f) \ge 0$ for all $f \in H$. Here, as usual, $S^*: H \to H$ denotes adjoint operator of S and (\cdot, \cdot) is the inner product in H. Hence, by definition, $(Sf, g) = (f, S^*g)$ for all $f, g \in H$. Our purpose in this section is to obtain the following theorem.

THEOREM 1.1. Given a contraction $T: H \to H$ there is an isometry $Q: H \to H$ and another contraction $R: H \to H$ such that $\lim_n ||T^n f - Q^n R f|| = 0$ for all $f \in H$.

The proof will be given after several lemmas.

LEMMA 1.2. If $T: H \rightarrow H$ is a contraction then

$$||T^{*k}T^{n+k}f - T^nf||^2 \le ||T^nf||^2 - ||T^{n+k}f||^2$$

for any $f \in H$ and for any integers $n, k \ge 0$.

PROOF. Since T^* is also a contraction,

$$||T^{*k}T^{n+k}f - T^nf||^2 = ||T^{*k}T^{n+k}f||^2 + ||T^nf||^2 - 2(T^{*k}T^{n+k}f, T^nf)$$

$$\leq ||T^{n+k}f||^2 + ||T^nf||^2 - 2||T^{n+k}f||^2$$

$$= ||T^nf||^2 - ||T^{n+k}f||^2.$$

LEMMA 1.3. Given a contraction $T: H \to H$ there is a self adjoint and positive definite $P: H \to H$ such that $\lim_n \|T^{*n}R^nf - Pf\| = 0$ for any $f \in H$.

Proof. Lemma 3.2 shows that

$$||T^{*n+k}T^{n+k}f - T^{*n}T^nf||^2 \le ||T^{*k}T^{n+k}f - T^nf|| \le ||T^nf||^2 - ||T^{n+k}f||^2.$$

Since $||T^n f||^2$ is a non increasing sequence of non negative numbers, we see that $T^{*n}T^n f$ is a Cauchy sequence in H. Define Pf as the norm limit if $T^{*n}T^n f$. Then it is clear that $P: H \to H$ is linear, self adjoint and positive definite.

REMARKS 1.4. A similar but a much better known result is the convergence of $(T^*T)^n f$. Also, Lemma 1.3 is a special case of a result in [1], obtained later.

LEMMA 1.5. Let T and P be as in Lemma 1.3. Then $\lim_n ||PT^nf - T^nf|| = 0$ for each $f \in H$.

PROOF. Lemmas 1.3 and 1.2 show that

$$||PT^n f - T^n f||^2 = \lim_k ||T^{*k} T^k T^n f - T^n f||^2$$

$$\leq ||T^n f||^2 - \lim_k ||T^{n+k} f|||^2,$$

from which the proof follows.

LEMMA 1.6. If $R: H \to H$ is positive definite then $||Rf - f|| \le ||R^2f - f||$ for any $f \in H$.

PROOF. Since R is positive definite,

$$0 \le (R(Rf - f), (Rf - f))$$

$$= ((R^{2}f - f) - (Rf - f), (Rf - f))$$

$$= (R^{2}f - f, Rf - f) - ||Rf - f||^{2}$$

$$\le ||Rf - f||(||R^{2}f - f|| - ||Rf - f||),$$

which gives the proof.

PROOF OF THEOREM 1.1. Let $T: H \to H$ be a contraction and let P be as in lemma 1.3. Since P is positive definite and self adjoint, it is known that there is a positive definite and self adjoint operator $R: H \to H$ such that $P = R^2$. Note that

$$||Rf||^2 = (Rf, Rf) = (R^2f, f)$$

$$= (Pf, f) = \lim_n (T^{*n}T^nf, f)$$

$$= \lim_n (T^nf, T^nf) = \lim_n ||T^nf||^2.$$

Let $H_0 = \{f | f \in H, \lim_n \|T^n f\| = 0\}$, which is a closed linear subspace of H. Let $H_1 = H_0^{\perp}$ be the orthogonal complement of H_0 . Hence Rf = 0 whenever $f \in H_0$ and $Rf \neq 0$ if $f \in H_1 - \{0\}$. Finally let $M = RH(=RH_1)$ be the range of R, which is a linear subspace of H.

We now define an operator $Q: M \to M$ as follows. If $f \in M$ then there is a unique $g \in H_1$ such that f = Rg. We then let Qf = RTg. It is clear that Q is a linear operator. Also, $\|Qf\| = \|RTg\| = \lim_n \|T^n(Tg)\| = \lim_n \|T^ng\| = \|Rg\| = \|f\|$ for any $f \in M$. This shows that Q is an isometry on M. Hence it can be extended to an isometry on M, the closure of M. We can also extend Q to an isometry on the whole space H by defining it, for example, as the identity operator on the orthogonal complement of M. Let $Q: H \to H$ denote this extended operator. Now it is easy to see that $Q: H \to H$ is an isometry such that QRf = RTf for all $f \in H$. Hence, by induction, $Q^nRf = RT^nf$ for each $f \in H$ and for each integer $n \ge 0$.

We now claim that $\lim_n ||T^n f - Q^n R f|| = 0$ for all $f \in H$. In fact,

$$||T^n f - Q^n R f|| = ||T^n f - R T^n f||$$

 $\leq ||T^n f - R^2 T^n f|| = ||T^n f - P T^n f|| \to 0$

as $n \to \infty$. Here the inequality follows from Lemma 1.3 and the convergence of $||T^n f - PT^n f||$ to zero follows from Lemma 1.3.

2. **An example.** We give in this section, an example of a positive linear contraction of all L_p , $1 \le p \le \infty$, such that T1 = 1 and such that the σ -algebra Σ_d defined in 1.1 is trivial but the limit distribution ν of $T^n f$ is not a point mass for some function f.

Construction of T. Let $(Z, \mathcal{H}) = (X \times Y, \mathcal{F} \times \mathcal{G}), X = Y = [0, 1]$ with the Lebesgue product measure $\mu.Q: Z \to Z$ is the well-known Baker's transformation: $Q(x,y) = (x/2,2y) \pmod{1}$ if 2y < 1 and $Q(x,y) = ((x+1)/2,2y) \pmod{1}$ if 2y > 1. Put $P_0 = \{(x,y): 0 < x < 1/2\}$ and $P_1 = P_0^c$.

$$\mathcal{P} = \{P_0, P_1\}$$
 and $\mathcal{P}_n = \bigvee_{i=0}^{n-1} Q^i \mathcal{P}$.

A set of the form $\{(x,y): a < y < b\}$ will be called a strip and a set of the form $\{(x,y): a < x < b\}$ will be called a column. The intersection of a strip and a column will be called a section. The members of \mathcal{P}_n are the columns

$$C_k^n = \left\{ (x, y) : \frac{k - 1}{2^n} < x < \frac{k}{2^n} \right\}, 1 \le k \le 2^n.$$

A column of \mathcal{P}_n is called even if k is even and odd if k is odd.

For $n \ge 1$, the transformation τ_n defined on a strip B_n , $\tau_n : B_n \to B_n$ permutes two by two, by translating the sections of $\mathcal{P}_n \cap B_n$, that is $\tau_n x = x + (-1)^{k+1}/2^n$ if $x \in C_k^n \cap B_n$. The operator T will be constructed inductively. Fix ρ , $0 < \rho < 1/4$. $B_1 = B_{1,1}$ is any strip such that $\mu(B_{1,1}) = \rho$. R_1 is τ_1 on B_1 and is identity elsewhere. Suppose $B_{n,i}$, $i = 1, \ldots, n$, B_n and R_n defined, then $B_{n+1,i}$, $i = 1, \ldots, n+1$ are strips such that $\mu(B_{n+1,i}) = \rho^{n+1}$, $B_{n+1,i} \subset B_{n,i}$, $i = 1, \ldots, n$ and $B_{n+1,n+1} \subset B_n^c$, $B_{n+1} = \bigcup_{i=1}^{n+1} B_{n+1,i}$, R_{n+1} is τ_{n+1} on each $B_{n+1,i}$, $i = 1, \ldots, n+1$ and is identity elsewhere. Put $R = \lim_{n \to \infty} R_n R_{n-1} \ldots R_2 R_1$. This is well defined for almost all $(x, y) \in Z$ since $\Sigma \mu(B_n) < \Sigma n \rho^n < \infty$. Finally, E is the conditional expectation with respect to G, that is for $f \in \mathbf{L}_p(Z)$, $(Ef)(x) = \int_y f(x,y) dy$. By identifying $\mathbf{L}_p(X, \mathcal{F})$ with $\mathbf{L}_p(Z, \mathcal{F} \times \{\phi Y\})$, we define T by $T = E(RQ)^{-1}$ where $(RQ)^{-1}f(x,y) = f((RQ)^{-1}(x,y))$.

Consider $f = 1_{P_0}$. On $Q^n P_0$, $n \ge 1$,

$$T^{n}1_{P_{0}} > 1 - \sum_{1}^{n} k\rho^{k} = 1 - \frac{\rho}{(1 - \rho)^{2}} > \frac{5}{9}.$$

Thus, $T^n f$ does not converge to a constant function.

LEMMA 2.1. For all $n \ge 1$ and for all pair of columns, $C_k^n, C_l^n \in \mathcal{P}_n$, $1 \le k$, $l \le 2^n$, $\mu((RQ)C_l^n \cap C_l^n) > \rho^n/2^n$.

PROOF. For n = 1, by construction of R_1 ,

$$\mu((R,Q)C_k^1 \cap C_l^1) = \begin{cases} \rho & \text{if } k \neq l \\ 1 - \rho & \text{if } k = l \end{cases}.$$

Suppose that $\mu((R_{n-1}Q)C_k^{n-1} \cap C_l^{n-1}) > \rho^{n-1}/2^{n-1}$. Let $C_k^n, C_l^n \in \mathcal{P}_n$ where k and l are odd, $k \neq l$, then $C_k^n \cup C_{k+1}^n = D_k \in \mathcal{P}_{n-1}$ and $C_l^n \cup C_{l+1}^n = D_l \in \mathcal{P}_{n-1}$.

Hence $(R_{n-1} \dots R_1 Q)D_k \cap D_l$ contains a section of a strip B_{n-1} of measure $> \rho^{n-1}/2^{n-1}$. Since $B_{n,i} \subset B_{n-1,i}$ and since R_n permutes the sections of $B_{n,i} \cap \mathcal{P}_n$, $(R_n \dots R_1)C_k$, $\cap C_l$, where k' = k or k+1 and l' = l or l+1 contains a section of a strip B_n of measure $(\rho/2)^n$. And since at least $(\rho/2)^{n-1} - (\rho/2)^n > \rho^n/2^n$ is invariant for all R_m , m > n, the lemma is true for n.

If l = k + 1 or l = k - 1, the lemma is true because of the action of R_n on the strip $B_{n,n}$.

Then if $||Tf||_p = ||f||_p$ for some $p, 1 and some <math>f \in \mathbf{L}_p(X)$ then from the preceding lemma, $f(x + 1/2^n) = f(x)$ a.e. for all $n \ge 1$. Hence $E(f|\mathcal{P}_n) = c$ but $E(f|\mathcal{P}_n) \to f$ a.e. since $\mathcal{P}_n \uparrow \mathcal{F}$. Then f = c.

Notice also that for all $f \ge 0$ a.e. then Tf > 0 a.e. Let $B \in \mathcal{F}$, $\mu(B) > 0$. Put $E = \{k/2^n : -2^n < k < 2^n, n = 0, 1, 2, ...\}$ and let $A = B + E \pmod{1}$. Then $T1_A < 1_A$, which implies that $T1_A = 1_A$ and thus $1_A = c1$. Then $T1_B > 0$ a.e.

REFERENCES

- 1. M. A. Akcoglu and L. Sucheston. An alternating procedure for operators in L_p -spaces. To appear.
- 2. S. R. Foguel. Ergodic theory of Markov processes. Van Nostrand Math. Studies 21.
- 3. C. H. Kan. On norming vectors and norm structures of linear operators between L_p spaces, I and II. To appear.
- 4. D. Revuz. *Markov Chains*. North Holland Math. Library 11, North Holland American Elsevier (1975).
- 5. M. Rosenblatt. Markov processes. Structure and asymptotic behavior. Springer, Berlin-Heidelberg, 1971.

Department of Mathematics University of Toronto Toronto, Ontario M5S 1A1 Canada

Department of Mathematics Ohio State University Columbus, Ohio 43210 U.S.A.