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APPROXIMATION OF L,-CONTRACTIONS
BY ISOMETRIES

BY
M. A. AKCOGLU* AND D. BOIVIN

ABSTRACT. We construct a positive linear contraction T of all Ly (X, p)-
spaces, | = p < 0o, w(X)=lsuchthatT1 =1,T*1 = | and also Tf >0
ae. for all f 2 0 ae., f # 0 but for which there is an f € Ly, such
that (T"f — [ fdu) does not converge in L;-norm. We also show that if
T is a contraction of a Hilbert space H, there exists an isometry Q and a
contraction R such that ||T"x — Q"Rx|| — 0 as n — oo for all x in H.

0. Introduction. Let (X, X, ) be a measure space and pu(X) = 1. Let T be a positive
linear transformation acting on the (equivalent classes of) measurable functions on X
such that 71 = 1 and T is contraction of all L,-spaces with p an invariant measure;
ie. [|Tf|Pdu = [|f|Pdp for all p,1 = p = oo, and for all measurable f : X — R. It
is known [2], [3] that there is a sub o-algebra £; C X such that if 1 <p < oo, then

L) = {f in L, : |T"f|l, = If|l, for all n = 0}

and T"f converges weakly to E(f|X) in Ly(u) for all f in Ly, where E(-|Z,) is the
conditional expectation with respect to X,;.

If, moreover, T is recurrent in the sense of Harris and aperiodic (see [2]), then T"f
converges to [ fdu in Li-norm. In [5, pp. 113-115], Rosenblatt gave an example where
T, is trivial but T"f does not converge to [ fdyu in norm for some indicator functions,
14. However, in section 1, we show that for any contraction T of a Hilbert space H,
there is an isometry Q and a contraction R such that for all f in H, (T"f — Q"Rf)
converges in norm to 0 as n — oo.

If T, as in the beginning, is also Harris recurrent then it has the following property
[4, p. 160]: there is a set C, u(C) # 0 and an integer N > 0 such that if f 2 0,
flc Z0 then T"f > 0 on C for all n 2 N. Then one might ask whether T"f converges
to [ fdp in Li-norm for all f in L, for a contraction T with the property: Tf > 0 for
all f 2 0, f #Z 0. In section 2, we show that this is not so. Rosenblatt’s example does
not satisfy this property. Note that if T is Harris recurrent with this property then it
must be aperiodic.
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1. Contractions on Hilbert Spaces. Let H be a Hilbert space. Recall that a linear
operator S : H — H is called a contraction if ||S|| = 1, an isometry if ||Sf|| = || /]|
for all f € H, self-adjoint if S = S* and positive definite if (Sf,f) 2 0 for all f € H.
Here, as usual, S* : H — H denotes adjoint operator of S and (-, -) is the inner product
in H. Hence, by definition, (Sf,g) = (f,S*g) for all f,g € H. Our purpose in this
section is to obtain the following theorem.

THEOREM 1.1. Given a contraction T : H — H there is an isometry Q : H — H
and another contraction R : H — H such that lim, ||T"f — Q"Rf|| =0 for all f € H.

The proof will be given after several lemmas.

Lemma 1.2. If T : H — H is a contraction then
I = T°f | < |77 |)* = 1T |

for any f € H and for any integers n,k 2 0.
Proor. Since T* is also a contraction,
||T*kT"+kf _ T"f||2 — ||T*an+ka2 + “Tnf||2 _ 2(T*kT"+kf, T"f)
S I+ ITF I = 20T |1
= [IT77 1> = 77112

LemMaA 1.3. Given a contraction T : H — H there is a self adjoint and positive
definite P : H — H such that lim, ||T*"R"f — Pf|| = 0 for any f € H.

Proor. Lemma 3.2 shows that
”T*n+an+kf . T*nTanZ < ”Tkamkf _ T"f” < ”TanZ _ ”T'ka”2.

Since ||T"f||? is a non increasing sequence of non negative numbers, we see that
T*'T"f is a Cauchy sequence in H. Define Pf as the norm limit if 7*"T"f. Then it is
clear that P : H — H is linear, self adjoint and positive definite.

REMARKS 1.4. A similar but a much better known result is the convergence of
(T*T)'f. Also, Lemma 1.3 is a special case of a result in [1], obtained later.

LemMma 1.5. Let T and P be as in Lemma 1.3. Then lim, |PT"f — T"f|| = O for
eachf € H.

Proor. Lemmas 1.3 and 1.2 show that

|PT"f — T"f|* = limy |T*T*T"f — T"f|?
< 7|17 — timyg [[TF(]]12,

from which the proof follows.
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Lemma 1.6. If R : H — H is positive definite then |Rf — f|| £ ||R*f — f|| for any
feH.

Proor. Since R is positive definite,

0= (RRf —f),Rf —1))
= (R’f —f)— Rf =), Rf —[))
= Rf —f,Rf =)= |IRf = f*
< IRf = fIRF = £1l = IRF = 1D
which gives the proof. O

Proor oF THEOREM 1.1. Let T : H — H be a contraction and let P be as in lemma
1.3. Since P is positive definite and self adjoint, it is known that there is a positive
definite and self adjoint operator R : H — H such that P = R?. Note that

IRFI* = Rf,Rf) = (R*f,f)
= (vaf) = limn(T*"Tnfvf)
= lim,(T"f, T"f) = lim, || T"f||?.

Let Hy = {f|f € H,lim, ||T"f|| = 0}, which is a closed linear subspace of H. Let
H = Hy" be the orthogonal complement of Ho. Hence Rf = 0 whenever f € Hy and
Rf # 0 if f € Hy — {0}. Finally let M = RH(= RH,) be the range of R, which is a
linear subspace of H.

We now define an operator Q : M — M as follows. If f € M then there is a
unique g € H; such that f = Rg. We then let Of = RTg. It is clear that Q is a linear
operator. Also, ||Qf || = |IRTg|| = lim, ||T"(Tg)|| = lim, [|T"¢|| = [[Rg|l = |If]| for
any f € M. This shows that Q is an isometry on M. Hence it can be extended to
an isometry on M, the closure of M. We can also extend Q to an isometry on the
whole space H by defining it, for example, as the identity operator on the orthogonal
complement of M. Let Q : H — H denote this extended operator. Now it is easy to
see that Q : H — H is an isometry such that QRf = RITf for all f € H. Hence, by
induction, Q"Rf = RT"f for each f € H and for each integer n 2 0.

We now claim that lim, ||T"f — Q"Rf|| = 0 for all f € H. In fact,

\T"f — Q"Rf|| = |IT"f — RT"f||
S|IT°f —R°T™f|| = |IT"f — PT"f|| —0

as n — oo. Here the inequality follows from Lemma 1.3 and the convergence of
|IT"f — PT"f|| to zero follows from Lemma 1.3.

2. An example. We give in this section, an example of a positive linear contraction

of all L,, 1 = p = oo, such that T1 = 1 and such that the o-algebra X, defined in 1.1
is trivial but the limit distribution v of T"f is not a point mass for some function f.
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Construction of T. Let (Z,H) = X XY, F X G), X =Y = [0,1] with the
Lebesgue product measure pu.Q : Z — Z is the well-known Baker’s transformation:
QO(x,y) = (x/2,2y) (mod 1) if 2y < 1 and Q(x,y) = ((x+1)/2,2y) (mod 1) if 2y > 1.
Put Py = {(x,y): 0 <x < 1/2} and P, = P§.

n—1

P ={Py,P1} and % =\/Q'P.
i=0

A set of the form {(x,y) : a <y < b} will be called a a strip and a set of the form
{(x,y) : a <x < b} will be called a column. The intersection of a strip and a column
will be called a section. The members of P, are the columns

C{ = {(x,y):k———l<x<—k—},1§k§2”.
2n 2n
A column of P, is called even if k is even and odd if k is odd.

For n 2 1, the transformation 7,, defined on a strip B,, 7, : B, — B, permutes two by
two, by translating the sections of P,NB,, that is 7,x = x+(—1)**! /2" if x € C'NB,.
The operator T will be constructed inductively. Fix p, 0 < p < 1/4. B; = By is
any strip such that u(B;;) = p. Ry is 7y on B; and is identity elsewhere. Suppose
B,;,i=1,...,n, B, and R, defined, then B,,,;, i = 1,...,n+ 1 are strips such that
pBuet) = p"™', Bury C Buin i = 1,...,n and Bpoypar C BS, But = US| Buo,is
Rpi1 is Ty On each By, i = 1,...,n+ 1 and is identity elsewhere. Put R =
lim, 0o RyR,—1 ...R2R;. This is well defined for almost all (x,y) € Z since Zu(B,) <
Xnp" < oo. Finally, E is the conditional expectation with respect to G, that is for
f e L, (@), (Ef)x) = f} f(x,y)dy. By identifying L,(X, ¥ ) with L,(Z,  x {¢Y }),
we define T by T = E(RQ)~" where (RQ)™'f(x,y) = f(RQ)™'(x,y)).

Consider f = 1p,. On Q"Py, n 2 1,

p 5

-2 9

T"p, > 1= kpt=1-
1

Thus, T"f does not converge to a constant function.

LemMmA 2.1. For all n 2 1 and for all pair of columns, C{,C!' € P,, 1 =k, 1 = 2",
p(RQ)CENCP) > p /2",

Proor. For n = 1, by construction of R,

. n_|p ifk#1
N((RyQ)CkmCI)_{l_p ifhk=1"

Suppose that p((R,—1Q)CF 1 NCr~1) > p*=1/27~1 Let CF,Cl' € P, where k and [
are odd, k # I, then CUCY,, =Dy € Pp—y and C'UC),, =D, € P,_;.

https://doi.org/10.4153/CMB-1989-052-1 Published online by Cambridge University Press


https://doi.org/10.4153/CMB-1989-052-1

364 M. A. AKCOGLU AND D. BOIVIN

Hence (R,—;...R1Q)Dy M D; contains a section of a strip B,—; of measure
> p"'/2""!. Since B,; C B,—1, and since R, permutes the sections of B,; N B,,
(R,...R))Cy, NC;, where k' =k ork+1and /' = or I + 1 contains a section of a
strip B,, of measure (p/2)". And since at least (p/2)""" — (p/2)" > p"/2" is invariant
for all R,,, m > n, the lemma is true for n.

If | =k+1or!/=k—1, the lemma is true because of the action of R, on the strip
Byp.

Then if ||Tf||, = ||f||, for some p,1 < p < oo and some f € L,(X) then from
the preceding lemma, f(x + 1/2”) = f(x) ae. for all n 2 1. Hence E(f|®,) = ¢ but
E(f|B,) — f ae.since B, T F. Then f =c.

Notice also that for all f 2 0 a.e. then Tf > 0 ae. Let B € F, u(B) > 0. Put
E={k/2": 2" <k <2',n=0,1,2,...} and let A = B + E (mod 1). Then
T14 < 14, which implies that T14 = 14 and thus 14 = c1. Then Tl > 0 a.e. 0
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