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Note on the application of complex integration to the
equation of Conduction of Heat, with special reference
to Dr Peddie's problem.

By JOHN DOUGALL, M.A.

1. In Dr Peddie's problem of a sphere cooling in a well-stirred
liquid, the conditions to be satisfied by the temperature v(r, t) are

(i) For every positive t, and every r from 0 to a, v is to be
finite and one-valued, and is to possess finite derivatives
dv dv drr . , .

-j- > —j-, -jr. i satisfying

dv idrv 2 <

d, , dT-dV ' dr*x

(ii) For every positive t, and r = a,
dv pa dv

where p = I (capacity of liquid)/(capacity of sphere).

(iii) Limit v(r, t) = a. given arbitrary function f(r), for every
r less than o.

(iv) Limit v(a, t) = initial temperature of liquid
= 0 suppose.

The classical method of Fourier, which Dr Peddie applies to the
problem, is simple and beautiful so far as it goes, but it is open to
the very serious objection that it leaves unverified the fundamental
condition (iii).

A complete, though necessarily more tedious treatment, can be
given by means of Cauchy's Theory of Residues, which I applied
to some Potential problems in a paper published in last year's
Proceedings. I have to thank Dr Peddie for kindly permitting me
to illustrate this method by a discussion of his very pretty problem.
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2. In order to avoid a certain difficulty arising out of condition
(iv), I suppose to begin with that / ( r ) is zero from r = b to r = a,
where b<a ; this restriction is afterwards removed.

Then a function satisfying (i; and (iii) is

V = ]_ f P/(p)\e
2r \liTKt J o L

This is, in fact, the known expression for the temperature at
time t in an infinite solid, when the initial temperature is f(r) from
0 to b, and zero for all values of r greater than b.

We may write
2 f* f» _ 2/

V = — p/(p)dp • e sinar sinap da,
nrj o Jo

t being positive, or

l " V » > where
J

2 Too _ 2,
U = — e Ka sinar sinap da.

vrJo

If now we can find a function U, satisfying (i), such that
Limit U1 = 0 for every r from 0 to a inclusive, and every p from 0

(=0

to 6 inclusive; and such that U + Uj satisfies the surface condition
rb

(ii); then v = pJ(p)(U + TJJdp is obviously the solution of our
Jo •

problem.

3. In order to obtain V1 it is necessary to express U as a com-
plex integral.

We have U - f+°° -X- e " KaH sinap e i o r da
J - »> wr

= the complex integral

J J-e-KaH sinap eiar da,
VKT

the path being the whole of the real axis from West to East.
This path we now displace into the upper half of the a plane.

The precise position of the new path need not be specified, the only
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essential being that the ultimate directions of its ends must not

make greater angles than r/4 With the real axis, since e~Kat is
infinite if the phase of a lie between rr/4 and 3n-/4.

For the sake of definiteness, however, we shall suppose the
displaced path to be symmetrical about the axis of imaginaries, and
to be ultimately inclined to the axis of reals at an angle ir/8; this
path we shall call the path toe.

Hence U = -— e ~ Kat sinao e'ar da, path we;
nrrj

oi 'U= uda, path we ;

where u = -—e~Ka~ sinu<ie'ar

%-rrr

Take u1 = -—e " Ka sinap sinar, which satisfies (i), choosing the
%TTT

constant A, so that u + <t, satisfies (ii).

„„ . . , (parar - iaa + 1 )eaa

11ns gives A = - —ih—TT-- ' ,
(pa-a~ +1) sinaa - aa cosaa

1 - KO?I • (pa"ar + l)sina(a - r) - aa cosa(a - r)and » + it, = -—e Ka l s m a p y i ^ ^ ' i -;e s m a p ^ ^ .
iirr (pa-a* + 1) sinaa - aa cosaa

Then i«,'ia, path we, is the function U, we require.

For (u + ut)da satisfies the surface condition ; also Limit uyda
J '"0 J

is zero for all values of p and r in question.

To prove the latter statement, we have

f I f KO,v . . (paV-icuH-l)eiaa

u.da — — -.— e sinup sinar-—^—,——: ' da,
J IT;r J (pa-a-+ l)smaa - aacoma

path we, and the integral at both ends of the path converges
uniformly with respect to t right up to t = 0, provided p + r < 2a.

Hence Limit «,c?a may be found by putting I = 0 in the integrand.
(»0 J

But this gives a zero integral, there being no singularities of the
new integrand in the part of the « plane above the path we.
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Hence

+ U , - J - fe ' ™H s i n a p { P ™ 7
(parar + l)sinaa - aa cosaa

U + U, - J - fe ' ™H sinap{P™+1)sina{a7 V) " ̂ ^ ^ ~ r) da,
vrrr J (par + l)sinaa aa cosaa

path we.

If w^i be the image of the path we in the real axis, this integral
is the same, element for element, as the integral over the path e-lwi

(from right to left), for the integrand is an odd function of a.

Thus U + U, = I ("(path e,»e,) + | ("(path ive).

These two patlis are equivalent to .1 complete circuit, in the
negative direction, embracing the real axis. The singularities
within this circuit are the zeros of the function

{pa?d* + l)sino.a - aa cosaa,

which, as will be shown immediately, are all real and simple, viz.,
a = 0, a = + au etc.

Hence, replacing the integral by

- (2ri) (sum of residues at poles within circuit),

we obtain

T7 + TJ,

xa-i . sina;' (pira1

Sin«/>— ~—CT—:. + 22-C Sin«/> . . —-—; — — ,
(P+}s)n' >• d / . . , . , . }

— •! (/«-«-+l)sinua - ua cosaa !-
Gt ft v. J

the summation extending over the positive roots of the equation

(pa?ar + 1) sinaa - ao cosno = 0. - - - (E)

The solution of the original problem is p/(p)(U + \Jl)dp, but
Jo

the series for U + U, manifestly converges uniformly with respect
to p, provided t is greater than zero. Hence the integration can be
performed term by term, and we have

2 V -Ka?t sinar p-a*a* + (2p + l)a'-a" + 1 [ .. . . ,
H ^ e „ . . — ~ — , : ., „ pf(p) sinan ilp.

a r p2a4o4 + (3p + l)aV- Joa r p2a4o4 + (3p + l)aV- Jo

where we have simplified the general term by means of the
equation (E).
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4. The roots of (E) are all real and simple.

(1) Suppose, if possible, that ft. = m + in is a root, then
v = m - in is also a root.

and 1? = e
r

are solutions of the equation of conduction, and by
Green's Theorem

. „/ dv du\ 1 fa/ dv du\t . ,
Airarl it—— v—r-1 = — I u—— v-z- 14-rr'rdr

\ dr dr/r=a K J O\ dt dt!
dv du\ ("«/ dv du

or (/x2 - v2) {paXVY)^ + fVuVdr} = 0.
J e

This is obviously impossible if /A2, V2 are different, since
p is positive, and IT, V are conjugate complexes, so that
UV is positive.

%v
(2) Suppose, if possible, that a = — is a pure imaginary root.

Cb

Then (pr - 1) sinhv + v coshv = 0.
The derivative with respect to v of the function on the
left is pv- coshv + (2p +l)vsinhv,
which is constantly positive if v is real and positive.
Hence the function, starting from zero for v = 0, can
never again become zero.

(3) If a = — is a repeated root, then, as we have shown, v is

real. We must have, simultaneously,
(pv* + l)sinv = vcosv
(2p +l)sinv= -pvcosv

Therefore (pv> + l)(2p + l)sin2i/ +pi^cos-v = 0,
which cannot be if p is positive, unless v = 0, which is
obviously excluded. A more searching investigation
will show that the roots are all real as long as p > — -J-,
but that if p < - I;, there are two pure imaginary roots.
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5. If b be put equal to a in the investigation of §3, it will be
seen that one point requires examination. I t was proved that

Limit u^da — 0, if p + r < 2a. If p and r each be equal to a, this
(-0 J

condition is violated, and the limit is in fact infinite. Limit uda
(=0 J

is infinite at the same time, but it is easy to prove that

Limit («i + u)da is finite, and the investigation stands. We shall,

however, verify in another way that the function

2 /fa=/sinar/aV + (2p+l)oa-(-l f ,. , . ,
p/(p)smapdpa r p-a'a" + (6p + 1 )a*a' J o

satisfies the condition Limit via, t) = 0.

For if t> 0, v obviously satisfies (i) and (ii).
Integrating (ii) over the surface, we have

*dv &ira3p tdv\
~dr + K \dl)o~ ' °r>

by Green's Theorem and (i),

iw. — -=-dr + — va = 0,
J n K at K dt

so that —I r-vdr + pa?va I = 0
ra

and r*vdr+ pa?va is constant for all positive values of /.
Jo

n
Hence the limits of r*vdr+pa3va for t = 0 and for t = a> are the

Jo
same. The limit for t = « is

The limit for t = 0 is
= r

J

j; p2f(p)dp +pas Limit va.
o «=o

Hence Limit va = 0.
' = 0
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Another point may be noted in connection with condition (iv),
as it explains the form of Dr Peddie's eliminating factor.

If the initial temperature is
sinar sinaa

, a being a root of (E),

then the temperature at time t is
_ KaSf s ina r sinnfc

for this satisfies all the conditions (i) to (iv).
Comparing this with the general solution, we see that the

coefficients of all the terras must vanish, except that corresponding
to the root a.

Hence (sinao — — sinual &mfipdp = Q,
Jo* « /
if /8 is a different root from a.

Pi. If the solution given in i; o is to be verified a posteriori, the
only condition causing any trouble is that of (iii).

Writing the series for r(r, 1) in § ;"> in the contracted form

we have to prove that as I continuously approaches zero, the series
continuously approaches f(r), or more shortly that

Limit 1'e ~ *"» \n{r) =/(r) - - - (A).
t—0

It is well enough known, but it seems desirable to recall, that
this is not quite the same thing as to prove

S».M=/(r) - - - - (B)
although it is the latter theorem which is usually attacked by writers
on the subject, from Fourier onwards.

We may, it is true, deduce (A) from (B), with the help of a
theorem analogous to the celebrated theorem of Abel's on the
continuity of a power series, but even then we lose something:
in fact not only is (B) more difficult to prove than (A), but it
cannot, so far as I know, be proved at all for functions with an
unlimited number of turning points, though, so far as (A) is
concerned, these present no difficulty whatever.
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