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MAXIMAL LEFT IDEALS AND IDEALIZERS IN 
MATRIX RINGS 

DAVID R. STONE 

Let R be a ring with identity, Mn(R) the ring of n X n matrices over 
R. The lattice of two-sided ideals of R is carried via A —> Mn(A) to form 
the lattice of two-sided ideals of Mn(R). We wish to study the more 
complex left ideal structure of Mn(R). For example, if K is a commutative 
field, then Mn(K) has non-trivial left ideals. In particular Mn(K) has the 
maximal left ideal consisting of all matrices with some designated column 
zero. Or for any ring with maximal left ideal M, Mn(R) has the maximal 
left ideal consisting of all matrices with some column's entries from M. 
In Theorem 1.2 we characterize the maximal left ideals of Mn(R) in terms 
of those of R. We briefly study some contraction properties of maximal 
left ideals in matrix rings. For R commutative we "count" the maximal 
left ideals of Mn(R) and describe the idealizer of any such ideal; in the 
case where K is a field we see that the collection of maximal left ideals of 
Mn(K) can be naturally identified with Pn-l(K) (projective space). 

In Section 3 we define two maximal left ideals M and N of R to be 
conjugate if M = pNp~l for some unit p of R, then study the lifting of 
conjugacy from R to Mn(R). For example, in Proposition 3.3 we show 
that if M is two-sided maximal ideal of R, then all maximal left ideals of 
Mn(R) which lie over M are conjugate. In particular, all maximal left 
ideals of Mn(R) are conjugate when R is a local ring. 

This paper was written while the author was visiting at the University 
of Kentucky. I would particularly like to thank Ed Enochs for many 
stimulating conversations and for innumerable ideas and comments. 

Notation. "Ideal (module)" will always mean left ideal (module); M 
and N will be generic symbols for maximal left ideals. The elements of 
Rn will be thought of as n X 1 columns but written as transposed rows: 
u = {u\, u2, . . . , uny. For a matrix X we shall let Xt denote the ith 
row; eXj denotes the matrix having 1 in the (i, j)-position and 0 elsewhere; 
et denotes the n X 1 column with 1 in the ith position and 0 elsewhere. 
R will be considered a subring of Mn(R) via the natural imbedding 
r—>diag(r, r, . . . , r). We shall let Max(jR) denote the collection of 
maximal (left) ideals of R. 
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1. The maximal left ideals of Mn(R). Let A be a left ideal of R, let 
u = (#1, . . . , wn)' G Rn and consider the Mn(R)-linear maps 

Mn(R) ^R71-^ {R/A)n ^ i T A T 

where/(X) = Xw and g is the natural surjection reducing mod A. Denote 
by D(A\u) the kernel of this composition. Thus 

D{A\u) = ( I f Mn{R)\Xu G An) 

= {X G JlfnCR)|A> G 4 , i = 1,2, . . . , » } . 

This is a left ideal of Mn(R) which is proper unless u G An. 
If M is maximal in R and w G Rn, u G Mw, then (R/M)n is a simple 

Mn(i?)-module. Therefore g o / is onto, Mn(R)/D(M\u) ^ (R/M)n and 
D{M\u) is a maximal left ideal of Mn{R). 

Examples. 1.1 (1) 

"i? . . . 0 . . . i? 

D(0:et) 

R...0...R 

i.e., zeros in the ith column. This is maximal if and only if R is a division 
ring. 

(2) If K is a field, M = 0, u = (1, - 1 ) ' , then 

D(0 :u) = J a c 
b d. 

0 and b - d = 0 

a a 
Le 6. 

|a, 6 G # 

is maximal in M2(K). 

(3) Similarly in the ring of integers Z, let M = pZ for p a prime and 
lettt = (1, - 1 ) ' . Then 

D(pZ :u) = 

is maximal in M2(Z). 

a b 
c d. 

\a = b (mod p) and c = d (mod p) 

THEOREM 1.2. The collection of D(M:u), for M G Max(i^) and 
u G Rn — Mn, gives all maximal left ideals of Mn(R). 

Proof. Let M' be a maximal ideal of Mn(R) ; so Mn(R)/Mf is a simple 
ikfnCR) -module. By the Mori ta equivalence, Mn(R)/Mf ^ En for £ a 
simple left i^-module. Thus E ~ R/M for some maximal ideal M of i?. 
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The isomorphism 

Mn(R)/Mf -> (R/M)n ^ Rn/Mn 

maps 1 + M' to some u + Mn, and it is easily checked that M' = 
D(M:u). 

Example 1.3. It may happen that D(A\u) is maximal even though A 
is not maximal in R. Let R = Z6[x], let A be the principal ideal generated 
by x, let M be the ideal generated by 2 and x, and let u = (3 + x, 0)' 
in R2. Then M is maximal in R and D(A:u) = D(M:u) is maximal in 
M2(R). 

For a left i^-module E with submodule F and for x £ E, let (Fix) 
denote the left ideal {r £ R\rx £ T7}. This is a proper ideal if and only if 
x Ç? i7; if T7 is a maximal submodule of £ and x £ F, then (F:x) is a 
maximal left ideal of R and R/(F:x) = E/F. In particular, if M is a 
maximal ideal of R,u £ R - M, then in Mx (R) = Rwehs.veD(M:u) = 
(M'.u). This also provides alternate visualizations of D(A\u) in any 
Mn(R) ; namely, for A a left ideal of R, u Ç i?w, 

D(A:u) = (,4n:^) computed in the Mn(i?)-module i£w, 
= (0:w + i^) computed in i^A4w, 
= (Mn(A): U) in the module Mn(R), 

where U is the n X n matrix having u down the first column and zeros 
elsewhere. Note that for n = 1 the theorem restates the obvious: 

Max (2?) = {(M:u)\M G Max(R),u G i ^ - M ) . 

Example 1.4. Let 2? be a matrix ring ; say i? = Mn (S). For 2V a maximal 
ideal of 5 and u £ Sn — Nn we have the maximal ideal M' = D(N:u) of 
i?. If X is any matrix in R — M', then (M':X) is a maximal left ideal of 
R = Mn(S), and the theorem tells us its form. In fact (M':X) = 
D(N:Xu). 

Example 1.5. (Nested matrix rings). For m, n ^ 1, ikfm(ikfw(i?)) = 
Mmn(R). For ,4 a left ideal of R and u £ Rn — An, D(A :u) is a proper 
left ideal of Mn(R). Then for U G Mn(S)m - D(A:u)m, we should be 
able to identify the image of the proper ideal D(D(A \u) : U) in Mmn(R). 
Regarding U as an mn X n matrix over R, we see that 

Uu G i?ww - Amn and D(D(A :u):U) = Z>(4: t/w). 

(The previous example was just a disguised special case of this one.) 

For a left ideal of R, let 1(A) = {r £ i?|^4r C 4̂} denote the idealizer 
of ^4. (This was introduced by Ore, studied in [5] by Robson, [2] by 
Goldie and recently in [4] and [6] by Kruase and Teply.) 1(A) is the 
largest subring of R in which A sits as a two-sided ideal, so 1(A) = R if 
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and only if A is a two-sided ideal of R. If M is a maximal left ideal of R, 
then M is maximal in I(M) and the eigen-ring I(M)/M is a division ring 
[2]. Moreover, Mn(M) is a left ideal of Mn(R) and I(Mn(M)) = 
Afn(JT(Af)). In this case the eigen-ring 

/(M»(M))/MW(M) = MW(/(M))/MW(M) ^ Mn(I(M)/M) 

is a simple artinian ring. 
Let 4̂ bean ideal of R. Note that a left ideal of M.n(R) contains A if and 

only if it contains Mn(A), and one might guess that the ideals D(A\u) 
would fall into this category. Such is not always the case and in fact we 
can say precisely how Mn(A) is related to the D(A'.u). Let C be the 
center of R and B be the transporter ideal B = (A:R) = {r Ç R\rR C A] ; 
we then have 

Mn(Ar\C) ç M n ( 4 P \ 5 ) C n „ £ ( 4 : t t ) Q Mn(A), 

where the intersection is taken over all u Ç Rn. Moreover, Mn(A) Ç 
D(A\u) if and only if each ut Ç 7(^4); so it can be shown that Mn(A) = 
C\uD(A\u) if and only if A is two-sided. But for M maximal and not 
two-sided, it may even happen that C\uD(M\u) = 0. (Example: let 
R = M2(Z), M = Z>(0: (0, l) r) for » = 2.) 

We catalog a few other easily-proved properties. 

LEMMA 1.6. (a) For M G Msx(R), (M:u) = M if and only if 
u e I(M) - M. 

(b) IfA^B are ideals of R and u G Rn, then D(A \u) Ç D{B\u). 
(c) If A = H A i is the intersection of a collection of ideals of R, then 

D(A:u) = r\D(At\u). 
(d) For A an ideal of R and u Ç Rn, 

n 

D(A :u) H i ? = H (A :ut). 

It is natural to ask whether the maximal ideals of Mn(R) lie over (and 
thus contract to) maximal ideals of R. By (a) and (d) above 

COROLLARY 1.7. If M is two-sided then D(M'.u) contracts to M. 

S. H. Brown [1] calls a ring left quasi-duo if every maximal left ideal 
is two-sided. Any local ring is left quasi-duo. Certainly every left duo 
ring is left quasi-duo. The ring of 2 X 2 lower triangular matrices over a 
division ring is a left quasi-duo ring which is not left duo. Note that 
Mn(R) is never left quasi-duo if n ^ 2. 

PROPOSITION 1.8. Let n ^ 2. Every maximal left ideal of Mn(R) con­
tracts to a maximal left ideal of R if and only if R is left quasi-duo. 

Proof. If some M Ç Max(i?) is not two-sided, let r Ç R — I(M) and 
let u = (1, r, 0, . . . , 0)' e Rn - Mn. Then by (d) above 

D(M:u) HR = (M'A) H (M:r) = M C\ (Mir). 
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By (a) above this contraction is not maximal. The converse follows from 
the preceding corollary. 

In any case, by Lemma 1.6 (d) the contraction of a maximal ideal of 
Mn(P) is always an intersection of maximal ideals of R. 

Let Z be the ring of integers and let 0 be the rational field. Noting that 
the natural maximal left ideals Z>(0:e*) of Mn(Q) do not contract to 
maximal ideals of Mn(Z), we are led to ask if this behavior is typical. We 
first look at a more general situation. 

Let R be commutative and 5 a multiplicative subset of R (0 $ S) 
which is contained in the set of non-zero divisors of R. Then R can be 
considered a subring of the ring of fractions 5 - 1 P (which is itself a sub-
ring of the classical ring of quotients of R). For A' an ideal of S~lR let 
A = A' C\ R denote its contraction to R. 

LEMMA 1.9. Let P' be a prime ideal of S~lR and let u = (u\/s\, 
U2/S2, . . . , un/sn)

f € (S~lR)n. If some entry of u is not in P', then D{P' :u) 
is a proper left ideal of Afn(5_1i^). Its contraction to Mn(R) is D(P:su), 
where s = Si-s2- • -sn. 

Proof. Note that 5 is a unit of S^R and is thus not in P ' . Since some 
Uf/Si $ Pf, then s-ujsi Q P;. Certainly Uis/si (E R, but sujsi (? P = 
P ' C\ R. Hence su £ Rn — Pn and so D(P:su) is a proper left ideal of 
Mn(R). It also follows that D(P:su) is independent of the choice of rep­
resentatives of the entries of u. 

Let X G D(P:su). Then each Xt(su) Ç P = P' C\ R, and so, by the 
commutativity of P , each s(Xiu) G P ' . Since P' is prime and 5 £ P ' , this 
forces each X{u G P ' . That is, X G D(P' :u). Since we are only concerned 
with X Ç Mn(R), and these steps are reversible even without the 
primality assumption, we have 

D(P':u) H Mn(R) = D(P:su). 

Now let R be an integral domain and let S be the se: of non-zero 
elements of R. 

PROPOSITION 1.10. If R is an integral domain and K its field of fractions, 
then no maximal left ideal of Mn(K) contracts to a maximal left ideal of 
Mn{R). 

Proof. D(0:u) C\ Mn(R) = D(Q:su) is not maximal in Mn(R). 

Note that R as a subring of K trivially has the property described in 
the proposition, since the maximal ideal 0 of K contracts to the non-
maximal ideal 0 of P , whereas in the matrix ring case the (non-zero) 
maximal ideals of Mn(K) all contract to non-zero, non-maximal ideals 
of Mn{R). 
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2. Equality of D(M:u) and D(M:v). We would like to know when 
D(M:u) = D(M:v) for u = (wi, . . . , wn)' and v = (z>i, . . . , vn)

f 6 
f£w — i f \ This is certainly true if u = y(mod i f ) (i.e. each Uj — v5 G M), 
but we have a weaker condition involving the idealizer of if. 

PROPOSITION 2.1. If uf v £ Rn — Mn and v = uc(mod i f ) for some 
c e I(M), thenD(M:u) = D(M:v). 

Proof. Since these are maximal ideals, it suffices to show one inclusion. 
Let v = uc + m where m £ Mn, and let X £ D(M:u), so that each 
J*> 6 if. Then 

X,-z; = X ^ c + X{m. 

But c Ç I(M) forces (X{u)c £ M, and certainly X,-w Ç if. Thus each 
Xp e M, so X € £>(if :*;) and D(M:u) C D(M\v). 

Note that for c G / (M) — M the coset c + I f is invertible in the divi­
sion ring I(M)/M. Thus v = uc (mod M) for some c <E / (M) — M if 
and only \î u = vc (mod i f ) for some c Ç f ( i f ) — if. 

The preceding proposition gives a natural sufficient condition for the 
desired equality. We have no unrestricted necessary and sufficient condi­
tion, but we can show that in many cases the above condition is neces­
sary. First we note that if A is any left ideal of R and D(A\u) = D(A\v), 
then the w-tuples u and v must behave alike (with respect to A) at each 
coordinate. 

LEMMA 2.2. Let D(A:u) = D(A\v) and let i £ {1, 2, . . . , n}. 
Then (a) Wj Ç A if and only if v{ £ A; 
(b) ut 6 f (A) — A if and only if vt £ 1(A) — A ; and 
(c) ut £ R — 1(A) if and only if vi £ R — 1(A). 

Proof, (a) Let ut € A. Then euu = (wif 0, . . . , 0) ' G ,4"; that is, 
en € D(A:u) = D(A:v).Henceeuv = (v<,0, . . . , 0) ' 6 An.Thusvt G 4 . 

(b) Let Ui e 1(A) - A. By (a), v{ $ A. Let a £ A. Then 
aeuw = (auu 0, . . . , 0) ' 6 ^4n, because a G 4̂ and wf G f (-4). Thus 
a e u G D(A:u) = Z)(^4:i0; so a e ^ = (az^, 0, . . . , 0)' G 4̂W. Hence 
a^i G ̂ 4. By the definition of idealizer, vt £ 1(A). 

(c) follows from (a) and (b). 

PROPOSITION 2.3. If each ut and vt is in I(M), then D(M:u) = 
D(M\v) if and only if v = uc (mod i f ) for some c G I (M) — if. 

Proof. If u and v are in ifw, everything is trivial; so assume u G Mn. 
First assume D(M:u) = £>(if :v). For w* £ f (M) — i f there exists 

wf £ f ( if ) - i f such that 

UiWt + i f = 1 + i f = WiUi + i f ; 
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say utWi = 1 + Wj and wtUt = 1 + nu with m* and w* in M. Fix k such 
that UJC £ I(M) — M. By the preceding lemma, part (b), vk is also in 
I(M) — M. Thus c = w v̂* G / (M) — M. A brief calculation shows that 
Vk — ukc = — mkvk G M". 

Now let j be any other index such that Uj Ç I(M) — M, and let X be 
the matrix wkeu — wf\j. Then 

I w = (wfcM* - WJUJ, 0, . . . , 0)' = (n* - nj9 0, . . . , 0)' £ M"*. 

Hence X £ D(M:u) = D(M:v). This implies that 

Xz; = (wkvk - wflj, 0, . . . , 0) ' Ç M"; 

so 

Another quick calculation shows that Vj — uf £ M. 
Finally, if Uj is in M, then ẑ  is also in M, by part (a) of the preceding 

lemma. So Vj — uf £ AT. 
Since v̂  — uf £ M for each index j , v = uc(mod M). 
The converse was proved in Proposition 2.1, without the idealizer 

assumption on u and v. 

Remark. Via the natural imbedding of R in Mn(R), M can be con­
sidered as a subset of Mn(R), where it generates the left ideal Mn(M). 
So by the remarks preceding Lemma 1.6, we can restate Proposition 2.3 
to say that if D(M\u) and D(M:v) contain M, then they are equal if and 
only if v = uc (mod M) for some c £ I(M) — M. 

Remark. It may seem that these idealizer assumptions push everything 
inside I(M), in which case we may as well assume initially that M is two-
sided. However the ideal D(M'.u) is still being calculated in Mn(R) and 
it is easy to find an example with all u{ £ I(M) but D(M'.u) possessing 
an element which has none of its entries in I(M). 

It is often difficult to compute the idealizer of a left ideal. We can now 
describe the idealizer of D(M:u) in Mn(R) whenever u behaves nicely 
enough with respect to M. 

COROLLARY 2.4. If each ut £ I{M) {i.e., M C D(M:u)), then the 
idealizer of D(M:u) is 

{X £ Mn{R)\Xu s uk (mod M) for some k £ I(M)}. 

Proof. U Xu = uk (mod M) for k £ I{M) and, Y £ D(M:u), then 
(YX)u = (Yu)k £ Mn\ so X is in the idealizer of D{M:u). 

Conversely suppose X is in the idealizer of D(M:u) but not in D(M\u) 
itself. Then we have 

D(M:Xu) = (D(M:u):X) = D(M:u), 
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the first equality by Example 1.4 and the second by Lemma 1.6(a). By 
the proposition, Xu = uk (mod M) for some k G I (M) — M. On the 
other hand, if X 6 D(M:u), then Xu = w-0(mod M). 

Perhaps the nicest kind of non-commutative ring is a matrix ring 
over a commutative base ring. In this situation, Corollary 2.4 says that 
the idealizer of D(M'.u) consists of all matrices X which act on u like 
scalar multiplication mod M; i.e., X which have u as an eigenvector 
mod M. In particular, if K is a commutative field, then the idealizer of 
D(0:ej) in Mn(K) consists of all matrices whose jth column is zero off the 
diagonal. We thus recover as a very special case the well-known result 

To K~\ 
that in M2(K) the idealizer of D(0:ei) = 

0 K 
is the ring of 2 X 2 

upper triangular matrices over K. 

COROLLARY 2.5. If M is two sided (e.g. if R is commutative), then 
D(M'.u) = D(M'.v) if and only if'v = uc (mod M) for some c £ R — M. 

COROLLARY 2.6. / / all ut and vf are central in R (or even just central 
mod M), then D(M:u) = D(M:v) if and only if v = uc (mod M) for 
some c 6 I(M) — M. 

COROLLARY 2.7. D(M\u) = D(M:et) if and only if ut G I(M) — M 
and uk Ç M for k ^ i. 

Again we point out what happens in the most special case. 

COROLLARY 2.8. If K is a commutative field, then D(0:u) = D(0:v) in 
Mn(K) if and only if u = cv for some c 9e 0 in K. 

Remark. When n = 1 the proposition says that for u, v G I(M), 
(M'.u) = (M'.v) if and only if u = vc (mod M) for some c <E I(M) — M. 
However, the restriction on u and v is not necessary for the equivalence, 
as will be shown by Corollary 2.11. 

Let S be a ring, R = Mn(S), let N be a maximal left ideal of S and let 
w = (wu . . . , wnY 6 Sn - Nn. Let M' = D(N:w) in R and let X = 
[Xij] and Y be in i?. 

LEMMA 2.9. If each wt G Is(N) and each x{j G Is(N) and (Mf:X) = 
(M r: K), /Ae« X = YC (mod AT) /or 5om^ C G J«(M') - M' (where the 
idealizer subscript indicates the ring in which the idealizer is being com­
puted). 

Proof'. By Example 1.4, (M':X) = D(N\Xw) ; so by hypothesis 
D(N:Xw) = D(N: Yw). The hypotheses also guarantee that the entries 
of J w are in I(N), and Lemma 2.2 then implies that the entries of Yw 
are in I(N). Thus Proposition 2.3 implies the existence of k Ç /(iV) — iV 
such that J w = Fw& (mod iV). 
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Now for each Wi Q N there exist yt G R and nt Ç. N such that y&Oi = 
1 + fii. For each i = 1, 2, . . . , n> define c{ to be 0 if wt G iV and wjtyi 
if «;* g N. Let C be the diagonal matrix C = diag(ci, c2, . . . , cn). By 
direct computation, 

Cw = wfe (mod iV) ; 

so 

XÏ£> = Fw& = YCw (mod i\T). 

Thus (X - YC)w G iVn. We have JT - FC G D(N:w) = Mf, and can 
conclude that Z = FC (mod M'). 

To show C e /«(MO, let Z f l ' = D(N:w); we want ZC G M'. But 
ZCw = Zwfe (mod N)> because Cw = wfe (mod iV); and Zwfe = 0 (mod 
N), because Zw G TV* and jfe G I(N). Thus Zc G D(N:w) = M'. 

Finally, some Wi (? N and post-multiplication by the idealizer element 
k leaves the product wtk not in N. Thus Cw = wk ?£ 0 (mod AT") ; that is 
Cw G Nn. So C G D(N:w) = M'. 

COROLLARY 2.10. If iV w two-sided, then (M':X) = (M ' :F ) i/ awe? 
w/y i f X s FC (mod M') for some C G I(W) - Mf. 

COROLLARY 2.11. If R is a matrix ring over a commutative (or local or 
left quasi-duo) ring, then in Ry (M:u) = (M:v) if and only if u = vc 
(mod M) for some c G I (M) — M. 

We conjecture from this that for any ring R and maximal left ideal 
M,D(M:u) = D(M:v) in Mn{R) if and only if v s= uc (mod M) for some 
c G I(M) - M. 

Remark. If R is commutative, then v == uc (mod M) if and only if 
UfVj = w^i (mod If) for all i, j = 1, . . . , ». This can be interpreted as 

requiring that all 2 X 2 determinants * x 

\Uj Vj 

We can obtain a slight generalization involving this condition. Let R 
be commutative and let P be a prime ideal of R such that P / P is a 
valuation domain. Then in any Mn(R), D(P\u) = D(P:v) if and only if 

« ^ == ufti (mod JP) for all i, j = 1, . . . , n\ 

that is, if and only ii v = uc (mod P) for some c £ R — P. 

Example 2.12. In M2(Z) let M - 5Z, « = (2, 3)' and w = (6, 24)'. 
Then 

s 0 (mod M). 

s 0 (mod 5); 
2 

13 241 

soD(5Z:u) = D(5Z:v) in M2(Z). 
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Example 2.13. For K a commutative field, let u = (c, d)1 with c T6 0 
and * ; = ( ! , c~ld)f. Then 

c 1 
d c~ d 

0; 

so D(0:u) = Z>(0;v) in M2(i^). 

Let X be a commutative field. By the preceding example, the maximal 
left ideals of M2(K) are D(0:u) for u = (0, 1)' or w = (1, c)', c G K 
Similarly, the maximal left ideals of M$(K) are indexed by (0, 0, 1)', 
(0, l , a ) ' a n d (1, 6, c) ' fora, 6, c € X. Thus Max(ikf2(i£)) has card (K) + 
1 elements and can be naturally identified with the projective line Pl(K) 
and Max(M%(K)) c a n t>e identified with the projective plane P2(K). 
Similarly Max(Mn(i£)) can be identified with Pn~l{K). (This is analo­
gous to the identification of Max(K[x]) with K, for K an algebraically 
closed field.) 

For R a commutative ring, M a maximal ideal of R, let qM = 
card (R/M). 

PROPOSITION 2.14. Let R be commutative. Then Mn(R) has^M ]T)"=o q_Mi 

maximal left ideals, where the outside sum is taken over M € Max (R). 

Proof. If M and N are distinct maximal ideals of R} then by Corollary 
1.7 the maximal left ideals of Mn(R) lying over M are all distinct from 
those lying over N. And for fixed M, the function Mn{R) —> Mn(R/M) 
reducing entries mod M sets up a one-to-one correspondence between 
those maximal left ideals of Mn(R) lying over M and the maximal left 
ideals of Mn(R/M) By the preceding remark Mn(R/M) has YT^l QM* 
maximal left ideals. 

Of course the sum above is infinite unless R is semi-local and each 
residual field is finite. In particular, if m is a positive integer then Zm 

has one maximal ideal for each prime p dividing m (with residual field 
Zp); so Mn(Zm) has 

Z E ^ = I (pn - V/(P - i) = Z'G»"-1) 
maximal left ideals (where a is the sum of the divisors function and the 
outer sums are taken over the prime divisors of m). 

3. Conjugate ideals. For p a unit of R let ip:R-+R be the inner 
(ring) automorphism r —-• prp~l. We say that two left ideals A and B of 
R are conjugate if 4̂ = ip(B) = pBp~l for some unit p of i?, and we then 
write A ~ B. This is certainly an equivalence relation on the collection 
of left ideals of R. If A and B are two-sided (e.g. if R is commutative) then 
A ~ B if and only if A = B. lî A and i3 are conjugate and one of them 
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is maximal, so is the other. Since we are dealing with left ideals, A ~ B 
if and only if A = Bp for some unit p of R. Note that if M and N are 
conjugate maximal ideals, then R/M and R/N are isomorphic (simple) 
left P-modules. 

Example 3.1. If K is a field and D{0\et) the maximal left ideal of 
Mn{K) having ith column zero, then for any i and j,D(0:et) = D{Q\ef)-P 
where P is the (invertible) n X n elementary matrix interchanging the 
ith and j th columns. 

We want to investigate how conjugacy is propagated to matrix rings; 
i.e., if M ~ N in R, is D{M\u) ~ D{N:v) in Mn(R) ? (Note that in the 
analogous situation for polynomial rings, if A ~ B in R then A [x] ~ B[x] 
in R[x].) We also study the seemingly easier question: for a given maximal 
ideal M of R, are all D(M:u) conjugate to one another in Mn(R) ? If M 
satisfies this latter condition (for all « è 1), we shall call M a c.p. ideal. 

First we reduce the problem to working over a single maximal ideal. 

LEMMA 3.2. If M and N are conjugate maximal left ideals of R with 
N = pMp-1 for p a unit of R and if u Ç Rn - Nn, then D(N:u) = 
D(M:up). 

Proof. Since wp $ Mn, D(M'.up) is proper and it suffices to show 
D{N\u) Q D(M:up). ButiîX G D(N:u), then each X,-w G TV = Mp"1. 
Thus each X{up £ M\ so X 6 D(M:up). 

The next easily-proved lemma is the basic tool for studying conjugacy 
of maximal ideals in Mn(R). 

LEMMA 3.3. 7w P Ç GLn(R), P-D(M:u)-P~l = D(M:Pu). 

Note that showing M c.p. is equivalent to showing that for any u G 
Rn — Mn we get D(M:u) ~ D(M\e\). To show this by writing D{M\ex) 
= P-D(M:u) P~l = D(M:Pu), it would thus be sufficient by Corollary 
2.7 to show there exists P Ç GLn(R) such that Piw G / (M) - M and 
PiU G ¥ for i è 2; i.e., to find an invertible matrix whose first row 
"pushes" u into the idealizer of M (but not into M) and whose other 
rows "push" u into M. On the other hand, to show conjugacy by writing 

D(M:u) = P-D{M\ei)-P-1 = D(M:Pei), 

it would be sufficient to show that any u is congruent mod M to a column 
of an invertible matrix. 

Recall that if v = uc (mod M) for some c 6 I(M) — M, then D(M:u) 
= Z>(ilf :w). Combining this with the previous lemma, we get the analo­
gous result for conjugacy. 

LEMMA 3.4. Let u,v Ç Rn — Mn. If v = Pwc (mod M) for some 
P e GLn(R) and c 6 I(M) - M, then D(M:u) ~ D(M:v). 

https://doi.org/10.4153/CJM-1980-110-8 Published online by Cambridge University Press

https://doi.org/10.4153/CJM-1980-110-8


1408 DAVID R. STONE 

In particular, if v is a permutation of the entries of u, then v = Pu with 
P the product of row-interchanging matrices, so D(M:v) ~ D(M\u). 

PROPOSITION 3.5. If (a) some ut G I {M) — M or (b) some ut is con­
gruent mod M to a unit of R, then D(M\u) ~ D(M:et). 

Proof. By the preceding remark we may let i = 1 in either case. 
(a) Let b 6 R and m £ M be such that Zwi + m = 1. Then for 

i = 2, 3, . . . , n, we have 

(utb)ui = «i (mod ikf). 

Let X be the n X n matrix having (0, u2b, Uzb, . . . , unb)r as its first 
column and zeros elsewhere and let I denote the n X n identity matrix. 
Since X2 — 0, P — X + I is invertible (with inverse I — X). A direct 
computation shows that 

PeiUi = u (mod M). 

Thus D(M:u) ~ D(M\eY) by Lemma 3.4. 
(b) Let wi be a unit of R and let P G GLn(R) have w as its first column, 

the other diagonal elements unity and zeros elsewhere. Then Pe\ — u\ so 
D(M:u) — D(M:ei) by Lemma 3.4. 

PROPOSITION 3.6. If M awd A7' ar^ conjugate maximal left ideals of R 
and some ut satisfies (a) or (b) above and some Vj satisfies (a) or (b) above 
(with respect to N), then D(M:u) ~ D(N:v). 

Proof. Say M = iV^ for a unit of i?. By the preceding proposition and 
Lemma 3.2 it suffices to show D(M\ex) ~ D(N:ei) = D(M:eip). Let 
P = diag (p, 1, 1, . . . , 1) which is certainly invertible and satisfies 
Pc\ — eip. Thus 

D(N:ex) = D(M\exp) = D(M:Pex), 

which is conjugate to D(M:ei) by Lemma 3.3. 

If M is a left ideal which is two-sided, then I (M) = R. We can then 
apply Proposition 3.5(a) to obtain a large class of c.p. ideals. 

PROPOSITION 3.7. Every two-sided maximal left ideal is c.p. 

Recall that M C D(M\u) if and only if each ut Ç / ( M ) . Proposition 
3.5(a) implies that for any maximal ideal M, all of the maximal left ideals 
of Mn(R) which contain M are conjugate, even if M is not c.p. 

Note that if M and N are two-sided non-conjugate (i.e., non-equal) 
maximal left ideals of R, then any proper D(M'.u) and D(N:v) are non-
conjugate in Mn(R) (apply Lemma 1.6(d) and (a)). So, for example, if R 
is commutative (or just left quasi-duo), then Ma.x(Mn(R)) divides 
nicely into conjugacy classes and 

M a x ( M n ( i ? ) ) / ~ = Max(P). 
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COROLLARY 3.8. If R is a local ring, then all maximal left ideals of 
Mn(R) are conjugate. 

As a special case we recover the well-known result suggested in 
Example 3.1. 

COROLLARY 3.9. If K is afield, then all maximal left ideals of Mn(K) are 
conjugate. 

The next proposition shows that the c.p. property propagates itself; 
this also shows that c.p. ideals do not have to be so nice as those found in 
Proposition 3.7 (i.e., two-sided). 

PROPOSITION 3.10. If M Q R is a c.p. ideal and u £ Rn — Mn, then 
D(M:u) is a c.p. ideal of Mn(R). 

Proof. By Example 1.5, in any Mm(Mn(R)) ^ Mmn(R) we have 

D(D(M:u) : U) = D(M:Uu) ~ D(M:Vu) = D(D(M:u) : V). 

Thus if R is commutative or local or left quasi-duo, then every maximal 
left ideal of Mn(R) is c.p. One consequence of this is that matrix rings 
over nice rings are themselves too nice to provide examples of non-c.p. 
ideals. 

Corollary 3.8 suggests the question: What rings have all maximal left 
ideals conjugate? There is also the question which always suggests itself: 
lî R has all maximal left ideals conjugate, does Mn(R) have the same 
property ? (More generally, is this a Morita property) ? Noting that con-
jugacy (of maximal ideals) in R is equivalent to conjugacy in R/J(R), it 
is straightforward to show that if R is left semi-perfect, then R has all 
maximal left ideals conjugate if and only if R is isomorphic to a matrix 
ring over a local ring. Perhaps this equivalence is always true without any 
initial assumptions on R. A matrix ring over a local ring also provides 
an example of R satisfying the second question. 

A related question: Is (M:u) ~ M for all u £ M? (We're actually 
asking about M being c.p. at the n = 1 level.) Since (M:u) = M for 
u £ I(M) — M, this is trivially true if M is two-sided. By the preceding 
proposition, any maximal ideal of a matrix ring arising from a c.p. ideal 
is itself c.p. Thus we can answer the question in the affirmative for some 
matrix rings. 

PROPOSITION 3.11. If R is a matrix ring over a left quasi-duo ring, then 
(M:u) ~ M for any M G Max(i^), u Q M. 

We conclude with one other non-commutative example. Let K be a 
division ring, let R be the left primitive ring of (square) countable 
column-finite matrices over K and let K{N) denote the direct sum of 
countably many copies of K. For u — (ui, u<i, . . . ) ' G K^N), w ^ O , let 
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D(u) = {X G R\Xu = 0}. Then D(u) is a maximal left ideal of R 
(known to Jacobson in 1946 [3, Section 3]). Moreover any v Ç R — D(u) 
is congruent mod D(u) to a unit of R; so by Proposition 3.5 (b), D(u) is 
a c.p. ideal. In addition, all D(u),u ^ 0, are conjugate. That is, these are 
much like the ideals D(0:u) in the finite matrix ring Mn(K). However, 
these D(u) are not the only maximal ideals of R. For 

^ ' = { [ * l\ \XdMn(K),n^ If 

is a non-maximal left ideal of R that is not contained in any D(u),u ^ 0. 
Furthermore, no maximal left ideal containing Af is conjugate to any 
D(u) ; so R does not have all of its maximal left ideals conjugate. 
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