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Introduction. In this paper we consider the following combina -
torial problem. In how many ways can n distinguishable objects
be placed into an unrestricted number of indistinguishable boxes,
if each box can hold at most r objects? Let us denote this
number by Gn, r e

Special cases of this problem have been the object
of considerable study. In the case r = 2 we have the numbers
Gn’ 2 = T, which have been treated by Rothe [12] as eéarly as
1800. T is also the number of solutions of x2 = 1 in the sym-
metric group on n letters, and in this and related guises has
been studied by Touchard [1 ?:,] ,-Chowla, Herstein and Moore [_3]
and two of the present authors {71.

The case G, p = G, has received even more attention.
Indeed, these numbers have been the subject of a recent Master's
thesis of Finlayson [4), who lists over fifty references dealing
with these numbers. Two of the present authors have recently
published a complete asymptotic expansion for these numbers [8] .
We take this opportunity to acknowledge that the first term of
this expansion was obtained earlier, though without a rigorous
justification given, in a paper by Gernuschi and Castegnetto [2] .
We have determined tables of G, up to n = 51, but have not in-
cluded them in this paper. Tables of Gn up ton = 50 have been
published earlier by Gupta [5].

The case of G .. for arbitrary r has been treated
briefly by Hadwiger [6]. Becker has informed the authors that
he has considered these numbers, together with many related
sets of numbers, in connection with his general theory of rhyme
[1]. We believe however that many of the results of the present
paper are new.

In §1 we derive several recurrence formulae for
Gp, r and an exponential generating function. In §2 we obtain
some congruences for Gp, r » useful in checking tables of these
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numbers. In §3 we derive an asymptotic formula for G )
valid for r fixed and n tending to infinity. In §4 we deal with
some related numbers and polynomials.

1. Recurrence Formulae. By the elementary theory of combi-
natory analysis it is easily seen that the number of ways of
placing n distinguishable objects into indistinguishable boxes,
with aj boxes containing one object each, a, boxes containing
two objects each, ..., a, boxes containing r objects each, is

(1.1) nt/(11212132 | r1®rajtayl...a.!)

Hence we have the following explicit formula for Gn, r

THEOREM 1.

G, ,=2nt/ (%1212 L nifTa e L

where the summation is taken over all a;, a

- a such that
1a1+2a2+ eeo + ra, = n.

20

Although this expression can be used to calculate
Gp, r for r and n small, it is clearly not very useful for large r
and n.

To obtain a recurrence formula for G we observe
that if we distribute n + 1 objects and specialize one of these,
then this one can go together with s others (0<£s<r - 1) in (Isl)
ways and the remaining n-s objects can be distributed in Gn-s, r
ways. Summing over s yields the recurrence given in

THEOREM 2. G =1,

n,l

n
G G r+(l)G

_ n n
ntl,r = Cn, +(2)Gn_2 +oo04(

\
n-1,r , T r—l’Gn-r+1,r.

From Theorem 2 an exponential generating function
for Gn r is easily obtained. Indeed we have

THEOREM 3.
oo n
Zn=0 C’n,rx /nl_ exp(x + x2/2‘. + ... + xr/r'.) .

Proof. Differentiating both sides of the above with respect to x
and comparing coefficients of x” yields the recurrence of
Theorem 2. Since the coefficients of x™/n! in the expansion of
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eXare all 1 , the identification of the Gn r in Theorems 2 and
3 is complete. '

We now obtain a second recurrence formula for
G , namely

n,r
THEOREM 4.
El/r] n!
Gp,r= Z_s:O st (r!)S(n-z8)" Gh-rs,r-1

Proof. In the distributions of n objects into boxes we isolate
those distributions in which s boxes are full, i.e. contain r
elements each. These s boxes, (0« s =<n/r) , can be filled
in

(1.2) 1 - - nl.
st () (PF%) ... (F8) = si(r!)(n-rs)!

ways, and the remaining n-rs objects disposed of in Gn-rs, r-1
ways. Summing over s vyields the required result.

Theorem 4 is particularly useful in case r is large
J:n coml.aanson with n. Since C'n,r = Gn,n = Gn for r» n we have
in particular,

THEOREM 5.

Gp =Gy, * BG, . (> [in]).

n,r n,r

This recurrence can be iterated to obtain a managable explicit
formula for the case r 3 [%n] , namely,

THEOREM 6.

_ n ' n n 1
Gn,r =Gy - (r+1)Gn-~r-1 “(42)Ghp2 - +v - )Gy, T2 ZH] :
This is essentially an explicit formula since it is well known -
[8] that
o =y n s e e

’ n "~ =1 s! i=1 1
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2. Congruences. In order to check tables of G ,ritis useful
to have ¢ongruence relations for these numbers We first prove

THEOREM 7. For p a prime and r < p,

GP,I' =1 (mod p)
Proof. This follows from Theorem 1 with n = p, since in this
case all the terms of the sum with the exception of the one
correspondingtop=1+ 1+ ... + 1 will be divisible by p.

We can obtain another proof of this result using the
following representation of a distribution. Represent the n
objects by n points at the vertices of a regular convex n-gon.
If a set of k objects go into one box, then join the corresponding
k points by line segments to form a convex k-gon. Now, if n = p,
all the distributions except the one where every object is in a
box by itself, will come in sets of p, since the corresponding
geometric configurations come in sets of p by rotation through
multiples of 2m/p .

We next use induction over n to prove
THEOREM 8. For p a prime and r< p,

G G (mod p)

n+p,1'= n,r

Proof. Since GO = Gy = 1, the case n=0 is simply Theorem 7.
Suppose now the theorem is true for k £ n. By Theorem 2,

+ +
(2.1) Gn+ I4p,r ~ Gn+p,r N (nlp) Gn+p—1,1‘ taoot (?-g) G“ﬂ‘-"l."
Using

(2.2) (P)= () (mod p) (k <p)

and the induction hypothesis we obtain

(2.3) G =G + (T)G o004+ (L2

ntl+p,r n,r n-1l,r ro1) G

n-r+l,r

=G (mod p) ,

ntl,r

and the induction is complete.
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3. Asymptotic Expansions. Letaj, @00y Ap be a set of
real non-negative numbers and let

2 m

P(x) = ajxta,x“ +...+ apx s am? 0.

Let R be the positive number determined by
2
ka R :
(3.1) k=1 K
and let { be the operator defined by

(3.2) ® =r_4

dR
In a previous paper [_lO] two of the present authors proved that
if
o0
(3.3) Z Bpx"/n! = i
n=0
then

3.4 B ] n! eP(R) 1 *
( . ) n ~ RR .&_",9 LP(R)

This result is immediately applicable to the problem
of finding an asymptotic expansion for G . . Indeed, using this
result and Theorem 3, we obtain ’

THEOREM 9. For r fixed and n—> o°

G n! exp(R/1! + R%/2! + ... + R¥/r!)
’ R™[(2w) (14R/1! + 22RZ/20 + ... + r2R7/r!)]2

where R is the positive number determined by
2/11 3751 r 1 =
(3.5) R +Re/1' + R7/2' + ... + R"/(r-1)! =n.

This asymptotic formula can be simplified invarious
ways. In particular using the definition of R we have

(3.6) R/1'+ R%/21 + ...+ R°/rt =n/R+ R /r! - 1
| 2
(3.7 1%R/1t + 22R%/20 + ... + r°R/rt ~ nr

&

and by Stirling's formula
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1 EY
(3.8) n! ~ n®Z™ a2
Combining these estimates with Theorem 9 gives

THEOREM 10. For r fixedand n — o

G rN(n/R)nr'% exp(n/R + RY/r! -n -1)

n,

where R is determined by (3.5)
If r is quite small the equation for R can be con-
veniently solved by iteration starting with R = (n (r-1)t) /T

while if r is fairly large it is convenient to begin the iteration
with an approximate solution to ReR = n.

4. The polynomials Gn, r(t). Following Hadwiger (6], let
us define a set of polynomials Gy .(t) by

> n 2 r
(4.1) Zn=OGn 1‘(t)x /n' = exp(t{x+ x“/2' + ... + x /r')) ,

H

Gy, (1) = Gylt),

and let o’rs1 r be defined by

(4.2) G, =3 7 ¢ +°.

s=1 " n,r

Clearly

(4.3) Gn’r(l) = ZSEI (ISI,I':GD.,I‘

Also, comparing coefficients of t in (4.1) and using (4.2), we
obtain

oo
(4.4 Zn=0 szl rxn/n‘. = (x+ XZ/Z'. + oo+ xS

From (4.4) it follows that & g,r is the number of ways of
placing n distinguishablc objects into s indistinguishable
boxes, where no box is to contain more than r objects. The

g5 r are thus generalizations of the well known Stirling num-
bers of the second kind ¢'J with dg,n = 65’1 .

We now obtain some recurrence formulae for the
Gp, ¢ (t) and the (xs1,r . Differentiating (4.1) with respect to
x and equating coefficients of x yields

92

https://doi.org/10.4153/CMB-1958-010-2 Published online by Cambridge University Press


https://doi.org/10.4153/CMB-1958-010-2

THEOREM 11.

Gpt1,x(t) = HGy, r(t) 4 (M C'n-l,r(t) R (rle) Gn-r+1,r(t))
On the other hand, differentiation of (4.1) with respect tot yields

d e n n
(4.5) g, G, L(®) —(l)Gn_l,r(t) t(3) Gn-Z,r(t) + ...+ (1) Gn_r,r(t).
Combining (4.5) with Theorem 11, we obtain a three term
recurrence formula for Gn,r(t)’ namely,

THEOREM 12.

G (t) = tG (t)+ + Cn, r(t) - t(;) G ).

n+l,r n-r, r(

A generalization of Theorem 4 can be obtained as
follows.

(4.6), 720G, (61"/nt = explt(xt x2/20 4 ...+ xF 71/ (2= 1) Pexp(txh)

=ZG (t)x /n! (14+tx /r‘+1:2 Zr/Z!r'.Z+... ).
Comparing coefficients of x" yields
THEOREM 13.
Z[n/ﬂ - C;n-rs,r-l(t) t*.

s!(r!)5(n-rs)!

In case r > [-é—n_l we can easily derive from this
generalizations of Theorems 5 and 6, namely

THEOREM 14.
Gy =Gy L+ B G (0, r>{ia],
THEOREM 15,

Gh,r(t) = Gn(t) -t Zs=:+l (g) Gn_s(t), r> [-é-n_] .

Equating coefficients of t° in Theorem 12 yields a

three term recurrence for the (g p» namely
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THEOREM 1l6.

s -1 s-1
0'§+1,r=5°'n,r+‘§,r“ (?)(n-r,r (1= s <n).

This result may also be obtained by a direct combinatorial ar-
gument.

From (4.4) we have
(4.7) z;oo’i’rxn/n'. = (x+ xZ/Z‘. +... +xr/r‘.)s_l(x+ xz/Z'.
+...x /1) =Zno__°0 d';:llrfé/nl(x+ x2/2'. oo tx /1Y)
Equating coefficients in (4.5) yields

THEOREM 17.

¢S _ 1 fnxn(n-l,rs) @) o,§-1
n,r s izmax(n-r,s) i i,r

This will be valid for all n,r,s >1 if we adopt the convention
that the summation is zero whenever max (n-r,s) > min (n-1,
rs).

Using 4.4 and Theorem 17, a few cases of <”n,r
can easily be computed. For example, we have obtained

(4.8) ¢o, =1 if lemer,
o/i r = 0 if nyr,

(4.9) 2 _ 1 min(n-1,r) n
o,n,l' T2 Zi=rnax(n-r,1) (i)

(4.10) o,n =1

n,r
and
(4.12) trn-Z - n(n-1) (n-2) (3n-5)

n,r 24 (r > 2).

Finally, Theorem 17 can be iterated to give an ex-
plicit expressian.
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THEOREM 18.

1
(S+ (S+1)' ZQIZQZZQ:«; qu(ql 31

where the summations are taken over the ranges

max(n-r,s) & < min(n-1,rs)

94
max(ql-r,s-l) < q, & min(ql-l,r(s-l))

max(qz-r,s-Z) £q,< min(qz-l,r(s-Z))

3

max(q,_;-r,1) £ q '« min(q__

For example:

_ (6,4 T3t Zq1=2 q,=2 (q
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