
Genet. Res., Comb. (1986), 48, pp. 125-131 With 5 text-figures Printed in Great Britain 125

Models of long-term artificial selection in finite population
with recurrent mutation
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Summary

The effects of mutation on mean and variance of response to selection for quantitative traits are
investigated. The mutants are assumed to be unlinked, to be additive, and to have their effects
symmetrically distributed about zero, with absolute values of effects having a gamma distribution.
It is shown that the ratio R^/^N2^) of expected cumulative response to generation t from
mutants, R^, and expected response over one generation from one generation of mutants, /?J*, is a
function of t/N, where t is generations and N is effective population size. Similarly, SD{,Rf-)/{Na\^,
is a function of t/N, where crfu is the increment in genetic variance from one generation of
mutants. The mean and standard deviation of response from mutations relative to that from initial
variation in the population, R\ in the first generation, are functions of NR^/R\. Evaluation of
these formulae for a range of parameters quantifies the important role that population size can play
in response to long-term selection.

Introduction

Based on observations of long-term selection experi-
ments (e.g. Dudley, 1977), on particular events in
Drosophila populations (Frankham, 1980) and on
estimates of de novo variation (e.g. Clayton & Robert-
son, 1955; Lynch, 1986), theoretical analyses and
simulations have indicated that new mutations could
contribute substantially to responses in long-term
breeding programmes and selection experiments (Hill,
1982). In a preceding paper, models of distributions of
gene effects and frequencies have been constructed and
analysed to assess the long-term mean and variance of
response from variation initially existing in the
population (Hill & Rasbash, 1986, subsequently
referred to as HR86) which generalize some of the
calculations of Robertson (1960). Here, the effects of
mutation are added to the HR86 analysis in order to
predict the course of response from both existing and
de novo variation, to show how the relative importance
of these sources depends on the population size and
duration of the experiment or breeding programme
and to indicate satisfactory ways of parameterizing the
process. The generality extends to distributions of
effects and frequencies rather than to modes of gene
action, for additive gene action and no linkage are
assumed; and rates of mutation and population sizes
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are assumed sufficiently small that not more than two
alleles segregate at each locus.

Analysis

Experiments designed to estimate variation from muta-
tion generally yield estimates of the new genetic varia-
tion (CT|I) or new heritability ali/a2, where CT2 is the
phenotypic variance, and a2

M is independent of popula-
tion size (A0 (Clayton & Robertson, 1955; Hill, 1982).
It is convenient to describe the response in terms of
i?M = ialn/a, the expected response in the first genera-
tion, contributed by this new variation where / is the
selection intensity. Let rt be the expected response
from a single generation of mutants t generations pre-
viously, and

rm = lim rt
t—<x>

be the expected response when these mutants are ulti-
mately fixed or lost. (Note that r and R denote ex-
pected responses, the £( ) being excluded for brevity).
Also let Rf1 = rt + rt_x + ... + rx be the expected cumu-
lative response from recurrent mutations each genera-
tion from the outset until generation /. Note that

Parametrizadon

Let a be the effect of a mutant on the trait, expressed
as the difference between homozygotes, and s = ia/a
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be its selective value as a consequence of artificial
selection.

It has been shown previously (Hill, 1982) that for a
symmetric distribution of mutant effects, as is as-
sumed here, the asymptotic response from one genera-
tion of mutants is given by rm = 2Nr1. The basic
explanation is that the initial frequency of a gene in a
population of size N is 1/2N and the genetic variance
and response it contributes in one generation are
a2/4N and ia2/{4No) respectively. Consider first genes
for which Ni\a\/a > 1. If a mutant is favourable, its
fixation probability equals its selective value, ia/a, so
the contribution to response is ia2/a; and if it is
unfavourable it has a fixation probability of 0 and
contributes no response. Averaging for each such pair
of mutants and integrating over the distribution of a,
rm — 2Nr1. A similar argument shows that rm = 2Nrl

for pairs of genes for which Ni\a\/a < 1 and the
fixation probabilities are l/2N+ia/2a, approximately
(Hill, 1982).

Now consider the time scale of this process. For
given Ns and initial frequency q, the diffusion approxi-
mation shows that the time scale of change of fre-
quency is inversely proportional to TV (Robertson,
1960), a feature we have already used in describing
response from existing variation where the gene fre-
quency is not a function of population size (HR86).
The case of mutation is more complicated, because N
and q are related. Bearing in mind that we are not
interested in making comparisons over very wide
ranges of population sizes in the artificial selection
context, we use a heuristic argument to examine the
dependency on population size taking, as examples,
the case of N = 10 and N = 20. (Presumably a more
formal proof could be obtained using diffusion
models, but this has not been achieved.)

A mutant gene of positive, but not large, selective
value arising in a population of TV = 20 with initial
frequency 0025 has only a little greater than even
chance of reaching a frequency 005 before being lost,
i.e. reaching a frequency of 00. At a frequency of 005,
its subsequent fate and time passage are known from
the diffusion process to be approximately the same as
that of a mutant gene arising in a population of size
N = 10, except that the time scale for the large
population will be twice as slow (Robertson, 1960).
Thus, as an approximation, a mutant gene arising in
a population of size N — 20 has a fixation probability
one-half that of a mutant arising in a population of size
N = 10, but having the same Ns value (i.e. the latter
has double the s value), and a rate of passage through
the population one-half as fast. The argument holds
providing selective values are not so great as to
substantially change the probability that the first
transition of gene frequency is equally likely to be up
or down. In summary, therefore, for genes of given Ns
value, rJRf oc N on a time scale proportional to N.

Now consider recurrent mutation and cumulative
response over a period of N generations, on which the

time scale has been standardized. The number of genera-
tions of mutants is thus proportional to N and
because rt/Rf is proportional to N it follows that the
cumulative response relative to that in the first genera-
tion, given by R^/Rf, is proportional to N2 for genes
of specified Ns value.

In summary and extending the argument over the
range of gene effects or selective value, ^/(NRf) and
RM/(J\PRM) are functions of the distribution of Ns
values on a time scale proportional to N.

The total expected response, TRt, is the sum of the
responses from variation initially present, R], and
from mutational variance arising subsequently, Rf,
to give

In our previous paper (HR86), Rj was reparametrized
in terms of the expected response in the first genera-
tion, Rj/(NR{), which is a function of the distribution
of Ns values. Extending this, we obtain a convenient
expression for subsequent analysis:

TRt/(NR[) = Rj ™). (1)

Similar arguments can be used to establish a suit-
able parametrization of the variation in response. It
can be shown that V{R^)/{No2

M) or, alternatively
V(RM)/(Nh2

Mcr2), where h2
M is the increment in herit-

ability from mutation, is a function of t/N and the
distribution of Ns values, as similarly is V(R\)/(h2o2)
(HR86). Combining initial and mutational variation,
a suitable parametrization which gives a function of
the same parameters as (1) is

V{TRt)/{h\a2) = V{R\)/(h\a2)
+ (.NRf/R\)V{R?)/{Nh2

Aa*). (2)

Evaluation of expressions

Mutant genes are assumed to be equally likely to in-
crease or decrease the trait, the absolute value of their
effects having a gamma distribution. So

J[\a\) = (0 < \a\ < oo). (3)

Note that E(\a\) = fi/<x and E(\a\2) = E{a2) =
/?(/?+ l)/a2. With selective values given by s = ia/a, the
parameter Ns has a gamma distribution with para-
meters a* = aa/(Ni) and /? (cf HR86, where the same
distribution is assumed for the value of the allele initi-
ally segregating which increases the trait). The density
function of mutant effects, regardless of sign, is
fa) = m)/2 (-oo<a<oo).

Assuming there are a possible total of «T loci in the
genome of which k mutate in some generation, k is
Poisson distributed and

E(k) = 2NnT/i = 2NX,

where n is the mutation rate per locus and X is the total
number of mutants per genome per generation. The
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expected response rt from one generation of muta-
tions is

rt = 2NX r aE(qt | 1 /2TV, Nia/o)fta) da (4)
J-00

for genes with current frequency qt, initial frequency
1 /2N and population size x selective value of Nia/a.
Because of symmetry, the response obtained (by usu-
ally eliminating) mutant genes with deleterious effects
— a and initial frequency \/2N is the same as that
obtained (by usually fixing) a gene with advantageous
effect + a and initial frequency 1 — 1 /2N, there being
no expected change in mean when they actually occur
because their effects balance. Hence

rt = NX I*" a[E(qt\l/2N,Nia/a)

-E(l-qt\l-l /IN, Nia/a)]fla) da.

Transforming into the distribution of Ns, with density
f*(Ns), 0 < Ns < oo, and noting that a = sa/i,

rt = \NXa/(Ni)\ P° Ns[E(qt 11/2N, Ns)

-E(\ -qt 11 -1/2N, Ns)]f*(Ns)d(Ns). (5)

Variance in response due to mutation can be parti-
tioned into that variation which is conditional on the
number of mutants and is due to sampling of mutant
effects, random changes in gene frequency and uncer-
tain ultimate fate of mutants, and that which is due to
variation in the number of mutants that occur:

V{rt) = Ek[Va(rt \ k)] + Vk[Ea{rt \ k)],

where expectations are taken over the subscript a or k.
Now

Ea(rt\k) = kT aE(qt| 1 /2N,Nia/a)J[a)da
J-00

and

Ea[{rtf | k] = k [ °° a2E(q2 \ 1 /2N, Nia/a)J{a) da
J-00

+ k{k-1)T1"°° aE(qt| 1 /2N,Nia/a)J{a)daf.

Therefore

Va(rt \k) = k\m a2E(q\| 1 /2N, Nia/o)Ka)da
J-00

-k [ J ^ aE(qt 11 /2N, Nia/a)M daj

and taking expectation over k replaces the k by 2NL
Because k is Poisson distributed, V(k) = E{k) = 2NX
and

Vk[Ea{rt | k)] = 2NX \_\m£E(qt 11 /2N, Nia/o)J{a) daj.

Thus

V(rt) = 2NX f°° a2E(qt
2 | 1 /2TV, Nia/o)J{a) da. (6)

J-00

Using the symmetry and transforming in terms of Ns,
we get

V(rt) = [7VA<T2/(TV2J-2)] 1"°° (Ns)2 [E(q2
t | 1 /2TV, TV*)

+ £((1 -qtf 11 - 1/2TV, Ns)]f*(Ns)d(Ns). (7)

Because mutations in successive generations are as-
sumed to be independent,

Rf = I rt. and V(Rf) = I V(rt\
t'-i t'-i

and the rate of mutation and distribution of mutant
effects are assumed to be independent of variability
existing initially in the population.

Standardization in terms of Rf is obtained by recal-
ling the previous arguments from Hill (1982) and
noting that

Rf = 2NX(i/a) \ (a2/4N)J(a)da
J-00

(8)

because the variance is approximately a2/4N for a
gene of effect a and frequency \/2N, for large N.
Hence, transforming,

r
Jo

(Ns)2f(Ns)d(Ns). (9)

Values of E(qt) and E(qt
2) were obtained for succes-

sive values of t and qo = \/2N and 1 — 1/2N by
transition probability iteration for given Wand a range
of J O 0) and subsequently integrated numerically
over s. Details were given previously (HR86).

Limiting case of small effects

If selection forces are small relative to those of drift,
i.e. E(Ns) -* 0, simple formulae can be obtained
which, as limiting values, provide useful checks and
reference points. In these it is assumed that the
changes in variance within and between lines are a
consequence solely of drift, an approach used by
Robertson (1960), i.e

E[qt(\ -qt)) = (1 - l/2JV)*?o((l ~?o) = ^ ' / 2 % ( 1 -?o),

the exponential approximation also requiring large TV.
Therefore

E(qt) = ^l -qo)(l -< and

which, for a rare mutant, reduce to

E(qt) = \/2N+s(\ -e-lliN)/2 and

q2) = (l-e-t'2N)/2N.

The limiting formula for E(qt) can now be inserted
into (4) to give

rt = NiX(\ -e~tl2N)E(a2)/a = 2NRf (1 -e'V2") (10)

from (8). Therefore, after summing over generations,

Rf = 2NRf [t-2N(\ -e1'2")] (11)

9-2
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(Hill, 1982). Similarly, from (6),

= 2(1 -V(rt) = (1 -
V(R?) = 2[t-2N(l -

**„, (12)

(13)

a result derived elsewhere for the variance between
lines deriving from neutral mutation (Lynch & Hill,
1986). With this approximation the response and vari-
ance of response are proportional to each other. Note
that, providing t/N is small, Rf1 and V(Rfl) increases
in proportion to (t/N)2, and thus SD f̂y11) increases in
proportion to t/N. Further, these equations illustrate
for the special case of small Ns the validity of the
reparametrization deduced earlier.

Results

Tests of approximation. The arguments used to
show the reparametrization in terms of products such
as NRf were heuristic (the only critical element being
the dependence of the mutant's initial frequency on
population size). Examples of checks on approxima-
tions are given in Fig. 1. For fixed fi = 1 and
G?+l)/a* = 4 values of R?/(N*Rf) computed by
numerical integration of results from transition prob-
ability matrix iteration are plotted for three values of
N. To show the fit of the equivalent approximations
for the variance, values of [Rf ± SD(Rfl)]/(N2R^1) are
also plotted for /? = 1. In these examples, the standard
deviation of response is computed on the assumption
that 2NX = 1 (i.e. one mutant expected per genera-
tion), but note that SD(Rf)/(N2Rf) is then inversely
proportional to N. The agreement between the repara-

4-5-1

4 0 -

3-5-

3 0 -

2-5-

aft.

20-

1-5-

10

0-5-

0 0 -

-0-5

40
20 R-SD(R)
10

0 0 0-5 1-0 1-5
t/N

2 0 2-5

Fig. 1. Values of Rf/iN^Rf1), of (Rf1 + SD(R?t))/(N*R™)
and of (Rfl-SD(Rf ))/(N*R™) plotted against t/N for
N = 10, 20 and 40, p = 1, (fi+ l)/a* = 4 and 2AU = 1, in
order to illustrate that this parametrization gives
responses and standard deviations of response
approximately independent of N.

0 0

Fig. 2. Values of Rf/(N2Rf) plotted against t/N for a
range of values of/? and (fi+ l)/a* to show the
relationship of response from mutations to the
distribution of mutant gene effects.

metrized results for different values of N, in particular
between the larger values of 20 and 40, illustrate that
the approximations are satisfactory for practical
purposes.

Response from mutation alone. For a wider range of
parameters, values of cumulative response from muta-
tion are plotted in Fig. 2. This illustrates that the value
of /?, the shape parameter of the gamma distribution
or function of the ratio of effective to actual number
of loci, njn = J?/OS+1). in Wright's sense (see HR86),
has little effect on the expected response. The steady
state rate of response, i.e.

expressed in terms of N*R^, does not depend on the
expected number of mutants contributing to the re-
sponse, i.e. on (fl+ l)/a* = (n/ne)E(Ns). However, if
gene effects are on average large (i.e. a* small) the
response is relatively higher in early generations (Hill,
1982), and the ratio of expected responses for
t/N < 0-5 can be very large indeed. In other words, if
mutant effects are infinitesimal, it takes a long time for
the genes to change much in frequency and contribute
substantially to response.

The standard deviation of cumulative response is
shown in Fig. 3, and is plotted as SD (Rt)/(NaM

2)0&

since results plotted on this scale are independent of
number of mutants/generation. As the mean effects of
individual mutants rise (i.e. lower a* and higher
(/?+ l)/a*), the variation of response increases mark-
edly, because the response in any replicate line de-
pends critically on which specific mutants appear.

Response from existing and mutational variance. The
two components are shown together in Fig. 4. In this
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0 W+D/a*

129

oo 30

Fig. 3. Values of SD(Rf)/(NaM
2)i plotted against t/N for

a range of values of /? and (fi+ l)/a* to show the
relationship of standard deviation of response from
mutations to the distribution of mutant gene effects.

1-60
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1-20-
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0-80-

0-60-

0-40-

0-20 •

000

NRf/R\ = 0000

NRY/R\= 0100 /

000 0-50 Too ' 1T0 200 2-50 300
t/N

Fig. 4. Values of TRt/(NR\) plotted against t/N for fi = 1
and a range of values of (fi+ \)/<x*, and NRf/R\. The
same distribution of initially segregating and mutant gene
effects is assumed. Note that the increment due to
mutation is proportional to NR^/R\ and that curves can
be substituted if initially segregating and mutant genes
have a different distribution of effects. For/? = 1,
(/?+ l)/a* = 2Ns, where s is the mean selective value of
the genes.

1-40

0-00

NRf/R\ = 0000
NRf/R\ = 0-025

\ = 0100

000 0-50 100 1-50
t/N

200 2-50 300

Fig. 5. As Fig. 4, but for values of the standard deviation
of the total response expressed as SD(TRt)/(hio).

example the initial frequencies are assumed to be uni-
formly distributed over the interval 0-1. However, as
shown in HR86, the alternative initial conditions of
either all gene frequencies equal to 0-5 or gene fre-
quencies having a U-shaped distribution,

g(q)ocq-Hl-q)-i (0 < q < 1),

such as would derive from a recurrent mutation
model, give rather similar expected responses for the
time period and parameter range shown. Results are
given for response from existing variance alone and
for two values of NR^/R\, but since the contribution
at any generation from mutations is proportional to
NR^/R\, other values can be inferred immediately. As
an example, bristle number in Drosophila melano-
gaster has a heritability of about 0-4 and estimates of
the increase in heritability from mutation are about
0001 per generation (Hill, 1982; Lynch, 1986); thus
RM/R[ = 00025, so the curves are drawn for values of
N of 10 and 40, approximately. As argued previously,
mutations have a proportionately greater effect early
when there are relatively few genes of large effect: the
initial variance then contributes less and the mutants
more. In these graphs the same distribution of effects
of original and mutant genes is assumed. The separate
curves of Fig. 4 can be combined to give new
combinations.

The standard deviation of response, with the initial
and mutational components combined as in Fig. 4 and
expressed relative to the initial genetic standard devia-
tion, hjo, is shown in Fig. 5. It is seen that if gene effects
are small then mutation contributes little to the
variance, whereas as gene effects become large,
mutation contributes almost all the variance, particu-
larly in later generations.
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Discussion

The main objective of this paper has been to present
a comprehensive theoretical analysis of the response
from mutations due to unlinked additive genes, repara-
metrizing the formulae in such a way that most of the
relevant results can be read from a few graphs. There
are, of course, many limitations to the analysis. Of
these the lack of linkage is not critical, certainly for
species with many chromosomes (Keightley & Hill,
1983); nor is the additivity essential unless almost all
mutants are recessive, because the critical factor is
whether mutant genes have effect in the heterozygote,
and if they do not, they contribute little to response
(Hill, 1982). More fundamental assumptions are that
the distribution of mutant effects is symmetric and
does not change as selection proceeds, i.e. that the
amount of useful variation being generated remains
unchanged, and that natural selection does not oppose
artificial selection. If natural selection acted solely on
the phenotype as a stabilising selection force, the popu-
lation would be expected to reach a plateau where the
artificial and stabilising selection balanced (James
1962; Zeng & Hill, 1986) and which would not depend
much on the amount of de novo variation. If natural
selection acted through the effects of individual genes,
i.e. if genes increasing the trait also reduced fitness, the
rate of response would be impeded and selection inten-
sities might drop to the extent that response ceased.

Results of long-term selected populations do not
give a uniform picture. For example, the Illinois high
corn-oil selection has responded without obvious
attenuation for almost 80 ( = 2-5 N) generations
(Dudley, 1977), some Drosophila experiments have
yielded responses for long periods with some possible
signs of late reductions in response and certainly
in fitness (e.g. Yoo, 1980a), others have shown
plateaux after relatively few generations (e.g. F. W.
Robertson, 1955, for body size in Drosophila). In
Yoo's experiment (Yoo, 1980&) and, for example,
that of Clayton & A. Robertson (1957), the fitness
reductions were associated with genes with a large
effect in the heterozygote but lethal in the homozygote.
There is good but not unequivocal evidence that
attenuation of response is due to stabilizing selection,
i.e. due to the mean level of the traitperse. Thus Latter
(1966) observed continuing reductions in fitness as his
scutellar bristle selected lines of Drosophila became
more extreme, and there was a substantial reduction in
bristle number on relaxation of selection. Similarly,
F. W. Robertson (1955) observed reductions in
performance on relaxation of response but points out
this does not prove the mechanism is stabilizing
selection acting directly on the trait.

In previous papers (e.g. Hill, 1982) the variability of
response from mutations has been noted, but here the
first complete analysis is given. As Fig. 3 shows, this
variance depends markedly on the number and distribu-
tion of effects of mutant genes: if they are rare, but

can have a large effect, the pattern is quite different
from that where there are likely to be several mutants,
each generation having a small effect on the trait.
Consequently, if individual mutants can have large
effects they may cause substantial variation in re-
sponse after a few generations even in a population
which is large in size and initially has substantial varia-
tion (Fig. 5).

The analysis, as exemplified by Fig. 4, shows that
mutations are expected to contribute substantially to
response in long-term experiments. For bristle
number in Drosophila the increment in heritability
deriving from mutations is usually estimated at
around 0001, and Lynch (1986) has found a range of
estimates over species (including mice and maize)
from 00001 to 01 . An increment in heritability of
0-25% would, for example, be equivalent to
R™/R{ = 0-01 for typical values of 25% for initial
heritability. Thus, for experiments run with effective
population sizes of much more than 10, Fig. 4 does
not show values of NR^/R\ as large as may be found
in practice (because the intercrossing of lines made the
graph very confusing). For example, for N = 20,
R^/R\ = 001 and genes of relatively large effect (i.e.
(fi+ l)/a* = (n/ne)E(Ns) = 16), a significant amount
of the response could be due to mutations after 10
generations and over one-third after 20 generations.
The role of mutations should not be ignored when
planning and interpreting long-term selection experi-
ments and breeding programmes. Although the line-
arity relation between response and population size
will break down if the mutation-derived variance be-
comes a large part of the phenotypic variance, there
are obvious potential benefits from maintaining large
populations.

This work was supported by a grant from the Agricultural
and Food Research Council. We are grateful to Michael
Lynch for helpful comments.
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