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We investigate the effects of bottom roughness on bottom boundary-layer (BBL) instability
beneath internal solitary waves (ISWs) of depression. Applying both two-dimensional
(2-D) numerical simulations and linear stability theory, an extensive parametric study
explores the effect of the Reynolds number, pressure gradient, roughness (periodic bump)
height hb and roughness wavelength λb on BBL instability. The simulations show that
small hb, comparable to that of laboratory-flume materials (∼100 times less than the
thickness of the viscous sublayer δv), can destabilize the BBL and trigger vortex shedding
at critical Reynolds numbers much lower than what occurs for numerically smooth
surfaces. We identify two mechanisms of vortex shedding, depending on hb/δv . For
hb/δv � 1, vortices are forced directly by local flow separation in the lee of each bump.
Conversely, for hb/δv � 10−1 the roughness seeds perturbations in the BBL, which are
amplified by the BBL flow. Roughness wavelengths close to those associated with the most
unstable BBL mode, as predicted by linear instability theory, are preferentially amplified.
This resonant amplification nature of the BBL flow, beneath ISWs, is consistent with
what occurs in a BBL driven by surface solitary waves and by periodic monochromatic
waves. Using the N -factor method for Tollmien–Schlichting waves, we propose an analogy
between the roughness height and seed noise required to trigger instability. Including
surface roughness, or more generally an appropriate level of seed noise, reconciles the
discrepancies between the vortex-shedding threshold observed in the laboratory versus
that predicted by otherwise smooth-bottomed 2-D spectral simulations.
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1. Introduction
Internal solitary waves (ISWs) are nonlinear waves of large amplitude that can propagate
tens to hundreds of kilometres along the pycnoclines of lakes and coastal oceans.
As they shoal, ISWs of depression interact with the bottom boundary-layer (BBL)
(Trowbridge & Lentz 2018) by imposing a streamwise velocity (pressure) distribution
that is maximum (minimum) under the trough. The ISW-imposed pressure leads to
rapid, unsteady acceleration and deceleration of the BBL flow beneath the front and rear
shoulders of the ISW, respectively (e.g. Boegman & Stastna 2019; Zulberti et al. 2020).
For large-amplitude ISWs propagating over a flat bottom, laboratory experiments (Carr
et al. 2008; Aghsaee & Boegman 2015; Zahedi et al. 2021) and numerical simulations
(Diamessis & Redekopp 2006; Aghsaee et al. 2012; Sakai et al. 2020; Ellevold & Grue
2023; Posada-Bedoya et al. 2024) have demonstrated that ISW-induced currents can lead
to hydrodynamic instabilities in the BBL. At laboratory scales (ReISW ∼O(100), defined
in § 1.2), the instability is convective (Posada-Bedoya et al. 2024), as it falls behind the
ISW. The instabilities in the BBL may be amplified by the flow (Huerre & Monkewitz
1990; Schmid & Henningson 2001), depending on the magnitude and energy distribution
of the background seed noise (Verschaeve & Pedersen 2014; Posada-Bedoya et al. 2024)
as well as the characteristics of the BBL flow (Reynolds number and pressure gradient)
(Aghsaee et al. 2012).

Parameterizing and understanding the mechanisms leading to BBL instability beneath
ISWs is crucial for closing ISW energy budgets (Moum et al. 2007b; Zahedi et al. 2021)
and predicting sediment transport processes (Boegman & Stastna 2019). Internal solitary
waves carry significant energy shoreward (Chang et al. 2006; Shroyer et al. 2010), and
as they approach the continental shelf, their energy is dissipated largely as a result of
strong bottom interaction (Boegman et al. 2005; Moum et al. 2007a; Aghsaee et al. 2010).
Therefore, the stability of the BBL beneath ISWs will determine dissipation (Klymak &
Moum 2003; Shroyer et al. 2009) and propagation distances (Shroyer et al. 2010; Zahedi
et al. 2021, 2023): unstable waves have dissipative length scales of ∼100 wavelengths,
whereas stable waves propagate significantly further, ∼1000 wavelengths. Predicting the
BBL stability is also important for closing the turbulent kinetic energy budget in the BBL.
Enhanced near-bed shear, induced by the passage of ISWs, has been shown to increase
both production and dissipation rate in the BBL by three orders of magnitude (Zulberti
et al. 2020, 2022). This, in turn, has direct implications for the sediment resuspension and
transport (Stastna & Lamb 2008; Boegman & Stastna 2019).

Part of the difficulty in understanding the transition from laminar to turbulent flow lies
in the number of factors that affect the transition, the most important ones being the
pressure distribution in the external flow, the wall roughness and the characteristics of
disturbances in the free-stream flow (Schlichting 1968). Previous studies on ISW-induced
BBL instability have focused on the distribution of the external flow, by varying the
pressure gradient and Reynolds number imposed by the ISW on the BBL (e.g. Diamessis &
Redekopp 2006; Aghsaee et al. 2012; Ellevold & Grue 2023; Posada-Bedoya et al. 2024).
In comparison, research on the roles of bottom roughness (e.g. Stastna & Lamb 2008; Carr
et al. 2010) and of free-stream disturbances (e.g. Posada-Bedoya et al. 2024), in the ISW-
induced BBL, remains scarce. Here, we focus on the role of bottom roughness in BBL
instability beneath ISWs of depression.

1.1. Roughness-induced BBL instability
Simulations and laboratory experiments on the interaction of ISWs with rough bottom
topography have considered topography with scales significantly larger than the induced
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boundary-layer thickness (Stastna & Lamb 2008; Carr et al. 2010; Olsthoorn & Stastna
2014; Harnanan et al. 2015,2017). For example, Stastna & Lamb (2008) simulated the
propagation of ISWs of elevation over topography modelled as the superposition of
three sinusoids with a maximum roughness height (hb) relative to the total depth
H , hb/H = 0.03. Carr et al. (2010) conducted two-dimensional (2-D) simulations and
laboratory experiments of ISWs propagating over sinusoidal corrugated beds. They report
the smallest topography in the literature beneath ISWs of depression, with hb/H ≈ 10−2.
In comparison, typical laboratory-flume bed materials for experiments on ISW-induced
BBL instability including acrylic sediments (Aghsaee & Boegman 2015), smooth concrete
(Zahedi et al. 2021) or glass (Carr et al. 2008), are expected to have relative roughness
heights hb/H ∼ 10−3−10−6. Based upon our simulations, these can be 10–100 times
smaller than the laminar viscous sublayer thickness (δv) of the ISW-induced BBL. Despite
the known presence of surface roughness in laboratory flumes, and its known theoretical
relevance for BBL stability (Schlichting 1968), the physical mechanisms underlying such
small-scale roughness-induced transition beneath ISWs remain unknown.

The roughness-induced BBL instability beneath ISWs investigated here is similar to
the related problem of roughness-induced BBL instability beneath surface solitary waves
(SSWs) (Sumer et al. 2010; Scandura 2013) and surface periodic waves (Blondeaux &
Vittori 1994). Wall roughness has been shown to introduce perturbations to the surface-
wave-driven BBL that are preferentially amplified at the wavelength of the most unstable
mode of the BBL, as predicted by linear stability theory (Blondeaux & Vittori 1994;
Scandura 2013). The similarity of the BBL flow beneath SSWs and ISWs raises the
question of whether the BBL exhibits the same resonator behaviour beneath ISWs. Both
types of waves (SSWs and ISWs) impose an unsteady, isolated pair of favourable and
adverse pressure gradients on the BBL, with an inflection point in the velocity profile
upstream of the BBL separation (Sumer et al. 2010; Aghsaee & Boegman 2015). Also, for
both types of waves, Verschaeve & Pedersen (2014) predicted noise-amplifier behaviour of
the BBL, with the stability determined by the accumulated amplification of perturbations
of small initial amplitude (potentially introduced by small-scale bottom roughness).
However, for both types of BBL flow, different studies reported different critical Reynolds
numbers associated with instability. This is potentially explained by differences in the
background noise level (Verschaeve & Pedersen 2014).

1.2. Vortex-shedding thresholds beneath ISWs
Using 2-D spectral simulations, Aghsaee et al. (2012) argued that BBL instability under
an ISW of depression was determined by the non-dimensional pressure gradient (PISW )
and the momentum thickness Reynolds number (ReISW ) at the separation point beneath
the wave (figure 1), where

PISW = (U2 + c)
U2

Lwg′ , (1.1)

ReISW = U2

√
Lw

ν (U2 + c)
. (1.2)

Here, U2 is the absolute value of the maximum horizontal velocity at the wave trough, c is
the solitary wave phase speed, g′ = g�ρ/ρ0 is the reduced gravity, g is the gravitational
constant, ρ0 = 1000 kg m−3 is a reference density, �ρ is the density difference across
the pycnocline, ν is the kinematic viscosity and Lw is the horizontal wavelength
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Figure 1. Stability diagrams in (a) ReISW versus PISW space and (b) a/H versus Rew space, showing our
simulated ISW cases (numbered yellow and pink squares), the laboratory observations by Zahedi et al. (2021)
(Z21) (circles) and Carr et al. (2008) (C08) (triangles) and the unstable ISW numerically simulated by Sakai
et al. (2020) (S20) (blue square). Pink squares highlight the selected ISW cases to focus on the description
of the results. The ISW numeration corresponds with the one in table 1. Black solid lines are stability curves
from spectral 2-D simulations by (a) Aghsaee et al. (2012) (A12) and (b) Diamessis & Redekopp (2006) (D06).
Blue and red lines are stability curves from 2-D simulations by Ellevold & Grue (2023) (E23) for two different
pycnocline depths (d/H ). Blue and red markers are the associated laboratory experiments in Carr et al. (2008)
selected by Ellevold & Grue (2023) to fit each stability curve. The C08, Z21 and E23 ISWs were generated
by lock release, whereas the D06, A12, S20 and present study ISWs were generated by the solution of the
Korteweg-de Vries (KdV) or DJL equations.

scale (Michallet & Ivey 1999)

Lw = 1
a

∫ ∞

−∞
ηp(x)dx, (1.3)

where ηp(x) is the vertical displacement of the pycnocline and a is the wave amplitude.
More recently, Ellevold & Grue (2023) conducted 2-D simulations to reproduce the
laboratory experiments by Carr et al. (2008). They proposed that, in addition to a/H and
Rew = c0 H/ν, the pycnocline depth (d) is a relevant parameter for BBL stability. They
defined a critical threshold of the form a/H = a0(Rew/Rew0)

−m1 , where the parameters
a0 and m1 depend on the relative depth of the pycnocline (d/H ). Here, c0 is the linear
wave phase speed.

At laboratory scales (ReISW ∼O(100)), there is a discrepancy in the criteria for vortex
shedding between experiments and spectral 2-D simulations (Aghsaee et al. 2012; Zahedi
et al. 2021; Posada-Bedoya et al. 2024). Lock-release-generated ISWs generated in the
laboratory (Carr & Davies 2006; Carr et al. 2008; Zahedi et al. 2021) and simulated
by finite-volume 2-D solvers (Ellevold & Grue 2023) agree on the instability threshold,
ReISW ≈ 200 (figure 1a). However, 2-D spectral simulations of Dubreil–Jacotin–Long
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(DJL)-initialized ISWs (Aghsaee et al. 2012; Posada-Bedoya et al. 2024) predict a critical
threshold at higher (ReISW , PISW ) (figure 1a). It remains unknown why the 2-D spectral
simulations have a different stability threshold from that observed in the laboratory.

The convective noise-amplifier nature of the BBL (Verschaeve & Pedersen 2014;
Posada-Bedoya et al. 2024) supports the hypothesis that wall roughness might provide
a mechanism for introducing seed perturbations to the BBL, which are convectively
amplified beneath the ISW. Roughness occurs naturally in the laboratory but is not
explicitly considered in idealized smooth-bed numerical simulations (e.g. Aghsaee et al.
2012; Sakai et al. 2020; Posada-Bedoya et al. 2024). Therefore, roughness, as a source
of perturbations, is a potential feature that might explain the discrepancies between the
experimental and spectral 2-D numerical results. To this point, Verschaeve & Pedersen
(2014) explain why Sumer et al. (2010), Vittori & Blondeaux (2011) and Ozdemir
et al. (2013) each obtained different critical Reynolds numbers for the instability of the
BBL beneath SSWs due to differences in background noise across their numerical and
experimental conditions. A similar explanation, with roughness as the distinguishing
feature of differences in background noise, can be argued for the ISW case. Related to the
present study, Scandura (2013) simulated SSW propagation over random bottom roughness
with average height hb ≈ 5 × 10−5 m to reproduce the laboratory observations by Sumer
et al. (2010).

1.3. Objectives
The objective of the present study is to investigate how bottom roughness may seed BBL
instability beneath ISWs of depression, at scales comparable to the roughness of typical
materials encountered in laboratory flumes. Using 2-D simulations and linear stability
theory, we conducted an extensive parametric study on the effects of resolved sinusoidal
roughness parameters (height and wavelength) on BBL instability beneath ISWs. We
described the destabilization mechanisms and computed instability thresholds for different
roughness heights. By interpreting BBL–roughness interaction as a mechanism for seeding
perturbations within the BBL, we predicted the background noise levels associated with
the different roughness heights. Finally, we discussed the relevance of our results for more
realistic random roughness heights.

2. Methods

2.1. Problem definition
We conducted 2-D simulations of ISWs propagating over a flat bottom and a region of
sinusoidal roughness. The geometry of the sinusoidal roughness was determined by two
parameters: height hb and wavelength λb (figure 2b). The computational domain had a
maximum depth H and a length L = 16H . The ISWs were initialized by numerically
solving the DJL equation using the algorithm of Turkington et al. (1991) as implemented
by Dunphy et al. (2011). The initial condition was given by the DJL solution with the ISW
trough at x = 0.25L . As in Carr et al. (2010), the present domain comprised a section
of flat bottom, followed by rough topography, to allow for illustration of the effects of
roughness on BBL instability. The region of sinusoidal roughness was located at a distance
of 3Lw from the initial ISW trough, sufficient for the BBL beneath the initially inviscid
DJL wave to develop, before interacting with the roughness region. We verified that the
results were insensitive to further increasing this distance (not shown). The length of
the roughness region was 0.31L , defined to accommodate 10 wavelengths of the largest
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Figure 2. (a) Sketch of the domain, boundary conditions (b.c.), and the non-dimensional horizontal velocity
field for the set-up of the numerical simulations. (b) Inset zoom of the bottom roughness elements indicates
the roughness parameters (λb, hb). (c) Inset zoom of the near-bed velocity indicates separation point (xsep),
and boundary-layer parameters δv and δs . As u∗ = 0 at xsep , values of 5ν/u∗ are only shown upstream of xsep .
Black lines show selected velocity profiles every 0.5x/H , with the zero of each profile indicated with a vertical
dashed line. Profiles were scaled to fit the 0.5x/H spacing.

simulated λb (table 1) while balancing the computational demand with the total domain
length. The results were insensitive to further increasing the length of the roughness region
(not shown). A schematic of the problem is presented in figure 2(a, b).

The roughness region was initiated and terminated with a minimum value of the
sinusoidal function that defined the topography (see figure 2b). This created a smooth
transition between the roughness region and the flat bottom. Therefore, even though the
bottom slope is a continuous function, the second-order derivative of the topography
is discontinuous at the flat–rough bottom transition. Hence, the flow at the edges of
the roughness region was different from the flow over the periodic bumps. As we are
focused on the BBL interaction with the periodic topography, the flow near the flat–rough
transitions was not considered here in detail.

The ISWs propagated along a quasi-two-layer density stratification defined via a
hyperbolic tangent profile, widely used in numerical studies

ρ̄(z) = ρ0 + �ρ tanh
(

z − z pyc

h pyc

)
, (2.1)
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ISW z pyc/H Lw/H PISW a/H ReISW Rew δs/hb0 δv/hb0 λO S
b /Lw

1 0.15 1.61 0.044 0.21 56 2.34E + 04 9.93 2.30 0.0836
2 0.15 1.61 0.044 0.21 97 7.01E + 04 5.73 1.00 0.0459
3 0.15 1.61 0.044 0.21 177 2.34E + 05 3.17 0.41 0.0246
3A† 0.15 1.61 0.044 0.21 177 2.34E + 05 3.17 0.41 0.0082
3B† 0.15 1.61 0.044 0.21 177 2.34E + 05 3.17 0.41 0.0738
4 0.15 1.61 0.044 0.21 250 4.68E + 05 2.28 0.24 0.0180
5 0.15 1.61 0.044 0.21 367 1.00E + 06 1.57 0.14 0.0131
6 0.15 1.81 0.071 0.27 52 8.77E + 03 16.06 3.73 0.1076
7 0.15 1.81 0.071 0.27 94 2.81E + 04 8.68 1.53 0.0640
8 0.15 1.81 0.071 0.27 148 7.01E + 04 5.55 0.76 0.0407
8A† 0.15 1.81 0.071 0.27 148 7.01E + 04 5.55 0.76 0.0136
8B† 0.15 1.81 0.071 0.27 148 7.01E + 04 5.55 0.76 0.1221
9 0.15 1.81 0.071 0.27 234 1.75E + 05 3.53 0.38 0.0262
10 0.15 1.81 0.071 0.27 331 3.51E + 05 2.49 0.23 0.0203
11 0.13 2.35 0.100 0.34 54 3.51E + 03 27.02 6.00 0.1689
12 0.13 2.35 0.100 0.34 98 1.17E + 04 14.36 2.27 0.0906
13 0.13 2.35 0.100 0.34 170 3.51E + 04 8.05 0.97 0.0570
13A† 0.13 2.35 0.100 0.34 170 3.51E + 04 8.05 0.97 0.0190
13B† 0.13 2.35 0.100 0.34 170 3.51E + 04 8.05 0.97 0.1711
14 0.13 2.35 0.100 0.34 240 7.01E + 04 5.70 0.58 0.0425
15 0.13 2.35 0.100 0.34 339 1.40E + 05 4.06 0.34 0.0324
16 0.11 2.32 0.127 0.39 49 2.00E + 03 30.23 7.33 0.2109
17 0.11 2.32 0.127 0.39 102 8.57E + 03 15.77 2.23 0.1088
18 0.11 2.32 0.127 0.39 171 2.40E + 04 9.67 1.00 0.0714
18A† 0.11 2.32 0.127 0.39 171 2.40E + 04 9.67 1.00 0.0238
18B† 0.11 2.32 0.127 0.39 171 2.40E + 04 9.67 1.00 0.2143
19 0.11 2.32 0.127 0.39 271 6.00E + 04 5.55 0.50 0.0499
20 0.11 2.32 0.127 0.39 383 1.20E + 05 4.00 0.29 0.0397

Table 1. Parameters of simulated ISWs. In all cases, h pyc/H = 0.02 and �ρ/ρ0 = 0.8. Boundary-layer
thickness measures, δs and δv are scaled by the largest roughness height simulated hb0/H = 10−3. For each
ISW (i.e. each row, excluding cases A and B), four simulations were conducted with different bottom roughness
(80 simulations): hb/H = 10−3, hb/H = 10−4, hb/H = 10−5 and hb/H = 0 (flat bottom). †Cases A and
B were simulated to investigate the effect of roughness wavelength and only considered hb/H = 10−3 and
hb/H = 10−4 (16 simulations). A total of 96 simulations were conducted.

which represents a pycnocline of half-thickness h pyc, centred at depth z pyc, with z positive
upwards. In all cases, h pyc/H = 0.02 and �ρ/ρ0 = 0.8.

Due to the streamwise variability of the BBL flow, boundary-layer parameters varied in
the streamwise direction (figure 2c). For scaling purposes, we defined the boundary-layer
thickness representative of each ISW (δs) as the height of the 99% free-stream velocity
(δ99) at the ISW trough, where U∞ = U2. The viscous sublayer thickness representative
of each ISW (δv), was defined as the minimum value of the laminar sublayer height
5 ν

u∗ upstream of the separation point, which is the region of the BBL where the flow
was unstable. In figure 2(c), values of 5ν/u∗ are only shown upstream of xsep because
5ν/u∗ → ∞ as x → xsep (because u∗ → 0). Here, u∗ is the friction velocity and τb is the
wall shear stress, both varying in the streamwise direction and defined as

u∗(x) =
(

τb

ρ0

)1/2

, τb(x) = νρ0

(
∂u

∂z

)
z=0

. (2.2)
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2.2. Numerical model and simulation set-up
The 2-D numerical simulations were conducted with the pseudospectral code SPINS
(Subich et al. 2013). SPINS solves the 2-D incompressible Navier–Stokes equations under
the Boussinesq approximation

∂u

∂t
+ u

∂u

∂x
+ w

∂u

∂z
= − 1

ρ0

∂p

∂x
+ ν∇2u, (2.3)

∂w

∂t
+ u

∂w

∂x
+ w

∂w

∂z
= − 1

ρ0

∂p

∂z
+ ν∇2w − ρg

ρ0
, (2.4)

∂ρ

∂t
+ u

∂ρ

∂x
+ w

∂ρ

∂z
= κ∇2ρ, (2.5)

∂u

∂x
+ ∂w

∂z
= 0, (2.6)

where (x, z) are the horizontal and vertical coordinates, (u, w) are the associated velocity
vectors, t is time, p is the pressure, ρ is the fluid density and κ is the molecular diffusivity.
For all cases, the simulated Pr = ν/κ = 1.

SPINS implements a spectral collocation method for the simulation of the stratified
Navier–Stokes equations in rectilinear and smooth curvilinear geometries. To solve for
curvilinear geometries, the model defines a terrain-following grid in the physical space,
which is mapped to a rectangular computation domain (see for more details Subich
et al. 2013). The model solves the equations in the computational box and then maps
the solution back to physical coordinates. The spectral accuracy in conjunction with a
curvilinear geometry makes SPINS unique and suitable for the study of boundary-layer
instability of stratified flows over non-flat-bottom boundaries. For the no-slip boundary
condition (b.c.), the model implements Chebyshev polynomials with a Chebyshev–Gauss–
Lobatto quadrature grid that clusters the grid points near the walls, suitable to resolve
the boundary-layer dynamics. Recent studies have shown the capability of the model to
solve nonlinear internal wave problems, at laboratory scales, to investigate wave–boundary
interaction (Deepwell et al. 2021; Hartharn-Evans et al. 2022), boundary-layer instability
(Harnanan et al. 2017; Posada-Bedoya et al. 2024) and sediment resuspension (Olsthoorn
& Stastna 2014).

In the present set-up, no-slip and no-flux boundary conditions were imposed on the
top and bottom boundaries, with periodic horizontal boundary conditions (figure 2a). A
Chebyshev–Gauss–Lobatto grid was employed in the vertical direction with a clustering
of grid points near the top and bottom walls and a uniform grid was used in the
horizontal direction. Grid resolution was defined to solve at least 15 points per roughness
wavelength in the horizontal direction, and at least 7 Chebyshev grid points below the
roughness height, i.e. below z = hb. These grid resolutions are comparable to those used
by Carr et al. (2010) to resolve the corrugated bed, and by Stastna & Lamb (2008) to
resolve the flow surrounding bottom topography. The terrain-following coordinates used
by the numerical model relax the grid requirements because of the exact definition of
the boundary conditions following the variable bottom. Grid resolutions ranged from
2048 × 256 to 8192 × 4096 in the horizontal and vertical directions respectively. We
conducted additional simulations doubling the grid resolution in both directions for
selected cases to verify grid independence at these resolutions (Appendix A). From these,
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we verified grid independence down to 3 grid points below z = hb and 8 grid points per
roughness wavelength.

2.3. Parameter space
We conducted an extensive parametric study that explored the effect of changes in ISW-
induced BBL parameters ReISW , PISW , and roughness parameters hb and λb on the nature
of the BBL instability. We considered 20 different ISWs over the ReISW versus PISW
space (figure 1). To investigate the effect of roughness on the BBL instability, we analysed
separately the effect of changing the roughness height, while keeping the roughness
wavelength constant for each ISW, and vice versa. A total of 96 simulations were carried
out for this study: 80 out of the 96 simulations varied the roughness height while keeping
the same wavelength for each ISW; the remaining 16 simulations were selected cases to
investigate the effect of varying the roughness wavelength.

2.3.1. Roughness height
For each ISW we simulated a flat-bottom case (hb/H = 0) and three roughness heights:
hb/H = 10−3, hb/H = 10−4 and hb/H = 10−5. For a laboratory-scale 1 m deep tank,
these correspond to 1, 0.1 and 0.01 mm respectively, which are close to representative
roughness scales of typical flume materials (Darby & Chhabra 2017); 0.001 mm–0.01 mm
for glass (hb/H = 10−5) and 0.025 mm–0.2 mm for smooth concrete (hb/H = 10−4). For
rough concrete and imperfections, for example, caulking used for joining glass panels, or
when considering a sediment bed (e.g. Aghsaee & Boegman 2015; Ghassemi et al. 2022)
roughness can be ∼O(1) mm, represented here by the cases with hb/H = 10−3.

To investigate the effect of roughness height, the roughness wavelength was kept
constant for each ISW case. We set the roughness wavelength equal to the wavelength of
the most unstable mode of the BBL (λO S

b ) predicted by linear stability theory (see § 2.4).
Therefore, we considered optimal conditions for the roughness elements to favour growth
of instabilities in the BBL, as has been shown for surface periodic waves (Blondeaux &
Vittori 1994) and SSWs (Scandura 2013). By analysing different ISWs over the (ReISW ,
PISW ) space, this definition of λb allowed us to compute the most unstable (ReISW , PISW )

for a given hb, as often done to define thresholds of BBL instability (e.g.Schlichting
1968; Verschaeve & Pedersen 2014). This was a more consistent approach than, for
example, arbitrarily selecting ‘a priori’ a constant roughness wavelength for all ISWs,
or considering random roughness, which would make it more difficult to parametrically
investigate the effect of roughness wavelength on the BBL instability. Complementary
laboratory experiments (unpublished, in preparation) of periodic ISWs propagating over a
deformable sediment bed showed that bedforms develop with a characteristic wavelength
that matches that of the most unstable mode of the BBL, which also motivated our
definition of λb. In the discussion section, we will show that the conclusions drawn here,
based on the parametric definition of the roughness wavelength, remain valid and can be
extended to more realistic roughness conditions.

2.3.2. Roughness wavelength
To investigate the effect of roughness wavelength, we repeated the simulations with
two additional roughness wavelengths for selected ISWs (cases 3, 8, 13 and 18 in
table 1). These additional simulations were only repeated for hb/H = 10−3 and 10−4. The
additional roughness wavelengths were chosen far from the initially simulated wavelength
of the most unstable mode: λ−b = λO S

b /3 and λ+b = 3λO S
b , considering that λ−b is limited by

the horizontal grid resolution.
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The parameters of the simulated ISWs and their associated BBLs are summarized
in table 1. Figure 1 illustrates the selected ISWs in the ReISW versus PISW and a/H
versus Rew parameter space, along with the corresponding experiments by Carr et al.
(2008) and Zahedi et al. (2021). The simulations were designed to cover the range of
parameters encompassing the various numerical and experimental instability thresholds.
This allowed us to investigate the effects of bottom roughness on the different instability
parameterizations.

2.4. Space–time linear stability analysis
We conducted a space–time linear stability analysis to: (a) determine the wavelength of
the most unstable mode for each ISW, which was set as the roughness wavelength in our
simulations (see § 2.3.2), and (b) compute the total linear spatial amplification in the BBL
beneath each ISW, which was analysed in conjunction with the thresholds of instability
predicted by our simulations.

For each ISW, we analysed the stability properties of the reverse-flow jet within the
separated BBL (i.e. upstream of the separation point) in the frame of reference of the
progressive ISW. The velocity profiles were uniformly sampled behind the ISW trough,
from the 2-D flat-bottom simulations, at a time prior to the onset of instability – if
observed. For each velocity profile U (z), we solved the Orr–Sommerfeld (O–S) equation
(Drazin & Reid 1981)

i

Re

(
d4v̂

dz4 − 2α2 d2v̂

dz2 + α4v̂

)
− (αU (z) − ω)

(
d2v̂

dz2 − α2v̂

)
− α

d2U (z)

dz2 v̂ = 0, (2.7)

with boundary conditions

v̂(0) = dv̂

dz
(0) = 0, v̂(z → ∞) → 0,

dv̂

dz
(z → ∞) → 0. (2.8)

We determined the set of complex frequencies ω = ωr + iωi associated with a
corresponding given set of complex wavenumbers α = αr + iαi for perturbations with the
general form

v′ = v̂(z)ei(αx−ωt). (2.9)

Under this approach, ωr and αr represent the frequency and wavenumber of the linear
instability, and ωi and -αi , respectively, represent the growth (time) and amplification
(space) rate; where we make the distinction between growth in time and amplification
in space. Equation (2.7) was solved using a Chebyshev collocation method (Orszag 1971).
Further details of the Orr–Sommerfeld equation solution and its validation are presented
in Appendix B.

The Orr–Sommerfeld equation assumes steady, incompressible and parallel base flow
U (z). The stability analysis was conducted in the frame of reference of the ISW, where
the inviscid flow imposed on the inner layer was steady (e.g. Verschaeve & Pedersen
2014; Posada-Bedoya et al. 2024). The flow in the inner layer is quasi-steady because
the rate of change within the inner layer is sufficiently low or close to the reference
frame of the solitary wave. Non-parallel effects can be expected to be weak in shallow
laminar separated flows (Diwan & Ramesh 2012), with a small aspect ratio (i.e. height-
to-length ratio, hb/Lb). For this reason, local parallel stability theory works well for
laminar separation bubbles (e.g. Marxen et al. 2003). In our simulations, the aspect ratios
of streamlines, in the separation region (hb/Lb ≈ 0.02 − 0.04) (e.g. compare x and z
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Figure 3. Snapshots of the non-dimensional vorticity field (ωyδs/c) after the ISW passage over (a,e) the
flat bottom and the rough wall region with three simulated roughness heights: (b,f ) hb/H = 10−5, (c,g)
hb/H = 10−4, (d,h) hb/H = 10−3. Results for two selected ISWs with PISW = 0.1: (a,b,c,d) ReISW = 98 and
(e,f,g,h) ReISW = 240. Cases correspond to ISW 12 and 14 in table 1, respectively. For each ISW, the roughness
wavelength was the wavelength of the most unstable mode of the BBL (see λO S

b /Lw in table 1). Each panel
shows a near-bed zoom of the vorticity field over the rough wall region and a zoom of the bottom topography.
Note that the domains here are shifted to the right from the schematic in figure 2.

scales in figure 2(c)), are within typical values reported in the literature (see figure 3a
in Diwan & Ramesh (2012)) and so we can invoke the arguments of Diwan & Ramesh
(2012) to consider a locally parallel BBL, suitable for local linear stability analysis.

We iteratively solved (2.7) for each flat-bottom simulated ISW velocity profile to obtain
2-D maps of (ωr , ωi ) as a function of selected sets of (αr , αi ); similar to Jones et al.
(2008). The values of ωi along (αr , αi = 0) correspond to the solution of the temporal
problem of the O-S equation, which predicts the spectrum of growth rates for a set of
real wavenumbers αr . Likewise, the values of −αi along (ωr , ωi = 0) correspond to
the solution of the spatial problem of the O-S equation, which predicts the spectrum
of amplification rates (−αi ) for a set of real frequencies ωr . Figure 14 in Appendix C
shows an illustrative example of the 2-D map and the corresponding spectra of growth
and amplification rates for a selected velocity profile. This procedure was repeated for
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each velocity profile sampled behind each ISW trough. Note that this spatial-temporal 2-
D mapping is often conducted when looking for the presence of convective or absolute
instability through the cusp-map technique (Kupfer et al. 1987; Schmid & Henningson
2001).

2.4.1. Most unstable wavelength
For each ISW, we defined a corresponding wavelength representative of the most unstable
spatial mode (i.e. largest −αi ), λO S

b , which was set as the wavelength of the periodic
roughness in our 2-D simulations. Given the weak streamwise variability of the BBL flow,
the computed most unstable wavelength slightly varied in the streamwise direction. To
define a single wavelength representative of the most unstable mode of each BBL, λO S

b
was computed as the weighted average of the most unstable wavelengths over the pocket
of local instability, with amplification rate as the weighing factor. For selected cases, we
verified that the BBL instability, predicted by the 2-D simulations, was not significantly
sensitive to variations in λO S

b within ±10%; likely due to the continuous spectrum of
unstable modes. Values of λO S

b are summarized in table 1.

2.4.2. Amplification factor
We followed the approach of Verschaeve & Pedersen (2014) to compute the spatial
amplification of the linear instability beneath the ISW. The amplitude ratio of the
instability (A = A(x)) relative to the unknown but small value A0 at the separation point
xsep (where the region of instability begins, see figure 2(c)) was computed

log10

(
A

A0

)
= −

∫ x

xsep

αi (x)dx . (2.10)

Here, −αi (x) is the amplification rate of the most unstable mode computed for each
selected velocity profile (i.e. at each location x). This approach is known as the N -factor
method (Herbert 1997), where the N factor is given by the maximum amplitude ratio in
the streamwise direction

N = max
(

log10
A

A0

)
. (2.11)

Results of the N -factor method are presented in § 3.3.

3. Results

3.1. Roughness-induced BBL instability
For brevity, we focus the description on selected illustrative ISW cases. A similar
dependence of the BBL stability on the roughness parameters was identified for all ISWs
in the parameter space.

3.1.1. Effect of roughness height
To show the effects of roughness height, we describe the production of vortex-shedding
for ISW 12 (ReISW = 98, PISW = 0.1) and ISW 14 (ReISW = 240, PISW = 0.1). These were
chosen because they were both expected to be stable and remained laminar when the ISW
passed over the flat-bottom region in our simulations (figure 3a,e), in agreement with
the 2-D simulation-derived threshold formulated by Aghsaee et al. (2012). However, for
the ReISW = 240 case, the BBL was expected to be unstable according to the laboratory
experiments by Carr et al. (2008) and Zahedi et al. (2021) (figure 1).
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To visualize the effects of varying the roughness height on the production of near-bed
vortex shedding, figure 3 shows the vorticity for these cases. The roughness wavelength
was equal to that of the most unstable mode of the reverse-flow jet predicted by the O-S
equation from the associated flat-bed case (see 2.3.1 and table 1).

For ReISW = 98 the amplitude of the near-bed vorticity field perturbations increased
with increasing roughness height. However, vortex shedding only occurred for
hb/H = 10−3 (hb/δv = 0.44) (figure 3d). For hb/H = 10−4, the roughness elements
introduced instabilities in the near-bed vorticity field, but these were not sufficient to
trigger vortex shedding (figure 3c). Rather, the roughness-induced instabilities decayed
after the passage of the ISW. For hb/H = 10−5, the perturbations were much smaller and
the BBL flow was nearly insensitive to the roughness, closely resembling the laminar
flat-bottom case (cf. panels a and b in figure 3).

For ReISW = 240, the BBL was stable over the flat-bottom, but vortex shedding occurred
over the rough wall region for the three simulated roughness heights (figure 3f–h),
even for hb/H = 10−5, which was two orders of magnitude smaller than the viscous
sublayer thickness: hb/δv = 0.017. This result clearly shows that small-scale roughness,
characteristic of smooth flume materials, is a BBL destabilizing mechanism beneath ISWs.

Vortex shedding occurred earlier for larger roughness heights (cf. panels f–h in figure 3).
For hb/H = 10−3, vortices detached completely and moved away from the wall over
the entire rough wall region. In comparison, for hb/H = 10−4 and hb/H = 10−5, the
roughness-induced instability was still transitioning after the same elapsed time, with
vortices forming near the front end of the rough wall region; thus showing differences
in the vertical position of the vortices along the rough bed. Therefore, increasing the
roughness height increases the amplitude of the seeding perturbations, thereby facilitating
the transition toward vortex shedding.

The nature of the BBL stability does not only respond to changes in bottom roughness
but also depends on the ISW-induced BBL parameters ReISW and PISW . For example, ISW
12 over hb/H = 10−4 (figure 3c) and ISW 14 over hb/H = 10−5 (figure 3f ) had similar
values of hb/δv; 0.044 and 0.017, respectively. However, the BBL stability was different
between these cases, with only ISW 14 triggering vortex shedding. This difference in
vortex shedding between different ReISW at similar hb/δv shows that vortex shedding of
the BBL, in response to the bottom roughness, is not solely dependent on hb/δv .

A similar response to changes in roughness height occurred for all waves in the
parameter space, with vortex shedding being triggered for a critical hb that varied
depending on ReISW and PISW , as we discuss later.

3.1.2. Effect of roughness wavelength
To illustrate the effects of roughness wavelength on BBL instability, we considered ISW 3
and ISW 13 (table 1) propagating over roughness with three different wavelengths and the
same hb/H = 10−4 (see § 2.3.2). The roughness wavelengths (λO S

b , λ−b = λO S
b /3 and λ+b =

3λO S
b ) were defined based on spectra of the growth and amplification rates for velocity

profiles of the reverse-flow jet within the separated BBL (figure 4) (see § 2.3.2).
The simulations (figure 5) support the conclusion that roughness wavelength is a crucial

parameter for the stability of the BBL. For the shortest λ−b and longest λ+b , vortex shedding
did not occur, except for localized instabilities at the edges of the rough wall region (panels
a,c and d,f ). We attribute those instabilities to the discontinuity in the second derivative
of the topography at the transition flat to rough. As the flow at the edges of the roughness
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Figure 4. (a,e) Snapshots of the near-bed horizontal velocity from simulations of two selected ISWs
propagating over a flat bottom. The waves are visualized in the ISW frame of reference, with xISW = 0 at
the ISW trough. (b,f ) Selected near-bed velocity profiles of the separated BBL in the flat-bottom simulation
for the two selected ISWs. Locations of the profiles are indicated by corresponding coloured vertical dashed
lines in panels (a) and (e), respectively. (c,g) Growth rate (ωi ) and (d,h) amplification rate (−αi ) spectra of
unstable modes for each selected velocity profile. Panels show (a,b,c,d) ISW 3 (ReISW = 177, PISW = 0.044)
and (e,f,g,h) ISW 13 (ReISW = 170, PISW = 0.1). Vertical dotted lines in panels (c,d,g,h) indicate the roughness
wavelength in the three simulated cases.

region is different from the flow over the periodic bumps, the latter being the focus of the
present study, the instabilities at the edges of the rough wall region are inconsequential
for the present analysis. Conversely, BBL instability and uniform vortexshedding, over
the rough wall region, occurred when the roughness wavelength matched that of the most
unstable mode of each BBL (panels b and e). This result suggests that the BBL beneath
ISWs behaves as a resonator, with a tendency to preferably amplify perturbations with a
wavenumber closer to that of the most unstable mode of the BBL flow. The amplification
and vortex shedding are more energetic for cases with larger growth/amplification rates
predicted by linear stability theory (cf. panels c,d versus g,h in figure 4). In the discussion
section, we present additional simulations using random roughness to further explore the
role of roughness wavelength on instability amplification.
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Figure 5. Snapshots of the non-dimensional vorticity field (ωyδs/c) after the ISW passage over the rough wall
region for two selected ISWs: (a,b,c) ISW 3A, 3 and 3B (ReISW = 177, PISW = 0.044), respectively, and (d,e,f )
ISW 13A, 13 and 13B (ReISW = 170, PISW = 0.1), respectively. All the cases had the same roughness height
hb/H = 10−4. For each ISW, three different roughness wavelengths were simulated: (a,d) λ−b = λO S

b /3, (b,e)
λO S

b /Lw , (c,f ) λ+b = 3λO S
b (see table 1). Each panel shows a near-bed zoom of the vorticity field over the rough

wall region and a zoom of the bottom topography. Note that the domains here are shifted to the right from the
schematic in figure 2.

3.2. Bottom boundary layer instability amplification mechanisms
We have shown that changes in both roughness height and wavelength modify the stability
of the ISW BBL and provide a path for vortexshedding, in an otherwise stable flow
over a flat bottom. We have identified two different vortex-shedding mechanisms for
hb/δv ≈ 1 and hb/δv ≈ 10−1. Here, we describe the instability amplification mechanisms,
in more detail, over the rough wall region for ISW 13 (ReISW = 170, PISW = 0.1). A
similar dynamics was observed for other ISWs, but with differing amplification and
vortex-shedding rates depending on the set ReISW , PISW , hb and λb.

For the case of hb/δv ≈ 1, as the ISW passed over the rough wall region, snapshots of the
near-bed vorticity and streamlines show local flow separation at the aft of bumps close to
the separation point of the BBL (figure 6). The local separation ejected the vortices out of
the BBL. This destabilization and vortex shedding occurred early upon the ISW passage
and were quite close to the separation point of the BBL, behind the ISW trough. The
production of vortex-shedding was similar to the observations by Carr et al. (2010) over
corrugated beds, which is more representative of ISW propagation over bottom topography
as opposed to small-scale surface roughness.
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Figure 6. Snapshots of the non-dimensional vorticity field (ωyδs/c) and streamlines during ISW passage over
the rough wall region for ISW 13 with ReISW = 170, PISW = 0.1. The roughness height hb/H = 10−3 (hb/δv =
1.03). The vertical dashed line indicates the location of the ISW trough. The star indicates the location of the
separation point.

For a significantly lower roughness height, with hb/δv ≈ 10−1, the BBL flow oscillated
up and down with the roughness wavelength, without local separation or vortices at the
aft of each bump (see figure 7). Rather, the effect of roughness was to seed perturbations
in the BBL as fluctuations in the velocity field. The seed perturbations gradually grew
with time, within the BBL, until they were of sufficient amplitude for nonlinear effects to
become important. After further amplification, the instability field became steeper until
streamlines overturned to form vortices that shed from the BBL. Therefore, the seed
perturbations forced by small-scale roughness amplified over longer timescales and led
to vortex shedding at later times that were farther behind the separation point, compared
with hb/δv ≈ 1.

For the smallest hb/δv ≈ 10−2, the same mechanism of roughness-induced noise and
BBL amplification occurred, but the timing of the vortex shedding differed due to the
smaller magnitude of the seed perturbations on the BBL (not shown). In the absence
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Figure 7. Snapshots of the non-dimensional vorticity field (ωyδs/c) and streamlines during the ISW passage
over the rough wall region for ISW 13 with ReISW = 170, PISW = 0.1. The roughness height hb/H = 10−4

(hb/δv = 0.1). The vertical dashed line indicates the location of the ISW trough. The star indicates the location
of the separation point. Panel (a) contains an inset zoom of the bottom roughness elements.

of roughness, this ISW case remains stable. Therefore, it is expected that with a small
enough roughness height, the total BBL amplification of the seed perturbations will be
insufficient to overcome viscous damping and produce vortex shedding and the BBL will
remain stable.

All cases simulated with hb/δv � 1 led to vortex shedding with a phenomenology
similar to that described for figure 6. However, even though for hb/δv � 10−1 perturbations
were always seeded within the BBL (e.g. figure 7), vortex shedding did not always occur.
As described in § 3.1.1, vortex shedding of the ISW-induced BBL over roughness is
not only dependent on hb/δv , but also on the ISW-induced BBL parameters ReISW and
PISW . This motivated us to investigate a roughness-induced vortex-shedding criterion, as
described in the following sections.

3.3. Amplification ratios
The growth of BBL instabilities depends on how roughness perturbations are amplified
in the wake of the ISW. As described in § 2.4.2, we computed the amplification ratio
log10(A/A0) behind the wave trough for all ISWs from the linear stability analysis
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Figure 8. Amplitude growth curves behind the ISW trough for all simulated ISWs, in the ISW frame of
reference, where xISW is the streamwise position in the ISW frame of reference, with abscissa zero at the
ISW trough. Continuous blue and red dashed lines indicate stable and unstable BBL cases in the flat-bottom
simulations respectively. In-line labels identify the ISWs in table 1.

using the N-factor method. We only used velocity profiles over the flat bottom, thereby
representing the lowest amplification for each ISW case. We plot the amplification ratio
behind the wave trough for all simulated ISWs in figure 8. The maximum asymptotic value
in each curve corresponds to the amplification factor N , as defined in (2.11).

3.4. Vortex-shedding threshold
To summarize the effects of roughness on BBL stability over all of our simulations, we
compared N with the experimental and numerical stability thresholds in ReISW versus
PISW space (from figure 1). The stability threshold for our simulations, over the ReISW
versus PISW space, was estimated for each roughness height and the flat-bottom case. In
all simulations, the roughness wavelength was that of the most unstable mode for each
ISW. Therefore, these thresholds must be interpreted as being associated with the most
unstable (ReISW , PISW ) for each hb, as often done to define thresholds of BBL instability
(e.g. Schlichting 1968; Verschaeve & Pedersen 2014). However, below, we show that
more realistic random roughness also seeds the most unstable wavelength, validating the
instability thresholds estimated here.

The discrete distribution of our simulated cases over the parameter space (figure 9)
requires the computed thresholds of N to be defined as ranges of N = Nc. Hence, these
thresholds were visualized as regions delimited by lines of constant N = Nc that separate
stable and unstable ISWs simulated for each hb/H . Threshold regions shifted to the left,
i.e. towards smaller ReISW , and to smaller values of N = Nc, as the roughness height
increased. For hb/H = 10−3, the threshold region was roughly vertical, suggesting that
the threshold is mostly determined by a critical ReISW ≈ 75, with a weak dependence on
PISW . For decreasing hb/H = 10−4, hb/H = 10−5 and hb/H = 0, the Nc lines increased
in slope, in the PISW versus ReISW space, suggesting an increasing dependence on PISW
as hb/H decreased and ReISW increased.
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Figure 9. Stability diagrams in the PISW versus ReISW space for all simulated cases. Coloured contours
represent the BBL amplification factor (N ). (a) Flat bottom (hb/H = 0), (b) hb/H = 10−5, (c) hb/H = 10−4

and (d) hb/H = 10−3. Pink-shaded regions delimited with black dashed lines indicate the approximated
threshold regions associated with ranges of N = Nc.

In the flat-bottom case limit, only three cases were unstable in our simulations (ISWs
15, 19 and 20), with a critical Nc ≈ 3.3 − 4.0 (see figure 9a), which is of similar order
as the critical amplification estimated by Verschaeve & Pedersen (2014) (their figure 27)
for the numerical simulations of Aghsaee et al. (2012). The observed instability is of the
convective type, as previously described by Posada-Bedoya et al. (2024). The threshold
region roughly matches the threshold curve proposed by Aghsaee et al. (2012) using 2-D
spectral simulations. Discrepancies are likely due to their arbitrary selection of an equation
to fit discrete stable and unstable cases (see their figure 12), which differed from our runs
and also exhibited some uncertainty through the transition region. Overall, we consider
that our 2-D flat-bottomed spectral simulations match the threshold of instability proposed
by Aghsaee et al. (2012).

The threshold region for hb/H = 10−5 is the closest to the critical threshold
(ReISW ∼ 200, PISW ∼ 0.05 − 0.07) associated with the laboratory experiments by Carr
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et al. (2008) and Zahedi et al. (2021), with Nc ≈ 1.5 − 1.8 (see figure 9b). This shows the
critical amplification factor to be approximately two orders of magnitude smaller in the
laboratory, compared with the 2-D flat-bottomed spectral simulations (both ours and those
by Aghsaee et al. (2012)). This is quite close agreement to the estimates by Verschaeve &
Pedersen (2014), which also report a difference of two orders of magnitude between the
laboratory experiments by Carr et al. (2008) and the simulations by Aghsaee et al. (2012).

4. Discussion
We have shown that bottom roughness changes the stability of the BBL beneath ISWs of
depression. The smallest roughness scale considered here, hb/H = 10−5, in some cases
two orders of magnitude smaller than the viscous sublayer thickness, can destabilize the
BBL and trigger vortex shedding, in an otherwise numerically stable BBL over a flat
bottom. This roughness height is of the same order as in typical flume materials used
in the laboratory (Darby & Chhabra 2017): 0.01–0.001 mm for glass and 0.2–0.025 mm
for smooth concrete. Therefore, the dependence of the BBL stability on the characteristics
of the small-scale surface roughness means that glass and smooth concrete should not be
considered “smooth” surfaces in a laboratory setting of an ISW-induced BBL flow (see
figure 9).

We identified two mechanisms for vortex shedding determined by the ratio hb/δv . For
hb/δv � 1, vortices were forced directly by the local flow separation at the aft of each
bump, more representative of ISW interaction with bottom topography (e.g. Carr et al.
2010). Conversely, for hb/δv � 10−1, the presence of roughness forces the BBL to oscillate
with the roughness wavelength, seeding perturbations in the BBL susceptible to being
amplified by the BBL flow.

In both cases, amplification occurred preferably for roughness wavelengths close to
those of the most unstable mode of the BBL, as predicted by linear instability theory.
This resonator-like nature of the BBL flow beneath ISWs has also been reported for the
BBL driven by SSWs (Scandura 2013) and periodic monochromatic waves (Blondeaux &
Vittori 1994). Despite the similarities between the SSW and ISW problems, it remains a
challenge to relate the stability of both BBL flows due to the additional parameters �ρ/ρ0
and z pyc/H that define the ISWs (e.g.Verschaeve & Pedersen 2014).

4.1. Vortex-shedding criterion: random roughness wavelength
We have arbitrarily chosen the most unstable mode of the BBL as the roughness
wavelength in our simulations. Given the resonator-like nature of the BBL, this can
be considered the most favourable condition for roughness to destabilize the BBL. The
thresholds computed above, therefore, correspond to the optimal and most unstable
parameters ReISW , PISW that would destabilize the BBL for each hb. To test the generality
of these results, we performed simulations using more realistic random distributions of
roughness wavelength.

Sixteen additional simulations were conducted to validate the generality of the
thresholds in § 3.4. The selected cases were chosen from figure 9 immediately above and
below the thresholds for hb/H = 10−4 and 10−5. For each PISW , we chose the pair of cases
with the largest stable ReISW and the smallest unstable ReISW , hence eight simulations per
hb/H (figure 10).

The random roughness is more representative of realistic beds measured in the
laboratory (e.g. Sumer et al. 2010; Scandura 2013; Ghassemi et al. 2022). The rough bed
was modelled as the superposition of sinusoids with a wide, nearly continuous spectrum
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Figure 10. Stability diagrams in the PISW versus ReISW space for the sixteen cases simulated with random
roughness wavelengths for (a) hb/H = 10−5, (b) hb/H = 10−4. Coloured contours represent the BBL
amplification factor (N ). Pink-shaded regions, delimited with black dashed lines, indicate the approximate
threshold regions estimated from the sinusoidal roughness simulations (see figure 9).

of wavelengths, each with a definite random amplitude, as commonly done for random-
roughness numerical studies (e.g. Stastna & Lamb 2008; Scandura 2013). The shortest
modelled wavelength was limited by the grid resolution to 8 grid points. The modelled
roughness is shown in figure 11(e), along with the band-pass-filtered signal associated
with the most unstable wavelength of the BBL (spectral cutoff (0.8–1.2)λO S

b ),which shows
regions where the roughness shape follows the most unstable wavelength of the BBL.

To illustrate the BBL interaction with random roughness, figure 11 shows snapshots of
the near-bed instantaneous vertical velocity as a selected ISW propagated over the random
roughness region. Localized packets of vertical perturbations, behind the separation point,
emanated from regions where the roughness had a dominant variability at the wavelength
of the most unstable mode of the BBL (figure 11a–d). The seeded instability packets
amplified over time and slowly moved downstream. At subsequent times, new instability
packets formed from new regions where the separated BBL interacted with roughness
dominated by the most unstable mode (figure 11a–d). As a consequence, the resulting
envelope of the instability packets roughly followed the modulated amplitude of the
band-pass-filtered roughness (cf. w |δs /U2 versus band-pass-filtered roughness).

In all the sixteen cases, ISW propagation over random roughness predicted the
same corresponding stability regimes (i.e. stable versus unstable, see figure 10) as
the simulations with sinusoidal roughness. This indicates that the instability thresholds
computed for sinusoidal roughness are valid for more realistic random roughness. This
confirms that the BBL can resonate with the roughness as long as the random roughness
field contains variance at the wavelength of the most unstable mode.

4.2. Roughness-induced perturbations as seed noise
For roughness elements completely within the viscous sublayer, we interpret BBL–
roughness interaction as a mechanism for seeding perturbations in the BBL. Whether
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Figure 11. Snapshots of the instantaneous vertical velocity w/U2 (filled contours) during propagation of ISW
13 (table 1) over the random roughness region at (a) tc/Lw = 3.9, (b) tc/Lw = 4.2, (c) tc/Lw = 4.5 and
(d) tc/Lw = 4.8. Each panel shows a transect of w/U2 at z = δs (black horizontal dashed line), with the
associated scale on the right axis. The dashed lines indicate the upper and lower envelopes of the signal.
(e) Random bottom roughness (grey line) and band-pass-filtered roughness (pink) around the wavelength
associated with the most unstable mode of the BBL λO S

b (spectral cutoff (0.8–1.2)λO S
b ). Dashed lines indicate

the upper and lower envelopes of the band-pass-filtered signal.

these perturbations introduced by the roughness will be sufficiently amplified to eventually
trigger vortex shedding depends on three parameters: (i) the initial amplitude (A0) and (ii)
the initial wavelength of the seed perturbations, and (iii) the amplification of the seed
perturbations by the BBL flow (N ). By considering roughness with the most unstable
wavelength, we limited the search of critical instability parameters to A0 and N . This is
equivalent to computing the most unstable ReISW and PISW for each hb.

Lines of constant amplification factor in the ReISW versus PISW space are consistent
with the simulated separation between stable and unstable ISWs, with the threshold
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Figure 12. Ranges of (a) critical amplification factor (Nc) and (b) background noise amplitude (A0) for the
different roughness heights (hb/H ) and the flat-bottom simulations. Inset in panel (a) shows dispersion on a
semilog x-axis, only including hb > 0. Error bars correspond to the ranges of Nc (and associated A0) for each
threshold region defined in figure 9. Markers are placed in the middle of each range, and used to fit the curves.
Shaded regions indicate the approximate range of Nc and noise levels (A0) in the laboratory experiments, the
present solver (approximately the same as in the solver of Aghsaee et al. (2012)), and the finite-volume solver
of Ellevold & Grue (2023). The dashed line in panel (b) indicates the convergence tolerance of the Generalized
Minimum Residual (GMRES) algorithm in the flat-bottom simulations of the present study (10−7).

shifting to smaller Nc and ReISW as hb/H increased. By considering the most unstable
roughness wavelength, the shifting of the instability thresholds to smaller Nc as hb/H
increased is equivalent to increasing the initial amplitude of the seed perturbations
(i.e. A0), such that smaller amplification is required to reach vortex shedding. Figure 12(a)
shows the ranges of critical amplification associated with each threshold as a function
of the roughness height. For finite hb, the critical amplification Nc follows a logarithmic
relation

Nc = −0.6579 log10

(
hb

H

)
− 1.6718. (4.1)

By demonstrating that roughness changes the stability characteristics of the BBL, we
further hypothesize that our results can be generalized, by associating each roughness
height with an equivalent level of seed noise. For the case of a Tollmien–Schlichting wave,
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the threshold amplitude to trigger secondary instabilities lies at 1% of the free-stream
velocity U∞ (Herbert 1988; Verschaeve & Pedersen 2014). Here, we use the same 1%
criterion for primary instability to trigger secondary instabilities. We assume U∞ ∼ U2
and conduct the analysis based on the actual dimensional values of the simulated U2.
For our ISWs, U2 ≈ 0.1−0.2 m s−1 for all waves and so we define U∞ ∼ 10−1 m s−1.
Assuming that the secondary instability is triggered once its amplitude has grown to
A ≈ 0.01U2 in all cases, according to (2.10), A0 = 0.01U210−Nc . Hence, we can estimate
the background noise level A0 associated with each Nc, which in turn is associated with
each roughness height (figure 12a). Figure 12(b) shows the relation between hb/H and the
background noise level A0 obtained through this procedure, which follows the relation

A0 = 0.04697
(

hb

H

)0.6579

. (4.2)

The interpretation of roughness-induced perturbations as noise stems from the
description of the BBL–roughness interaction in figure 7, where the BBL is forced
to oscillate following the bottom roughness elements, introducing perturbations in the
velocity field analogous to noise. From this perspective, for sinusoidal geometry, we can
estimate the vertical velocity fluctuations that build the noise as

Noise ∼ w′ ∼ 2hb

λb
u jet , (4.3)

where u jet is the velocity of the reverse-flow jet where the BBL flow is unstable; roughly
estimated as the 20%–30% of U2 from our simulations. We find that w′ also depends on
λb and u jet . As both parameters vary between ISWs, this would suggest a heterogeneous
distribution of seed w′ and also A0 over the parameter space. However, we verified that
2u jet/λb ≈ 0.3 − 1.6 over the parameter space, such that hb was the dominant factor that
determined the order of magnitude of w′ in (4.3) and, therefore, of the background noise
A0. A detailed analysis of the effect of seed noise on the BBL instability is beyond the
scope of this work. However, we have shown that for roughness elements much smaller
than the viscous sublayer thickness, the effect of roughness is equivalent to introducing
seed noise to the BBL, which is susceptible to being amplified by the BBL flow.

4.3. Critical thresholds for instability: experiments versus 2-D spectral simulations
An immediate consequence of the above analysis is that the definition of general thresholds
for instability requires consideration of the background noise level as an additional variable
to characterize flow stability. Therefore, to reconcile critical instability thresholds in the
laboratory (Carr et al. 2008; Zahedi et al. 2021) and finite-volume 2-D simulations (Thiem
et al. 2011; Ellevold & Grue 2023) versus those predicted by 2-D spectral simulations
(Diamessis & Redekopp 2006; Aghsaee et al. 2012; Posada-Bedoya et al. 2024), it is
necessary to consider the background noise level, in addition to ReISW and PISW .

In the laboratory, the lock-release initialization mechanism of the ISW, bottom
roughness, sidewall friction, surface waves, instrument placement, etc., are potential
sources of additional noise susceptible to being amplified by the BBL. In flat-bottom 2-
D simulations, truncation error and initial and boundary conditions are the main noise
sources, depending on the accuracy of the numerical solver.

We estimate that unstable BBLs in the laboratory (Carr et al. 2008; Zahedi et al.
2021) have a critical Nc ≈ 1.5−1.8 (figure 9b), with an associated background
noise A0 ≈ 10−4.8−10−4.5 (figure 12). In comparison, in our flat-bottom spectral 2-D
simulations, the unstable BBLs have a critical Nc ≈ 3.3−4.0, with a background noise
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A0 ≈ 10−7−10−6.3, which is of the same order as the convergence tolerance of the
Generalized Minimum Residual (GMRES) algorithm used for the simulations (10−7).
Given that our flat-bottom threshold matches that predicted by the spectral 2-D simulations
of Aghsaee et al. (2012) (see figure 9a), the estimated noise is expected to be of the same
order in both solvers. Note that Aghsaee et al. (2012) used the spectral solver of Lamb
& Nguyen (2009), which was different from ours. This suggests that there is a difference
of two orders of magnitude of the background noise between the laboratory experiments
versus our 2-D spectral simulations and those by Aghsaee et al. (2012), which explains the
discrepancy in instability thresholds. This is consistent with the prediction by Verschaeve
& Pedersen (2014), who also estimated a difference of two orders of magnitude in the
background noise between the laboratory experiments by Carr et al. (2008) versus the 2-D
spectral simulations by Aghsaee et al. (2012). However, their estimated background noise
levels assumed U∞ ∼O(1), so their actual values for A and A0 differ from our estimates.

Supported by finite-volume 2-D simulations, Ellevold & Grue (2023) proposed a
threshold in terms of a/H , Rew and d/H , which accurately fit the stability threshold
from the laboratory experiments by Carr et al. (2008) (see figure 1b). They attributed
the instability to the truncation error of their numerical solver: ‘the growth of the
unstable modes arises from the truncation error of the solver at the fifth decimal place’.
They defined noise in terms of the vertical velocity fluctuations and quantified it to be
≈ 1−2 × 10−5 (i.e. ≈ 10−5−10−4.7). Interestingly, this is very similar to the background
noise level A0 ≈ 10−4.8−10−4.5 estimated herein for laboratory experiments, which is
within the threshold region associated with the roughness height hb/H = 10−5 (figure 9b).
This strongly suggests that the good agreement between the experiments by Carr et al.
(2008) and the simulations by Ellevold & Grue (2023) is related to the low accuracy of
their finite-volume solver, whose background noise amplitude is comparable to that in
the laboratory. In comparison, solvers like SPINS and that used by Aghsaee et al. (2012)
have spectral accuracy. According to our previous analysis, and in agreement with the
estimates by Verschaeve & Pedersen (2014), the estimated noise level of spectral solvers
is approximately two orders of magnitude smaller than in the laboratory (Carr et al.
2008; Zahedi et al. 2021) and the simulations by Ellevold & Grue (2023), explaining the
discrepancies between the stability thresholds.

The 1 % criterion for spanwise instabilities invoked above was developed for steady
homogeneous boundary-layer flow (Croswell 1985; Herbert 1988). Our 2-D simulations
cannot resolve these secondary spanwise instabilities. Even in the quasi-steady reference
frame moving with the wave, our boundary layer has spatial variations in the locations
of the inflection points, which influence the growth of secondary instabilities (Croswell
1985; Herbert 1988). Despite these limitations, we still used the 1 % criterion for when
the flow would transition to turbulence. We note that our conclusions from the analysis
above would not change by varying the assumed 1 % criterion for triggering secondary
spanwise instability. Changes in magnitude to the assumed percentage value would shift
all data points equally along the A0 axis in figure 12(b), while the relative magnitude of
the background noise would stay the same. Even a 10 % criterion would not change our
interpretation of the results.

As noted by Zahedi et al. (2021), the combined laboratory data suggest the instability
threshold is only determined by ReISW ≈ 200, independent of PISW . Conversely, our
analysis indicates that the instability threshold also depends on PISW . Since the laboratory
data only cover a narrow range of PISW ≈ 0.05−0.07 for ReISW � 200, it is not possible
to use those data to unequivocally establish the independence on PISW . Therefore, further
experiments are required to validate the predicted dependence of the stability threshold on
PISW .
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5. Conclusions
We conducted a parametric study on the effects of roughness on BBL instability beneath
ISWs of depression. Our simulations show that small-scale bottom roughness changes
the stability of the BBL beneath ISWs, for roughness on the same scale as typical flume
materials used in a laboratory setting. This indicates that glass and smooth concrete
should not be considered “smooth” surfaces in the laboratory setting of an ISW-induced
BBL flow. The BBL beneath ISWs behaves as a resonator that preferentially amplifies
perturbations with the wavelength of the most unstable mode, analogous to the BBL
beneath periodic surface waves and SSWs interacting with bottom roughness.

We interpret BBL–roughness interaction as a mechanism for forcing seed noise in the
BBL. Supported by the N -factor method for Tollmien–Schlichting waves, we propose
relations between the roughness height and the seed noise. By considering the background
noise level as an additional variable necessary to characterize the flow stability, our results
reconcile the discrepancies between critical thresholds of instability in the laboratory and
2-D finite-volume solvers versus those predicted by 2-D spectral simulations.

Our results motivate future research on the interaction of ISW-induced BBL and
deformable sediment beds. Specifically, future research should consider how the
interaction of the BBL instability driven by bottom roughness can lead to the formation of
morphological structures on deformable beds.
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Appendix A. Grid independence
Figure 13 shows the vorticity fields from ISW 13 over hb/H = 10−5, as simulated using
four different grid resolutions. The vorticity is visually identical at all resolutions, hence
we can conclude that there is grid independence for λO S

b /�x > 8 and N (z ≤ hb) > 3. In
comparison, all simulations over our parameter space satisfied λO S

b /�x ≥ 15 and N (z ≤
hb) ≥ 6.

Appendix B. Orr–Sommerfeld solver
The Orr–Sommerfeld equation represents a generalized eigenvalue problem in matrix
form

Av̂ = ωBv̂, (B1)

with v̂ as the eigenvector and the complex frequency ω as the eigenvalue. Equation B1
was solved using a Chebyshev collocation method on 250 nodes, following Orszag
(1971). Derivatives were computed using Chebyshev differentiation matrices following
Weideman & Reddy (2000). The code solves the temporal eigenvalue problem, returning
all the sets of modes associated with a given complex wavenumber α, from which
we selected ω as the most unstable eigenmode (largest �(ω)). The simulated near-bed
velocity profile U (z) and the grid used for the stability analysis were extended further
away from the wall, so the velocity profile smoothly increased to free-stream conditions.
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Figure 13. Snapshots of the non-dimensional vorticity field (ωyδs/c) after the passage of ISW 13 over the
rough wall region with hb/H = 10−5, as simulated using four different grid resolutions. Each panel shows a
near-bed zoom of the vorticity field over the rough wall region and a zoom of the bottom topography.

We validated the code by comparing the most unstable eigenvalue for the Blasius
boundary layer with that reported by Gaster (1978). We found agreement with their results
over the range Reδ∗ 500–3000 to the 6th digit for the real and imaginary parts.

Appendix C. Spacetime instability transformations
Figure 14 shows an example of the 2-D maps and the corresponding spectra of growth and
amplification rate computed for a selected velocity profile.

Theoretical transformations between temporal and spatial growth rates can be derived
from the dispersion relation of the instability (Gaster 1962; Xu et al. 2023). Here, the
spatial spectrum estimated from the 2-D analysis was compared with the predicted by
Gaster’s transformation between temporal (ωi ) and spatial (−αi ) spectra (Gaster 1962)

− αi = ωi

cg
, (C1)

1009 A21-27

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
5.

10
3 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2025.103


A. Posada-Bedoya, J. Olsthoorn and L. Boegman

10

(a) (b)

(c) (d)

5

0

−5
−2

−4

−6

−8

−0.5

0

0.5

1.0

1.5

Temporal growth rate Spatial amplification rate

Gaster′s
1st order

2nd order

2-D map

0
1
2
3
4
5
6

2

0

−10

−15

−10 −30 −25 −20 −15 −10 −5 0 5 10−8 −6 −4 −2 0 2 4

−20

−25

−30
100 200 300 400 500 600 50 100 150

100 200 300 400 500 600 100 200 300 400 500 600

ωi

ωi

ωr

αi
ω

i |
 α

i =
 0

−
α i

 | 
ω

i =
 0

αr | ωi = 0

αi

αr

αi = 0

αi = 0

ωi = 0

ωi = 0

αr

Figure 14. (a) Contours of temporal growth rate ωi on the αr vs αi space. (b) Contours of spatial amplification
rate −αi on the ωr vs ωi space. (c) Temporal growth rate spectrum. (d) Spatial amplification rate spectrum.

and the first- and second-order transformations proposed by Xu et al. (2023)

α(S) = α(T ) − i
ωi (T )

cg
, (C2)

α(S) = α(T ) + dω

dα

⎡
⎣−1 +

√
1 − 2iωi

d2ω

dα2 /

(
dω

dα

)2
⎤
⎦ /

d2ω

dα2 , (C3)

where cg = ∂ωr/∂αr is the real part of the group velocity, which can be calculated in
temporal stability analysis. The arguments T and S signify a temporal mode (αi (T ) = 0)
and spatial mode (ωi (S) = 0), respectively, with the subscripts r and i denoting the real
and imaginary parts of a complex quantity, respectively.

The good agreement between the theoretical transformations and the 2-D map shows
that the temporal growth rates are suitable for being transformed into spatial amplification
rates using any of these transformations. Of particular interest is that the simplest Gaster
transformation provides accurate results.
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