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USCO SELECTIONS OF
‘DENSELY DEFINED SET-VALUED MAPPINGS

WARREN B. MOORS AND SIVAJAH SOMASUNDARAM

A set-valued mapping ® : X — 2Y acting between topological spaces X and Y is
said to be “lower demicontinuous” if the interior of the closure of the set ®~}(V) :=
{z € X :®(z)NV # 0} is dense in the closure of $~!(V) for each openset V in Y.
Coban, Kenderov and Revalski (1994) showed that for every densely defined lower
demicontinuous mapping @ acting from a Baire space X into subsets of a monotonely
Cech-complete space Y, there exist a dense and G subset X; C X and an usco
mapping G : X; — 2Y such that G{z) C &*(z), for every = € X, where the mapping
@* : X — 2Y is the extension of & defined by,

®*(z) := N{®(W) : W is a neighbourhood of z}.

In this paper we present a proof of the above result with the notion of monotone Cech-
completeness replaced by the weaker notion of partition completeness. In addition,
we observe that if the range space also lies in Stegall’s class then we may assume that
the mapping G is single-valued on X;.

1. INTRODUCTION

Selection theorems provide conditions under which there exists a continuous selec-
tion for a set-valued mapping. In a recent paper [4], on selection theorems the authors
presented a selection theorem for quasi-lower semicontinuous mappings that map from
Baire spaces into subsets of topological spaces that are fragmented by complete met-
rics. In this paper we improve this result by presenting a selection theorem for “lower
demicontinuous” mappings that map from Baire spaces into partition complete spaces.
Specifically, we show that for a lower demicontinuous mapping ® with closed graph act-
ing from a Baire space X into a partition complete space Y there exist a dense and G
subset X; € X and an usco mapping G : X, — 2Y such that G(z) C ®(z) forall z € X;.
In addition we show that if the range space Y is partition complete and lies in Stegall’s
class then the mapping G may also be assumed to be single-valued on X;. We also show
that if the domain space X is a-favourable and the range space is partition complete and
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belongs to the class of weakly Stegall spaces then the mapping G is single-valued on an
everywhere second category subset of X.
We end this section by giving some definitions, then in Section 2 we present the
main result and finally in Section 3 we give some applications of our selection theorem.
Let (Y, 7) be a regular topological space, endowed with a pseudo-metric d. A filter-
base F on Y is said to be d-Cauchy if for each € > 0 there exists an F € F such that
d — diam(F) < € and the space itself is said to be partition complete if the pseudo-metric
d satisfies the following properties:
(i) every d-Cauchy filter-base F on Y has a 7-cluster point in Y (that is,
N{F: F € F} #0);
(ii) Y is “fragmented” by d, that is, for every ¢ > 0 and every non-empty
subset A of Y there exists a r-open subset B of Y such that AN B # 0
and d — diam(AN B) < ¢.
(Note: It follows from (i) that in a partition complete space (\{F : F € F} is non-
empty and compact for every d-Cauchy filter-base F.) The class of partition complete
spaces is quite large including all the Cech complete spaces. More details on partition
completeness can be found in [5].

2. SELECTION THEOREM

Let ® : X — 2Y be a set-valued mapping acting from a topological space X into
subsets of a topological space Y. We call the mapping ® lower demicontinuous on X
if for every open set V in Y, the interior of the closure of the set ®~1(V) := {z € X:
®(z)NV # 0} is dense in the closure of ®~!(V'), that is, int(®-1(V)) is dense in &-1(V).
When {z € X : (z) # 0} is dense in X, we say @ is densely defined.

LEMMA 1. Consider a lower demicontinuous mapping ® from a topological space
X into subsets of a topological space Y. For each pair of non-empty open sets U in X and
V inY, the mapping ®w,v) from U into subsets of V defined by, ®,v)(z) := ®(z) NV
is a lower demicontinuous mapping on U.

PRrROOF: The proof of the lemma follows from the fact that for each open set W C V,
Oy, (W) = (W)NnU. 0

A set-valued mapping ® : X — 2" acting between topological spaces X and Y is
said to be an usco mapping if for each £ € X, ®(z) is a non-empty compact subset of ¥’
and for each openset W in Y, {z € X : ®(z) C W} is open in X.

THEOREM 1. Let X be a Baire space and Y be a Hausdorfl partition complete
space and let & be a densely defined lower demicontinuous set-valued mapping acting
from X into subsets of Y. Then there exist a dense and Gs-subset X, C X and an
usco mapping G : X; — 2¥ with G(z) C ®*(z) for all z € X,, where the mapping
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®* : X = 2Y is defined by,
=N{®(W) : W is a neighbourhood of }.

In particular, {z € X : ®*(x) # 0} is residual in X.

PRrROOF: Let d be the fragmenting pseudo-metric on Y associated with the partition
completeness of Y. To prove our theorem we inductively construct a sequence of families
of ordered pairs F™ : {(U P a € A"} consisting of non-empty open subsets
{Um : o € A"} of X and densely defined lower demicontinuous mappings {®7 : & € A"}
such that for each o € A™, ® maps U} into subsets of Y.

Bask STEP. Consider A® := {0}, U} := X and &} := ® and define,
= {( U° %) :ae A’ and WO = J{UJ: a € A%) = X.

For each n € N, we require the family 7™ to have the following properties:
(an) UZNUZ =0 for each a # B, o, B € A™;
(bn) W™ :=J{UZ: a € A"} is dense in X;
(ca) d—diam[®2(UR)] < 1/n for each a € A™;
(dp) for each o € A" there exists a § € A™! such that UZ C Ug'l and ®2(z) C
®37!(z) for each z € U}

STEP 1. Consider F! := {(U},®!) : @ € A'} a family of ordered pairs satisfying the
properties (a,), (c;) and (d;) which is maximal with respect to set inclusion. By Zorn’s
lemma such a maximal family exists. We shall show that F' satisfies property (b;). If
W' = |J{U! : @ € A'} is not dense in X then there exists a non-empty open subset
U of X such that W!NU = 0. Since Y is fragmented by d and &} is densely defined
there exists an open set V in Y such that ®}(U)NV # 0 and d — diam[®J(U) N V] < 1.
By the lower demicontinuity of <I>8 on U there exists a non-empty open subset U’ of U
such that (®9),v) is densely defined and lower demicontinuous on U’ (by Lemma 1).
Now (U, (®3)wv)) € F* and { (U, (83)w",v)) } UF! is a family satisfying the properties
(a1),(c:) and (d,). This contradicts the maximality of F! and hence we may conclude
that F! satisfies property (b;).

Assuming that we have constructed the families F* in the sequence satisfying the
properties (a), (bk), (ck) and (dx) up to and including the nth step, we proceed to con-
struct the next step.

STEP (n + 1). Consider F**! := {(Uz*!,®2%!) : o € A™*'} a family of ordered pairs
satisfying the properties (@n41), (€nt1) and (dn41) which is maximal with respect to set
inclusion. We shall show that 7! satisfies property (bp41). If W+ := J{UZ* :a €
A™*'} is not dense in X then there exists a non-empty open subset U of X such that
W™ NU = 0. Since W" is dense in X, W*NU # 0 and so we may assume that U C Uz
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for some 3 € A™. Now since Y is fragmented by d and @} is densely defined there exists
an open set V in Y such that ®3(U) NV # @ and d — diam[®3(U) N V] < 1/(n + 1).
By the lower demicontinuity of ®7 on Uj there exists a non-empty open subset U’ of U
such that (®3)(w,v) is densely defined and lower demicontinuous on U’ (by Lemma 1).
Clearly, {(U’, (@g)(uf,v))} ¢ F*+! and {(U’, (@g)(uf,v))} U F*+! is a family satisfying
the properties (an41), (cns1) and (dn+1). This contradicts the maximality of F"*! and
hence we may conclude that F**! satisfies property (b,41). This completes the inductive
step.

Let X, := ﬁ Wm. Clearly X; is a dense-Gs subset of X and for each z € X; and
n € N there exigt—sla unique an(z) € A" such that z € Uy, . Therefore we can define a
set-valued mapping ¥ : X; — 2Y by,

o0

¥(2) = (] 93, Uaoa))

n=1

Clearly, ¥ is non-empty and compact-valued since for each z € X,

Flz) = {‘I’Zn(z)(UZn(x)) tn € N}

is a d-Cauchy filter-base on Y. So to show that ¥ is an usco, it remains to show that ¥ is
upper semicontinuous. To this end, consider z € X; and O an open set containing ¥(z).
Since ¥(z) is compact it will suffice to show that there exists an open neighbourhood
U of z such that ¥(U) € O. We claim that for some ng € N, ™ (U™ ) C O, for

Qng (z) Qng (z)

otherwise, F*(z) := {‘I’:,,(z) Uz ) \O:ne N} would be a d-Cauchy filter-base on Y
which would have a cluster point in Y\ O. But this is impossible since,

0# () FC [)F=¥@=co.

Fer- Fer
Therefore there is some ng € N such that <I>2?‘o (I)(U::o(z)) C O and so,
o o]
¥(y) = () 82,0 Vi) € Pty Um) = Py ) Uny)) € O
n=1

forall y € U::o(z) NX;. '

We now define the mapping G : X; — 2Y by, G(z) := ¥(z) N ®*(z) for all z € X,.
We claim that the mapping G is an usco. Obviously G has a closed graph as both ¥ and
®* have closed graphs. Moreover, as Gr(G) C Gr(¥) and ¥ is an usco, we have that G
is also an usco (see, [1, page 309]), provided we can show that G has non-empty images.
So in order to obtain a contradiction, let us suppose that for some z, € X, G(zq) = 0.

This means that the non-empty compact set {z¢} x ¥(z,) does not intersect the graph of
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®*. Since Gr(®*) is a closed subset of X x Y, a straight forward compactness argument
shows that there are open sets U of X and V of Y such that 24 € U, ¥(z¢) C V and
(U xV)INGr(®*) = 0. Since ¥(z,) C V it follows, as above, that there exists an ng € N
such that ®"° (U™ ) C V and so,

ang{z0)\~ any(z0)
0 # @Zao(zo)(U;‘:o(zo) NnU) C @(U;‘:O(IO) NUYNV CeU)NV =0.
This gives us the desired contradiction. Therefore G is an usco selection of ®". 0

REMARK 1. In Theorem 1, ®* is the unique mapping whose graph is the closure of the
graph of ® in X x Y (endowed with the product topology). In particular, if ® has a
closed graph then ®* = &.

An usco mapping ¢ from a topological space X into subsets of a topological space
Y is called a minimal usco if its graph does not strictly contain the graph of any other
usco defined on X. We say that a topological space Y belongs to Stegall’s class if for
every Baire space X and minimal usco mapping ® : X — 2Y, ® is single-valued at the
points of a residual subset of X. A topological space Y belongs to the class of weakly
Stegall spaces if for every a-favourable space X and minimal usco mapping ® : X — 2¥,
& is single-valued at the points of an everywhere second category subset of X. For the
sake of completeness we recall the definition of a-favourability.

Let X be a topological space. On X we consider the Banach-Mazur game played
between two players o and 3. A play of the game is a decreasing sequence of, alternately
chosen, non-empty open subsets A, C B, C ... B; C A; C By, where the sets A, are
chosen by player o and the sets B, by player 8. Player « is said to have won a play of

the game if (| A, # 0. Otherwise player # is said to have won the play. A strategy s
neN
for player « is a rule that tells him or her how to play (possibly depending on all the

previous moves of player ). Since the moves of player & may depend on the moves of
player 3, we denote the nth move of player a by, s(B, Bs,...,B,). We say that s is
a winning strategy, if using it, player a wins every play, independently of the moves of
player 8. More information on Banach-Mazur game can be found in [6].

COROLLARY 1. Let X be a Baire (an a-favourable) space and Y be a partition
complete space that lies in Stegall’s class (the class of weakly Stegall spaces). Suppose
that ® : X — 2Y is a densely defined lower demicontinuous mapping with closed graph.
Then there exist a residual (everywhere second category) set X; C X and a continuous
selectiono : X, =Y of ® on X,.

ProoF: First we shall consider the case when X is a Baire space, Y is partition
complete and in Stegall’s class. From Theorem 1 there exists an usco mapping G : R — 2¥
acting from a residual subset R of X into Y such that G(z) C ®(z) for all z € R. As
every usco mapping contains a minimal usco mapping (see, [2, page 649]), the mapping
G contains a minimal usco mapping S : R — 2. Now since the range space Y belongs
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to Stegall’s class the mapping S is single-valued on a residual subset X; C R. The
restriction of the mapping S to the set X; gives rise to the desired selection of ® on
Xi. In the case when the space Y belongs to the class of weakly Stegall spaces and X is
a-favourable the proof follows in a similar fashion except that one requires the additional
fact that a residual subset of an a-favourable space is again o-favourable. 0

3. APPLICATIONS

We say that a mapping f : X — Y from a topological space X into a topological
space Y is demi-open if for every open set U in X the set intf(U) is dense in f(U). It is
easy to verify that f~! : ¥ — 2% is lower demicontinuous on Y if the mapping f : X = Y

is demi-open on X.

COROLLARY 2. Let f: X — Y be a demi-open mapping with closed graph
acting from a partition complete space X which lies in Stegall’s class (the class of weakly
Stegall spaces) into a dense subset of a Baire space (an a-favourable space) Y. Then
there exists a continuous mapping o from a residual (everywhere second category) subset
Y, CY into X such that (foo)(z) =z forallz in Y;.

PROOF: Let us consider the inverse mapping f~! : ¥ — 2X. This is a densely
defined lower demicontinuous mapping with closed graph. Hence from Corollary 1, there
exist a residual (everywhere second category) subset ¥; C Y and a continuous selection
0:Y; = X of f7! on Y;. It follows then that (f o o)(z) = z for all z € Yj. 0

COROLLARY 3. Let h: G — K be a homomorphism acting from a partition
complete group G into a Baire topological group K. If h is demi-open, has a closed
graph and dense range then the mapping is open and onto K.

PROOF: The inverse mapping h~! : K — 2€ is densely defined and lower demicon-
tinuous with closed graph. Hence by Theorem 1 the domain of A~! is residual in K, that
is, the range of h is residual in K. However, as h(G) is a subgroup of K it must be the
case that h(G) = K. To show that h is open it suffices to show that for each non-empty
open set U in G, h(U) is somewhere residual in K and this follows by applying Theorem
1 to the inverse of the restriction of A to U. 0
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