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The X-Linked Analog of the Hardy–Weinberg Law
Alan E. Stark
School of Mathematics and Statistics, University of Sydney, Sydney, New South Wales, Australia

The system of mating that maintains a general genotypic distribution among females with respect to an
X-linked locus is defined. In particular, it is shown that Hardy–Weinberg proportions can be maintained with
non-random mating.
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Dronamraju (2017, p. 82) asserts that ‘population genetics’
began as an attempt to ‘marry Darwin’s theory of evolution
with the science of genetics that was founded by…Mendel’.
He states that the ‘next important step’ (in population ge-
netics theory) was the introduction of the Hardy–Weinberg
law in 1908 (Hardy, 1908; Weinberg, 1908). He says that
the law is strictly valid only if the following conditions are
valid:

(1) the population must be large enough so that sampling
errors can be ignored;

(2) there must be no mutation;
(3) there must be no selective mating;
(4) there must be no selection.

Conditions similar to the above four can be found in
many introductory texts on population genetics, generally
in relation to autosomal loci, as were the original formula-
tions. It appears that Dronamraju is excluding assortative
mating in the third of his conditions and may intend that
the selection of mates should be random. As can be seen
from references cited below, randommating is not a neces-
sary requirement for the maintenance of Hardy–Weinberg
proportions. The purpose of this paper is to show that the
same is true of an X-linked locus.

We take locus Xg as envisaged by Mann et al. (1962) as
archetypical. These authors give the set of estimated geno-
type frequencies reproduced in Table 1. They used the gene
frequencies among males to represent the population fre-
quencies and applied Hardy–Weinberg proportions to cal-
culate the female genotype frequencies. In Table 1, the fre-
quency of Xga in males is 0.6169 and the combined fre-
quency of Xga Xga and Xg Xga in females is 0.8532. This is
in approximate agreement with the frequencies of Xg(a+)
(60% in males and 90% in females) given by Mueller and
Young (1995). In our notation, introduced below, Xg is

given the label U, and Xga label T. Johnson (2011) and Tip-
pett and Ellis (1998) review the XG system.

Mann et al. (1962) give ‘certain rules which may be laid
down for an X-borne dominant antigen’ (p. 9); for example,
that from the mating positive × positive, there can be no
negative daughters. In this article, the alleles are treated as
co-dominant. In their analysis, these authors calculate the
proportions of expected matings by assuming, for exam-
ple, that the frequency of Xg(a-) father by Xg(a-) mother
is the product of the respective genotype frequencies, that
is, equivalent to randommating frequencies. They compute
the expected proportions ofXg(a+) andXg(a-)male and fe-
male children from the observed numbers of female geno-
type frequencies and use them to calculate the expected
numbers of male and female children of each type. These
are then compared with the observed numbers from 50 sib-
ships, finding satisfactory agreement with the hypothesis
of X-linked inheritance. In their analysis, because of domi-
nance, there are fourmating types. In our analysis, there are
six mating pair combinations.

Johnson (2011) states ‘the function of the Xga protein
is unknown’ (p. 68). Tippett and Ellis (1998) state ‘... anti-
Xga does not appear to be clinically significant’ (p. 234).
They give a table of gene frequencies that are reproduced
in Table 2. In the light of this, it seems not unreasonable to
treat the Xg locus as an example of a stable polymorphism
with equally viable genotypes.

The monograph of Thomas Nagylaki (1977) gives a
sound account of basic population genetics as it existed
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TABLE 1
Estimated Genotype Frequencies at the
Xg Locus

Males Females

Xga Y 0.6169 Xga Xga 0.3806
Xg Y 0.3831 Xga Xg 0.4726

Xg Xg 0.1468

TABLE 2
Xga Gene Frequencies in Different Populations

Population Total tested Xga Xg

N. Europeans 11,716 0.66 0.34
Sardinians 322 0.76 0.24
Greeks 638 0.55 0.45
Barcelona, Spaniards 636 0.59 0.41
New York, Jamaica, Blacks 219 0.55 0.45
Singapore, Chinese 101 0.45 0.55
Japanese 529 0.68 0.32
Australian Aborigines 352 0.79 0.21
New Guineans 263 0.85 0.15

at the time of publication. In most respects, the theory as
expounded by Nagylaki is still current. In the chapter en-
titled ‘Panmictic Populations’, Nagylaki starts with ‘the ge-
netic structure of a randomly mating population in the ab-
sence of selection, mutation, and random drift’ (p. 33). He
says of this theory: ‘This part of population genetics was
the first to be understood, and a thorough grasp of its prin-
ciples is required for the formulation and interpretation of
most evolutionary models’ (p. 33).

Nagylaki (1977) gives theory for several alleles at an au-
tosomal locus whereas we take only two. Also, he uses or-
dered genotype frequencies, so that in his notation, whenPij
(= Pji) designates the frequency of ordered AiAj genotypes,
2Pij, i �= j, is the frequency of unorderedAiAj heterozygotes.
For convenience, we use unordered genotypes so that a sin-
gle subscript serves to distinguish genotypes. Using his no-
tation, Nagylaki calculates allele frequencies as

pi =
∑

j
Pi j.

It is relevant to quote from Nagylaki’s (1977, p. 34)
monograph:

ByMendel’s Law of Segregation, pi is the frequency of Ai
in the gametic output of the population.

If mating occurs without regard to the genotype at theA-
locus, random union of gametes yields the genotypic pro-
portions

P′
i j = pi p j

in the next generation. Therefore, the gene frequencies do
not change,

p′
i =

∑
j

P′
i j = pi,

and Hardy–Weinberg proportions,

P′
i j = p′

i p
′
j,

are attained in a single generation.
Nagylaki (1977, p. 34) states further that ‘The most im-

portant aspect of the Hardy-Weinberg law is the constancy
of the allelic frequencies’.

Nagylaki also considers matings explicitly but soon re-
sorts to random mating. He introduces different frequen-
cies for the two sexes and reaches the identity

P′
i j = Q′

i j = 1/2(piq j + p jqi),

where P and p apply to male and Q and q apply to fe-
male entities. He uses the same approach for autosomal and
X-linked loci to reach what he calls ‘generalized Hardy–
Weinberg proportions’ (Nagylaki, 1977, p. 36).

The point which we emphasize is that, in respect of
Hardy–Weinberg equilibrium, using frequencies of mat-
ing pairs, it is not necessary to invoke random mating. It
is implicit in a formula of Stark (1980) that, for an auto-
somal locus, Hardy–Weinberg frequencies are consistent
with non-randommating. Stark (2006) showed thatHardy–
Weinberg frequencies can be attained in a single round of
non-random mating. Stark and Seneta (2013, 2014) show
how general genotypic proportions can be maintained.

Nagylaki (1977) shows that for an X-linked locus with
random mating, not only are gene frequencies equalized
in the two sexes, but Hardy–Weinberg proportions are ap-
proached rapidly. In this paper, we assume that gene fre-
quencies in males are the same as those in females.

The object of this paper is to show how a general equilib-
rium at an X-linked locus can be sustained in females. Just
as in autosomal loci, Hardy–Weinberg frequencies can be
maintained with non-randommating at an X-linked locus.
The condition required to maintain equilibrium is given in
the next section. The boundaries of the region of admissible
points of equilibrium are given in the following section.

The Mating System
This is a model for a single X-linked locus with two alleles
U and T with frequencies in the population q and p (q + p
= 1). We have in mind the human population in which fe-
males have two X chromosomes andmales one.We assume
that the population is in equilibrium, the genotypes equally
viable and the gene frequencies the same in both sexes. The
frequencies of genotypes UU, UT, TT in the females are
denoted, respectively, f0, f1, f2 ( f0 + f1 + f2 = 1) and the
frequencies of male hemizygotes U and T are denoted, re-
spectively, m0and m1 (m0 + m1 = 1). The frequency of U
in females is f0 + 1/2 f1 = q and in males ism0 = q. With-
out loss of generality, q is taken to be less than or equal
to ½.
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The mating scheme is represented by
[
U ×UU U ×UT U × TT
T ×UU T ×UT T × TT

]

with commensurate mating frequencies given by the
matrix

C =
[
f00 f01 f02
f10 f11 f12

]
.

The row sums of C are q and p and the column sums are
f0, f1, f2, so these are the parental frequency distributions.
We use C in the extended row vector form

u′ = { f00, f01, f02, f10, f11, f12}.
To follow the progression of generations, which are

assumed to be discrete and non-overlapping, we need
Mendel’s coefficients of heredity, given in matrix form, for
female offspring, by

M =

⎡
⎢⎢⎣
1 1/2 0 0 0 0

0 1/2 1 1 1/2 0

0 0 0 0 1/2 1

⎤
⎥⎥⎦ .

Then, the frequency distribution of juvenile females is
calculated from

j′ = (Mu)′

which in detail is

j = { f00 + 1/2 f01, 1/2 f01 + f02 + f10 + 1/2 f11, 1/2 f11 + f12}′.
The distribution of male juveniles is q of type U and p of

type T.
The main point of interest is to specify the properties of

C which satisfy

j = { f0, f1, f2}′, (1)

that is, that the distribution of juvenile females is the same
as the distribution of adult females. The special distribution

a∗ = {q2, 5pq, p2}′ (2)

will be referred to as theHardy–Weinberg distribution even
though both Hardy andWeinberg considered only the case
of an autosomal locus. Other distributions can be put in the
form

a = {q2 + F pq, 2pq − 2F pq, p2 + F pq}′. (3)

Parameter F, as well as q, serves to specify details of the
system.

Equation (1) is satisfied if

f01 = 2 f10. (4)

If q = 1/3, F = 1/12, a = {7/54, 22/54, 25/54}′,

C = 1
54

[
3 8 7
4 14 18

]
(5)

has property (4), thereby satisfying condition (1).Matrix (5)
is only one of an infinite number which could be found to
satisfy (1). The force of (4) can be seen by exploiting the
fact that the elements of the first row of C sum to q, as do
the sum of the elements of the first column and half of each
element of the second column, leading to the identity:

f00 + f01 + f02 = f00 + f10 + 1/2( f01 + f11). (6)

Substituting from (4) into (6) leads to the implied prop-
erty

f11 = 2 f02. (7)

Identity (4) ensures that juvenile females of typeUU have
frequency f0, (7) that those of type TT have frequency f2,
and the heterozygotes have frequency f1since the frequen-
cies sum to unity. Thus, given themarginal sums ofC, nom-
inating elements f01and f10, which conform to (4) and are
compatible with marginal quantities, enable the construc-
tion of C satisfying (1).

Taking F= 0 produces theHardy–Weinberg distribution
among adult females. Random mating, defined by

fsd = ms × fd, s = 0, 1; d = 0, 1, 2, (8)

satisfies (1), but is only one of an infinite number of mating
schemes with this property.

Admissible Points of Equilibria
ThematingmatrixCmust be consistent with variousmath-
ematical, as well as biological constraints. These are con-
veniently depicted by points within and on the sides of a
figure defined by the pair of coordinates F and f01, using a
unique planar figure for each value of q. Figure 1 displays
the admissible region, whose vertices are QVDE, for q =
2/5. Given a value of q, for a given F, admissible definitions
of C are represented by points (values of f01)along the ver-
tical line above F within or on the boundary of the appro-
priate polygon QVDE. The base of the defining triangle ex-
tends from −q/p to 1, the admissible range of F. The max-
imum height of the triangle is f01 = q, when F = (2p−
1)/(2p), the mid-point of the base. The equation of the side
of the triangle from−q/p to the vertex is f01 = 2(q2 + F pq)
and of the side from 1 to the vertex is f01 = 2pq − 2F pq.
When 1/3 < q ≤ 1/2, the line with equation f01 = 2p(q −
p− 2Fq)is another boundary. These three equations, to-
gether with f01 = 0, define the admissible region of the sys-
tem for a specified value of q. Point Z in Figure 1 has {F,
f01} coordinates {0, 0}, Q has coordinates {(2q – 1)/(2q), 0}
and point E coordinates {(3pq – 1)/(3pq), 2q – ⅔}. Figure 1
shows the point of random mating (R) when F = 0 and
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FIGURE 1
Admissible region, defined by QVDE, when q = 2/5; R indicates point of random mating.

f01 = 24/125 highlighting the fact that random mating is
only one point of an infinite number, on the vertical line
through R, which are consistent with Hardy–Weinberg fre-
quencies.When q≤⅓, points O andQ coalesce, so that the
boundary of the admissible region is OVD.
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