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ON A CLASS OF INSOLUBLE BINARY QUADRATIC
DIOPHANTINE EQUATIONS

FRANZ HALTER-KOCH

§0. Introduction

The binary quadratic diophantine equation
|&" — ny*| = ¢

is of interest in the class number problem for real quadratic number
fields and was studied in recent years by several authors (see [4], [5], [2]
and the literature cited there).

To be precise, for a positive square-free integer n, we set

1, if n% 1mod 4,
O, = .
2, if n=1mod4;

a solution (x,y) e Z of the diophantine equation
|** — ny*| = ant

is called primitive, if (x, y)|o,, where (x,y) denotes the g.c.d. of x and y.
The reason for this terminology will become clear from the theory of
quadratic orders, to be explained in §1.

R.A. Mollin [4] proved, generalizing previous results by Yokoi [5]
and others, the following criterion.

ProprosITION 0. Let s,t,r be integers such that n = (st +~r > 5 is
squarefree and the following conditions are satisfied:

1D s>1,t>2and (t,r)=1;

(2) r|4s, and — st < r < st;

) If n= 1mod4, then |r|e{l, 4}

@) If |r| =4, then s > 2.

() If r=1, then s > 3 and 2|st.
Then the diophantine equation |x* — ny*| = o3t has a primitive solution if
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and only if n =17, t = 3.

Actually, the result as given in [4], is formally stronger than Proposi-
tion 0; there it is asserted, that the diophantine equation has no non-
trivial solutions (in a sense precised there). To obtain Mollin’s result,
we must apply Proposition 0 for all # > 1 such that ¢ = t'u* for some
ueN.

In [2], we derived a general method to handle such equations using
continued fractions, and we claimed [2, p. 92] that an application of these
techniques would lead to a simple proof and a generalization of Proposi-
tion 0. J.B. Leicht (Heidelberg) pointed out to me that this is not quite
correct: The techniques of [2] do only work if ¢,6 < 470, and there are
two cases of Proposition 0 in which this condition is violated:

s=1, r=-—1, n=¢—-1;

s=1, r=—2, n=¢—2.

In this paper, we develop different techniques which, among others,
also cover these cases. We consider the diophantine equation as a norm
equation, and then the ideal theory of quadratic orders becomes availa-
ble for the problem (§1). In §2 we prove a criterion for certain ideals
to be reduced (Theorem 1) and a general reduction statement (Theorem 2).
In §3 we reformulate these Theorems for diophantine equations. Finally,
in §4, we give some applications for discriminants of Richaud-Degert-
type; thereby we restrict ourselves to those cases, which cannot be set-
tled with the methods of [2].

§1. Preliminaries on quadratic orders

In this section we recall some well-known facts about quadratic
orders and formulate them in a manner which will be useful later on;
for proofs see [1] or [3] (but note that the notions of [3] are slightly dif-
ferent from ours).

A positive integer D is called a discriminant, if D is not a square
and D=0 or 1mod4; in this paper, D always denotes a discriminant.
We set

%«/ﬁ, if D=0mod4,

wWp =

é_a + /D), ifD=1mod4,

https://doi.org/10.1017/5002776300000369X Published online by Cambridge University Press


https://doi.org/10.1017/S002776300000369X

BINARY QUADRATIC DIOPHANTINE EQUATIONS 143

and
‘%D = Z(‘BZ(DD.

A, is an order in the quadratic number field Qv D). If D, is the dis-
criminant of Q(v D), then

D = Dof 3)
for some f,e N; f, is called the conductor associated with D.

Every &e Z, has a unique representation in the form

_b+e/D
2

b

where b,eeZ and b = eD mod 2; we call

bﬁ—ezDeZ

N(E) = i

the norm of &. An element &e %, is called primitive, if m-'&é ¢ #,, for all
integers m > 2. Obviously, & e %, is primitive if and only if either

D=0mod4, §=x+y\/_?, x,yed, (x,y)=1
or

D=1mod 4, §=-x+#, x,yeZ, x=ymod2 (x,y)|2.

For an ideal (0) = J< Z, we call
N(T) = (Z#p,:J)eN

the norm of J;J is called primitive, if m~'J ¢ %, for all integers m > 2.
If J = &2, is a principal ideal, then A(J) = |A47(§)], and J is primitive if
and only if ¢ is primitive. Let 2(D) be the set of all norms of primitive
principal ideals of #,. Using this terminology, we rephrase the question
about the solubility of the diophantine equations under consideration as
follows.

PropositioN 1. If D is a discriminant and t is a positive integer,
then the following two assertions are equivalent:

a) te (D)

b) The diophantine equation
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D
x2 e
4y

=1, if D= 0mod4,

{|x2—Dy2l=4t, if D= 1mod4
has a solution (x,y) e Z* satisfying

(x,y) =1, if D=0mod 4,
(x, 912, if D=1mod4.

An ideal (0) # J < %, is called regular, if Z, = {xe QW D)|xJ C J}.
Any regular ideal is invertible. Any principal ideal and any ideal JJ of
A, such that (A(J),fp) = 1 is regular. In this paper we shall mainly be
concerned with ideals J such that (A'(J), f,) = 1.

The primitive ideals of #, are precisely the Z-modules of the form

J=Za@z9_+2~/_D

where a,beZ, a > 0 and 4a|b®* — D. In this representation, a = A'(J) is
uniquely determined by <J, while b is only determined modulo 2a. If ¢/ is
as above, then J is regular if and only if (e, b, (b* — D)/4a) = 1.

For lack of a suitable reference, we give a proof of the following
simple result concerning ideals whose norm divides the discriminant.

LeEmMA 1. Let D be a discriminant and r a positive integer such that
r|D and 44r. Then there exists exactly one primitive ideal J <X, such
that A/ (J) = r.

Proof. Since 4/r, we have either 4r|D or 4r|r* — D, and we set

Zr@ziz_D_, if 4r|D,
J= -
Zr@ZL%Q, if 4r/D .

Then ¢ is a primitive ideal of #,, and A (J) = r.

If I=Zr®Z((b + v D)/2 is a primitive ideal of %, where 0 < b
< 2r, 4r|b* — D, then r|D implies r|b and therefore b =0 or b =r. If
there were two primitive ideals in %, with norm r, then I, = Zr®
Z(v D |[2) and I, = Zr ® Z(r 4+ + D )/2 both were ideals, whence 4r|D and
4r|r* — D; this implies 4r|r* and hence 4|r, contradicting the assumption
that r is square-free. 0
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An ideal (0) #= J < £, is called reduced, if it is primitive, regular, and
has a representation of the form

J=za@zﬂ%¥2

such that
0< VD —b<2a<+D +0b;

note that these conditions also determine b uniquely. If J is a reduced
ideal of Z%,, then A4 (J) <+ D. If J is a primitive regular ideal of %,
and A (J) < 34/ D, then J is reduced.

Two ideals o, J, <%, are called equivalent, if there exist elements
B, B € Z,\{0} such that B, = B,

If J=Za®Z(b + v D)2 is a primitive ideal of %, (a,beZ, a > 0,
4a|b* — D), then its Lagrange neighbour J* is defined by

Jt = Za @z T VD +2*/D,

where

D__b+2

b* = — b+ 2a[M] and a* =
20 4a

J* is an ideal of #,, equivalent to J, and if JJ is regular (reduced), then
J* is also regular (reduced). Let (J,),s, be defined by J, = J and o,,, =
J;. The sequence (J,),-, becomes ultimately periodic, and if J is regular,
it contains all reduced ideals equivalent to . The sequence (J,),., can
be calculated by means of the continued fraction algorithm as follows: If

ézb——l_“”‘\/—Dz [b()’bl’bzy "']
2a

is the simple continued fraction expansion of & and, for v > 0,

P, ++D
u_bu)bpn,"' ==z I
& = 1= 20,
where P,eZ and @, e N, then

¢=zg@zﬂ%#£”

The case J, = %, is of particular interest: If
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®p = [bo, bla ) bl] ’

I is the length of a primitive period and if, for ve {1, ---, [}

)

‘Sv = [bm b,“, s ')bl) b]y o ',b»—l] = -Pu—;—Qﬁy/"l_)“’

then the set

Q*(D) = {Qn Ty Ql}

is precisely the set of norms of reduced principal ideals of #,,.

8§2. Reduced ideals

TaEOREM 1. Let D = 4* 4 m be a discriminant, where t and m are
integers such that t > 0, 4tfm and either

m> —4t 4 2
or
m> —8t-+5, m = 1 mod 4¢.
Then any primitive regular ideal J of %, with A (J) =t is reduced.

Proof. If m >0, then t <14 D, and therefore any primitive regular
ideal of #, with norm ¢ is reduced.

Thus we may suppose that m < 0. Let J< %, be a primitive regular
ideal with A(J) = ¢, and set

J= Zt@zfi_zﬁ/_D,

where 1 < x < 2t and x* = D = mmod 4¢t. Since 4tym, we have x < 2t,
and we must prove that

0<VD —x<20<+D +x,
ie.,
< D<@t 4 x* and (2t —x)<D.

Since m < 0, we always have D< 42 < 2t + x)*. If m > — 4t + 2, then
< (2 —102 2 —xP <@t —1¢ and (2t — 1)< 48+ m = D.

If m==1mod4t and m > — 8t + 5, then 2 < x < 2t — 2, x* < (2t — 2),
2t —xp < (2t — 2 and (2t — 2 < 48 + m = D. O
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THEOREM 2. Let D =t + m be a discriminant, where t > 1 and m
are integers such that either

—A+1<m<2+1
or
— At 4+ 4<m<4t+ 4, m= 1lmodt.

Let Ja#, be a primitive regular ideal such that A'(J) =1, let J* be the
Lagrange neighbour of J, and @ = A'(J*).

Then @ < iy D, and D — 4tQcZ is a perfect square. In particular,
J* is reduced.

Proof. Suppose that J = Zt ® Z(y + + D)2 where yeZ, y' =
Dmod 4t and ¢ < y < 3t; we consider first the case m =+ 4t. Then we have
y #+ 3t and therefore ¢t + 1 <y < 3t — 1. Moreover, if m #= 1 mod ¢, then
¥t # 1 mod ¢, and therefore ¢t + 2 <y < 3t — 2. Since

t—1<vVD <t+1, if —24+1<m<2+1,
t—2< VD <t+2, if —dt+4<m<4t+4,

we obtain in any case
1< ¥+ VD o
2t
and therefore
J'=7Qd® z_l_’_+§i2,
where P =2t —y and @ = (D — P?»/4t. We set y* = D 4 4tz, where ze Z,
and obtain

Q=y—t—2=z.

If m = 4¢, then y =3t and J* = #,, so that in this case @ =1, z =
2t — 1 and again

QQ=y—t—2z.
In any case we obtain
V=D+ 4y —t — Q) =4ty + D — 4 — 41Q,

and therefore
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y=2t+ D — 4Q,
whence D — 4tQ must be a perfect square.
Suppose that @ > }+4/ D ; then we obtain
z=y—t—Q<y-—t——é—~/ﬁ,

and therefore
V=D+4tz< 8+ m+ 4ty — 4t — 2/ D,

whence

¥ — 4ty + B+ 2t/ D —m) < 0.
This however can only occur when

2 — B+ 2t/ D —m) =8 —2/ D +m >0,

i.e.,, when 2t/ D < * + m. Squaring this inequality gives

488D = 4¢* + 4'm < t' + 20'm 4+ m?,
and therefore

0> 3t 4 2¢m — m* = (3 — m)(t* + m),

contradicting our assumptions on m and &. |

§3. Diophantine equations

In this section we reformulate Theorems 1 and 2 for diophantine
equations. We do this using the set 2(D); the final translation into the
language of diophantine equations is given by Proposition 1.

THEOREM 1A. Let D = 48 + m be a discriminant as in Theorem 1,
and suppose that (t,f,) = 1. Then we have te Q(D) if and only if te
Q*(D).

Proof. Since (t,f,) = 1, any ideal J of £, satisfying A(J) =t is

regular. Therefore the assertion follows from Theorem 1. O

TueorEM 2A. Let D=t + m be a discriminant as in Theorem 2,
and suppose that (t,f,) = 1.

i) If te (D), then there exists some Q¢ Q%(D) such that Q < i+ D,
and the integer D — 4tQ is a perfect square.
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i) If Q@€ (D) is such that the integer D — 4tQ is a perfect square
and all primitive ideals J < Z, with A'(J) = Q are principal ideals, then
te QD).

i) If D — 4t is a perfect square, then te (D).

Proof. i) Let J<« %, be a primitive principal ideal such that 4°(J)
=t; since (4, fp) = 1, J is regular. By Theorem 2, @ = 4 (J*) < i/ D,
and D — 4¢Q is a perfect square.

i) If D — 4tQ = P* for some Pec N, then the primitive ideals J, =
ZQP®Z(P + + D)2 and J, = Zt ® Z(— P + + D)/2 are equivalent by [3,
Cor. 2]. By assumption, ¢/, is principal, whence o, is principal, too, and
therefore te (D).

ii1) follows from ii) with @ = 1. |

§4. Discriminants of Richaud-Degert-type

ProposIiTION 2. Let D = 4a® + r be a discriminant, where a and r are
integers such that 1 <|r|< a, r|a, r is square-free and r = 1 mod 4.
1) If r #1, then ae D).
1) 2ae Q(D) if and only if either 4a® — 8a + r or 4a® — 8alr| + r is
a perfect square.
i) 2ae Q@a* + 1) if and only if a = 2.

Proof. Since r is square-free, (r,f,) = 1. From [2] we obtain Q*(D)
={Lrnex (-4 ifr>0, and Q¥D) = {1,|r|,a + (r — 1)/4} if r <O0.

i) follows from Theorem 1A with ¢ = a, m = r.

il) We apply Theorem 2A with ¢t = 2a, m =r. If 2a ¢ 2(D), then
D — 4tQ is a perfect square for one of the numbers @ = 1,|r|, a + (r — 1)/4.
If @=a+(r—1)/4, then D — 4tQ < 0, and therefore it cannot be a
perfect square. If @ = |r|, then D — 4tQ = 4a* — 8a|r|+ r, and if @ = 1,
then D — 41Q) = 4a® — 8a + r.

For the converse suppose that, for @ =1 or @ = |r|, D — 4@ is a
perfect square. By Lemma 1, there eixsts exactly one primitive ideal J
of #, such that A4 (J) = @, and since {1,|r]} C 2¥(D), J is principal. Now
the assertion follow from Theorem 24, ii).

iii) By i), 2a € Q4a® + 1) if and only if 4¢* — 8a + 1 = (22 — 2)* — 3
is a perfect square, which is equivalent with a = 2. O

PropPoOSITION 3. Let D = a® 4 4r be a discriminant, where a and r are
integers such that a = 1mod2, a > 1, rla, r +# — a, and r is square-free.
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1) ae QD) if and only if either o — 4a + 4r or a* — 4a|r] + ir is a
perfect square.
i) aeQ® —4) if and only if a = 5.

Proof. From —a = 4'((a + +/a* + 4a)) we obtain a € 2(a’> + 4a), and
therefore we may suppose that |r] < a, and consequently || < @/3. Since
r is square-free, (r,f,) = 1. From [2] we obtain 2*(D) = {1,r} if r >0,
and Q*(D) = {1,|r},e +1r —1} if r <O0.

We apply Theorem 2A with t =a, m = 4r. If ae Q(D), then D —
4t€) is a perfect square for one of the numbers @ = 1,|rl,a +r — 1. If
Q=a+r—1 then D — 4Q = — a(Ba + 4r) + 4(a + r) < 0 cannot be a
perfect square. If @ = |r|, then D — 4tQ = a* — 4a|r| + 4r, and if @ = 1,
then D — 4tQ = o* — 4a + 4r.

The converse is proved exactly as in Proposition 2.

i1) follows from i) with r = — 1, observing that &* — 4a — 4 =
(@ — 1) — 8 is a perfect square if and only if @ = 5. |

PropPoSITION 4. Let D = 4(a* 4 r) be a discriminant, where a and r
are integers such that a > 3, r|2a, r > — a, and r is square-free.

i) Suppose that either 2fa or o* + r is not a discriminant. Then
ae€ 2(D) if and only if a=r.

1) Suppose that a* + r is not a discriminant. Then 2a e Q(D) if and
only if either & —2a 4+ r or a® — 2a|r|+r is a perfect square. In
particular:

If r=1, then 2ac 2(D);

if re{— 1,2}, then 2a ¢ (D),

if r= — 2, then 2a e QD) if and only if a = 3.

Proof. From [2] we obtain Q*(D) = {1,r}, if r >0, and 2¥*(D) =
{1,2a + r — 1,|r}}, if r < 0. Since r is square-free, no odd prime divides
(a,f). Since 2|f, if and only if o+ r is a discriminant, we obtain
(a,fp) = 1 in 1) and (2a, fy) = 1 in ii).

Now we proceed as in the proof of Proposition 2: We infer i) from
Theorem 1A with ¢ = a, m = 4r, and ii) from Theorem 2A with ¢ = 2aq,
m = 4r. O

§5. An application

We finish with an amusing application of the preceding theory, part
of which was posed as a problem (cf. Bulletin dell’ Association des
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Professeurs de Mathématiques no. 374, 1990, Problem no. 177).

ProrositioN 5. If x and y are positive integers such that, for some
choice of the sign,
I
xy + 1
is an integer, then c is either a perfect square, or ¢ = b.

Proof. We suppose that ¢ = (x* + ¥*)/(xy+1) is an integer and not a
perfect square; since ¢ = 2 implies (x — y)! = £ 2, we obtain ¢ > 2.

Dividing by (x, y), we obtain an equation

U — cuv + UV = =+ ¢,
where u,veZ, (u,v) =1, ¢, >1 and ¢ = ¢,¢* for some geN. If D= ¢
— 4, then D is a discriminant, and

4o, = M(Zu — cv2+ U¢D>,

whence ¢, € (D). If 4|c,, then we obtain #* + v* = 0 mod 4, contradicting
(u, v) = 1; therefore we have 4fc, and thus (¢, fp) = 1.

If ¢, # ¢, then ¢, < c/4 < 1+ D and therefore c,e 2*(D). By [2], we
have Q*(D) = {1, c — 2} and therefore ¢, = 1, a contradiction.

If ¢, =c is odd, then Proposition 3, ii) implies ¢ =5. If ¢, =rc is
even, then ¢ = 2mod 4, since 4fc,, and therefore v’ — cuv + v* = (u — vy
= 2mod 4, a contradiction. O
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