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ON A CLASS OF INSOLUBLE BINARY QUADRATIC

DIOPHANTINE EQUATIONS

FRANZ HALTER-KOCH

§ 0. Introduction

The binary quadratic diophantine equation

\x* - nf\ = t

is of interest in the class number problem for real quadratic number

fields and was studied in recent years by several authors (see [4], [5], [2]

and the literature cited there).

To be precise, for a positive square-free integer η, we set

(1, if 7ΐ ^ 1 mod 4 ,

°η " |2 , if η = 1 mod 4

a solution (χ, y)eZ of the diophantine equation

is called primitive, if (χ, y) \ ση, where (χ, y) denotes the g.c.d. of χ and y.

The reason for this terminology will become clear from the theory of

quadratic orders, to be explained in § 1.

R. A. Mollin [4] proved, generalizing previous results by Yokoi [5]

and others, the following criterion.

PROPOSITION 0. Let s, t, r be integers such that η = (stf + r > 5 is

squarefree and the following conditions are satisfied:

(1) s> 1, t> 2 and (t,r) = 1;

(2) r|4s, and — st < r < st;

(3) If η=1 mod 4, then \ r\ e {1, 4}.

(4) J/ | r | = 4, then s > 2.

(5) If r = 1, then s > 3 and 21 st.

Then the diophantine equation \χ2 — ny2\ = a\t has a primitive solution if
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and only if η = 7, t = 3.

Actually, the result as given in [4], is formally stronger than Proposi-
tion 0; there it is asserted, that the diophantine equation has no non-
trivial solutions (in a sense precised there). To obtain Mollin's result,
we must apply Proposition 0 for all t' > 1 such that t = t'u2 for some
ueN.

In [2], we derived a general method to handle such equations using
continued fractions, and we claimed [2, p. 92] that an application of these
techniques would lead to a simple proof and a generalization of Proposi-
tion 0. J. Β. Leicht (Heidelberg) pointed out to me that this is not quite
correct: The techniques of [2] do only work if ant < ^/Έ, and there are
two cases of Proposition 0 in which this condition is violated:

5 = 1, r = — 1, η — ? — 1

s = 1, . r = - 2 , η = t2 - 2 .

In this paper, we develop different techniques which, among others,
also cover these cases. We consider the diophantine equation as a norm
equation, and then the ideal theory of quadratic orders becomes availa-
ble for the problem (§ 1). In § 2 we prove a criterion for certain ideals
to be reduced (Theorem 1) and a general reduction statement (Theorem 2).
In § 3 we reformulate these Theorems for diophantine equations. Finally,
in §4, we give some applications for discriminants of Richaud-Degert-
type; thereby we restrict ourselves to those cases, which cannot be set-
tled with the methods of [2].

§ 1. Preliminaries on quadratic orders

In this section we recall some well-known facts about quadratic
orders and formulate them in a manner which will be useful later on;
for proofs see [1] or [3] (but note that the notions of [3] are slightly dif-
ferent from ours).

A positive integer D is called a discriminant, if D is not a square
and D = 0 or Imod4; in this paper, D always denotes a discriminant.
We set

—VH , if D = 0 mod 4 ,

(On =

—(1 + V D), if D = 1 mod 4 ,

https://doi.org/10.1017/S002776300000369X Published online by Cambridge University Press

https://doi.org/10.1017/S002776300000369X


BINARY QUADRATIC DIOPHANTINE EQUATIONS 143

and

3tD = Z® Ζω».

0tO is an order in the quadratic number field Q(\/D). If DQ is the dis-
criminant of Q(V D), then

D = Dtf*D

for some fDeN; fD is called the conductor associated with D.
Every ξ e &D has a unique representation in the form

ξ 2

where b,eeZ and b ~ eDmod2 we call

the norm of f. An element $e@D is called primitive, if πτιξ&0ίΒ for all
integers m > 2. Obviously, £ e ^ β is primitive if and only if either

R, x,yeZ, (x,y) = l

or

Z ) = l m o d 4 , g = J L + W J

 ? x,yeZ, χ =

For an ideal (0) =£ J< ^^ we call

^ (J) = ( ^ : J ) e N

the norm of J; J is called primitive, if m~xJtfi0tO for all integers m > 2.
If c/= f^ is a principal ideal, then «yK(J") = |^(f) |, and J is primitive if
and only if ξ is primitive. Let Ω(Ό) be the set of all norms of primitive
principal ideals of 0tD. Using this terminology, we rephrase the question
about the solubility of the diophantine equations under consideration as
follows.

PROPOSITION 1. If D is a discriminant and t is a positive integer,
then the following two assertions are equivalent:

a) t e Ω(Ώ)
b) The diophantine equation

https://doi.org/10.1017/S002776300000369X Published online by Cambridge University Press

https://doi.org/10.1017/S002776300000369X


144 FRANZ HALTER-KOCH

= t, if D ΞΞ 0 mod 4 ,

x2 _ Df I = 4ί, if D==l mod 4

α solution (χ, y) e Ζ2 satisfying

f(x,y) = l , i / D =

(x,y)|2, Ι / Ο Ξ Ξ

An ideal (0) φ J<\&D is called regular, if ^ = {xe Q(V"Z>~)|xe/c J}.

Any regular ideal is invertible. Any principal ideal and any ideal J of

0tD such that {Ji{J), fD) = 1 is regular. In this paper we shall mainly be

concerned with ideals J such that («/T(c7), fD) = 1.

The primitive ideals of 01Ώ are precisely the Z-modules of the form

where α, b e Ζ, α > 0 and 4α 162 — Ζλ In this representation, a = vV(J) is

uniquely determined by J, while 6 is only determined modulo 2a. If c/ is

as above, then J is regular if and only if (α, 6, (62 — D)/4a) = 1.

For lack of a suitable reference, we give a proof of the following

simple result concerning ideals whose norm divides the discriminant.

LEMMA 1. Let D be a discriminant and r a positive integer such that

r\D and Α\τ. Then there exists exactly one primitive ideal J<\0tD such

that Ji(J) = r.

Proof. Since AJ(r, we have either 4r\D or 4r | r2 — Ζ), and we set

^ - , if4r\D,

Zr@Zr + ^ D , if

Then J i s a primitive ideal of ^ , and ^Γ(«7) = r.

If /== Zr©Z(6 + Λ/Τ))Ι2 is a primitive ideal of StD, where 0 < 6

< 2r, 4r|62 — D, then r\D implies r\b and therefore b = 0 or b = r. If

there were two primitive ideals in ^ with norm r, then Ιχ — Zr ®

Ζ(νΠθ/2) and 72 = Zr © Z(r + <J~D)I2 both were ideals, whence 4r |D and

4r |r 2 — Ζ); this implies 4r |r 2 and hence 4|r, contradicting the assumption

that r is square-free. •

https://doi.org/10.1017/S002776300000369X Published online by Cambridge University Press

https://doi.org/10.1017/S002776300000369X


BINARY QUADRATIC DIOPHANTINE EQUATIONS 145

An ideal (0) Φ J<MD is called reduced, if it is primitive, regular, and

has a representation of the form

such that

0 < V^D - b < 2a < V~D + b

note that these conditions also determine b uniquely. If J is a reduced

ideal of 3tD, then Jf{J) < V D . If J is a primitive regular ideal of 3&Ώ

and <#XJ) < | V f l , then J is reduced.

Two ideals Jl9 J2< &D are called equivalent, if there exist elements

βί9 β2 e &D\{0} such that ftJi = β2ς/2.

If J = Ζα Θ Ζ(6 + \Ι~Ώ)β is a primitive ideal of StD (α, 6 e Ζ, α > 0,
4α|62 — D), then its Lagrange neighbour J+ is defined by

where

α + =2a J 4a

J+ is an ideal of <%D, equivalent to J, and if J is regular (reduced), then

J + is also regular (reduced). Let (c/n)n>0 be defined by Jo = J and Jn+l =

J+. The sequence (Jn)n>0 becomes ultimately periodic, and if J is regular,

it contains all reduced ideals equivalent to J. The sequence (Jn)n>0 can

be calculated by means of the continued fraction algorithm as follows: If

b + VTT _
2α " 2>

is the simple continued fraction expansion of ξ and, for ν > 0,

where P v e Z and Qv e Ν, then

The case c/0 = <̂ζ> is of particular interest: If
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(*>D = [bo, bu , bt],

I i s t h e l e n g t h o f a p r i m i t i v e p e r i o d a n d if, f o r ν 6 {1, •••,/},

then the set

is precisely the set of norms of reduced principal ideals of 0tD.

§2. Reduced ideals

THEOREM 1. Lei Ζ) = 4£2 + τη 6e α discriminant, where t and m are

integers such that Ζ > 0, 4tJ(m and either

m> - At + 2

or

m> -8t+ 5 , m ^ 1 mod At.

Then any primitive regular ideal J of 0tD with Jf{J) = t is reduced.

Proof. If m > 0, then t<jVD, and therefore any primitive regular

ideal of £%D with norm t is reduced.

Thus we may suppose that m < 0. Let J <±0ίΌ be a primitive regular

ideal with Jf(J) = t, and set

J=Zt@Zx+ ^ D

where 1 < χ < 2t and χ2 = D = m mod 4ί. Since At\m, we have χ < 22,

and we must prove that

0 < VT9 - x<2t< VT> + x,

i.e.,

χ2 < D< (2t + xf and (2ί - χ)2 < D .

Since m < 0, we always have D< if < (2t + xf. If m > - U + 2, then

χ2 < (2t - I)2, (2t - JC)2 < (2ί - I)2, and (2t - I)2 < 4t2 + m = D.

If m =£ 1 mod 4ί and m > - 8ί + 5, then 2 < χ < 2t - 2, χ2 < (2t - 2)\

(2t - xf < (2t - 2)2 and (2t - 2)2 < 4ί2 + m = D. D
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THEOREM 2. Let D = f + m be a discriminant, where t > 1 and m

are integers such that either

-2t+l<m<2t+l

or

- 4t+ 4<m<4t+ 4, m=£l mod t.

Let J<&D be a primitive regular ideal such that oV{J) = t, let J+ be the

Lagrange neighbour of J, and Q = J^(J+).

Then Q < \sl^D , and D — 4tQe Ζ is a perfect square. In particular,

J + is reduced.

Proof. Suppose that J = Zt 0 Z(y + A/~D)/2 where y 6 Ζ, y1 =

D mod 4ί and t<y<3t; we consider first the case m Φ At. Then we have

y Φ 3t and therefore t+l<y<3t — l. Moreover, if m ^ 1 mod ί, then

y2 ^φ. 1 mod ί, and therefore i + 2 < y < 3 i — 2. Since

t -1< *JTJ <t+l, if - 2ί + Κ m < 2ί + 1,

ί - 2 < *J~D <t+ 2 , i f - 4 i + 4 < m < 4 i + 4 ,

we obtain in any case

κ y + ν τ Γ < 2

2t

and therefore

ZP + ^ D

where Ρ = 2t - y and Q = (D - P2)/4t. We set / = D + 4te, where zeZ,

and obtain

If m = 4̂ , then ;y = 3ί and c/+ = ^ β , so that in this case Q = 1, 2

2£ — 1 and again

In any case we obtain

y = D + 4̂ (3/ - ί - Q) = 4iy + D - 4t2 - 4tQ,

and therefore
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y = 2t ± Λ/D - 4tQ ,

whence D — 4tQ must be a perfect square.

Suppose that Q > | \/U then we obtain

z = y -t-Q<y - t - -J-VT5

and therefore

/ = D + Uz < t2 + m + 4ty - 4? -

whence

y - 4ij + (3ί2 + 2^"^" - τη)< 0.

This however can only occur when

(2t)2 - (St2 + 2W~D - m) = t2 - 2ts/~D + m > 0 ,

i.e., when 2t\/ D < ί2 + m. Squaring this inequality gives

and therefore

0 > 3ί4 + 2t2m - m2 = (St2 - m)(f + m),

contradicting our assumptions on m and ί. •

§ 3. Diophantine equations

In this section we reformulate Theorems 1 and 2 for diophantine

equations. We do this using the set Q(D); the final translation into the

language of diophantine equations is given by Proposition 1.

THEOREM 1Α. Let D = 4ΐ + m be a discriminant as in Theorem 1,

and suppose that (t, fD) = 1. Then we have t e Ω(Ό) if and only if t e

Ω*φ).

Proof. Since {t, fD) = 1, any ideal J of 0tD satisfying JV{J) = t is

regular. Therefore the assertion follows from Theorem 1. •

THEOREM 2Α. Let D = t2 + m be a discriminant as in Theorem 2,

and suppose that (t, fD) = 1.

i) If te Q(D), then there exists some Qe Q*(D) such that Q < £V~5">

and the integer D — 4tQ is a perfect square.
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ii) If Qe Q(D) is such that the integer D — 4tQ is a perfect square

and all primitive ideals J A0tD with Jf(J) = Q are principal ideals, then

t e Ω(Ό).

iii) If D — At is a perfect square, then t e Q(D).

Proof, i) Let J<\MD be a primitive principal ideal such that

= t; since (t,fD) = 1, J is regular. By Theorem 2, Q = Jf(J+) < i V U ,

and D — 4tQ is a perfect square.

ii) If D — 4tQ = Ρ 2 for some Ρ e Ν, then the primitive ideals Jx =

ZQ Θ Ζ(Ρ + V U )/2 and J 2 = Ζί Θ Ζ ( - Ρ + V^D)/2 are equivalent by [3,

Cor. 2]. By assumption, Jx is principal, whence J2 is principal, too, and

therefore teQ(D).

iii) follows from ii) with Q = 1. •

§ 4. Discriminants of Richaud-Degert-type

PROPOSITION 2. Lei D = 4a2 + r be a discriminant, where a and r are

integers such that 1 <\r\ < α, r |a, r is square-free and r = Imod4.

i) If r Φ 1, then a ζ Ω{Ό).

ii) 2a e β(£)) if and only if either 4a2 — 8a + r or 4a2 — 8a\r\ + r is

a perfect square.

iii) 2a e β(4α2 + 1) i/ an,rf οη/^ if a = 2.

Proof. Since r is square-free, (r, /fl) = 1. From [2] we obtain

= {1, r,a±(r - 1)/4} if r > 0, and fl*(D) = {1, |r|, α + (r - 1)/4} if r < 0.

i) follows from Theorem 1Α with t — a, m = r.

ii) We apply Theorem 2Α with t = 2a, m = r. If 2α e β(Ζ>), then

D — 4tQ is a perfect square for one of the numbers Q = 1, \r\, a ± (r — 1)/4.

If Q = α ± (r — 1)/4, then JD — 4iQ < 0, and therefore it cannot be a

perfect square. If Q = \r\, then D - 4iQ = 4α2 - 8a\r\ + r, and if Q = 1,

then D -4tQ = 4α2 - 8α + r.

For the converse suppose that, for Q = 1 or Q = |r|, Ζ) — 4ZQ is a

perfect square. By Lemma 1, there eixsts exactly one primitive ideal J

of 0tD such that JT(J) = Q, and since {1, \r\] c fl*(D), J is principal. Now

the assertion follow from Theorem 2A, ii).

iii) By ii), 2α e β(4α2 + 1) if and only if 4α2 - 8α + 1 = (2a - 2)2 - 3

is a perfect square, which is equivalent with a = 2. Π

PROPOSITION 3. Let D = α2 + 4r be a discriminant, where a and r are

integers such that a = 1 mod 2, a > 1, r | α, r ^ — α, arcd r is square-free.
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i) a e Ω(Ρ) if and only if either a2 — 4α + 4r or a2 — 4a\r\ + 4r is a

perfect square.

ii) a e Q(a2 — 4) i/ ami only if a = 5.

Proof. From — a = Jf(\(a + V&2 + 4a)) we obtain α e β(α2 + 4α), and

therefore we may suppose that \r\ < α, and consequently | r | < α/3. Since

r is square-free, (r, fD) = 1. From [2] we obtain Ω*(Ό) = {1, r} if r > 0,

and β*(Ζ>) = {1, |r|, α + r - 1} if r < 0.

We apply Theorem 2Α with ί = a, m = 4r. If a e Q(D), then D -

4tQ is a perfect square for one of the numbers Q = 1, |r|, α + r — 1. If

Q = α + 7- — 1, then D - 4tQ = - α(3α + 4r) + 4(α + r ) < 0 cannot be a

perfect square. If Q = |r|, then Ζ> - 4iQ = α2 - 4a|r | + 4r, and if Q = 1,

then D - 4iQ = α2 - 4α + 4r.

The converse is proved exactly as in Proposition 2.

ii) follows from i) with r = — 1, observing that α2 — 4α — 4 =

(α — I)2 — 8 is a perfect square if and only if a = 5. •

PROPOSITION 4. Lei D = 4(α2 + r) be a discriminant, where a and r

are integers such that a > 3, r 12α, r > — α, ami r is square-free.

ϊ) Suppose that either 2\α or a2 + r is not a discriminant. Then

a e Ω(Ό) if and only if a = r.

ii) Suppose that a2 + r is not a discriminant. Then 2a e Q(D) if and

only if either a2 — 2a + r or a2 — 2a\r\ + r is a perfect square. In

particular:

If r = 1, £/Wi 2aeQ(D);

if re{- 1, 2}, ί/iera 2a 6 β(£>);

if r = —2, Z/ien 2a e β(Ζ>) i/ ami onZy if a = 3.

Proof. From [2] we obtain β * φ ) = {1, r}, if r > 0, and fl*(D) =

{1, 2α + r — 1, |r|}, if r < 0. Since r is square-free, no odd prime divides

(a,fD). Since 2|/D if and only if α2 + r is a discriminant, we obtain

(a, ΪΌ) = 1 in i) and (2α, fD) = 1 in ii).

Now we proceed as in the proof of Proposition 2: We infer i) from

Theorem 1Α with t = α, m = 4r, and ii) from Theorem 2Α with t = 2α,

m = 4r. •

§5. An application

We finish with an amusing application of the preceding theory, part

of which was posed as a problem (cf. Bulletin dell' Association des
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Professeurs de Mathematiques no. 374, 1990, Problem no. 177).

PROPOSITION 5. If χ and y are positive integers such that, for some

choice of the sign,

xr + y2

xy ± 1

is an integer, then c is either a perfect square, or c — 5.

Proof. We suppose that c = (χ2 + y2)l(xy±l) is an integer and not a

perfect square; since c = 2 implies (χ — y)2 = ± 2, we obtain c > 2.

Dividing by (χ, y), we obtain an equation

u2 — cwu + ν2 = ± c0,

where u,veZ, (u, ν) = 1, c0 > 1 and c = c0g
2 for some g e Ν. If ΰ = c2

— 4, then ϋ is a discriminant, and

± c0 -

whence c0 e Q(D). If 41 c0, then we obtain w2 + υ2 = 0 mod 4, contradicting

(u, υ) = 1; therefore we have 4|c0 and thus (co,fD) = 1.

If c0 ^ c, then c0 < c/4 < | V ^ and therefore c0 6 Ω*{Ό). By [2], we

have Q*(D) = {1, c — 2} and therefore c0 = 1, a contradiction.

If c0 = c is odd, then Proposition 3, ii) implies c = 5. If c0 = c is

even, then c = 2 mod 4, since 4|c0, and therefore u2 — cuu + υ2 = (u — υ)2

= 2 mod 4, a contradiction. •
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