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Abstract. The spatial power spectrum of the HI 21 cm intensity in the Small Magellanic Cloud
(Stanimirovic et al. 1999) is a power law over scales as large as those of the SMC itself. It was
interpreted as due to turbulence by Goldman (2000) and by Stanimirovic & Lazarian (2001).
The question is whether the power spectrum is indeed the result of a dynamical turbulence or
is merely the result of a structured static density. In the turbulence interpretation of Goldman
(2000) the turbulence was generated by the tidal effects of the last close passage of the LMC
about 0.2 Gyr ago. The turbulence time-scale was estimated by Goldman to be 0.4 Gyr, so the
turbulence has not decayed yet. Staveley-Smith et al. (1997) observed in the SMC about five
hundreds of HI super shells. Their age is more than an order of magnitude smaller than the
turbulence age. Therefore, if the turbulence explanation holds, their observed radial velocities
should reflect the turbulence in the gas in which they formed. In the present work we analyze
the observed radial velocities of the super shells. We find that the velocities indeed manifest the
statistical spatial correlations expected from turbulence. The turbulence spectrum is consistent
with that obtained by Goldman(2000).
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1. Introduction
The spatial power spectrum of the HI 21 cm intensity in the Small Magellanic Cloud

was obtained by Stanimirovic et al. (1999). Interestingly, it is a power law over scales as
large as that of the SMC itself. Similar power laws have been observed by Crovisier &
Dickey (1983) and by Green (1993) in the galaxy. The outstanding feature in the case of
the SMC is the large scale of the observed correlations. The power laws signal underlying
long range correlations in what looks like a field of random fluctuations of the intensity.
For an optically thin medium along the line of sight, the 21 cm intensity is proportional to
the column density. Therefore, the fluctuations in 21 cm intensity represent fluctuations
in density.

A natural interpretation of the observed power spectra is that the underlying correla-
tions in density fluctuations are due to a turbulence in which velocity fluctuations, that
are coupled to density fluctuations, give rise to the observed power laws. The turbulence
interpretation was suggested by Goldman (2000) and Stanimirovic & Lazarian (2001).

Goldman (2000) suggested that this large scale turbulence was generated by instabili-
ties in the bulk flows that resulted from the tidal interaction during the last close passage
of the Large Magellanic Cloud (LMC) ∼ 2 Gyr ago (Gardiner & Noguchi 1996).
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However, since the observations catch a snapshot of the intensity field and since the
turbulence timescales are very long (∼ 0.4 Gyr) one cannot rule out the possibility of a
static correlated density field that reflects initial conditions.

In the present paper we propose a test to decide between these two alternatives.

2. Analysis of the supershells radial velocity field
Staveley-Smith et al. (1997) observed 501 HI super shells in the SMC. The proposed

test relies on the fact that the timescale and age of the turbulence (if indeed there) are
typically 1 to 2 orders of magnitude larger than the lifetimes of the super shells. Therefore,
they have formed in the turbulent gas and their observed radial velocities should reflect
the turbulent velocity field in the gas in which they were formed. We wish to look at
them as markers registering the ambient gas velocity. If the radial velocity field exhibits
spatial correlations consistent with those of the turbulence, assumed as responsible for
the 21 cm intensity spectra, it will strengthen the case for dynamical turbulence as the
source of the HI intensity power spectrum.

We use the data of the 501 super shells reported in Table 1 of Staveley-Smith et al.
(1997). For each super shell, the residual radial velocity was found by subtracting from
the observed velocity the large-scale best fit to a linear function of the coordinates,

vi = vobs,i − (c + s1xi + s2yi) (2.1)

with shell numbers 1 � i � 501 where

c = 155.1 km s−1, s1 = 12.34 × 10−3 km s−1 pc−1, s2 = 4.46 × 10−3 km s−1 pc−1.

The coordinates of each shell (xi, yi) are in units of pc and were obtained from the
angular coordinates by adopting a distance of 60 kpc to the SMC. The velocities are in
units of km s−1. The subtracted large scale velocity field is composed of a mean velocity
and a term corresponding to a velocity gradient. The magnitude of the latter is consistent
with values obtained by Gardiner & Noguchi (1996).

We have computed the second order structure function and the autocorrelation for
the residual velocity field along lines parallel to the coordinate axes. Interpolation was
used to fit the discrete data along the lines to a continuous function. The different lines
yielded similar results.

For simplicity, homogeneous and isotropic velocity field is assumed. In this case, the
structure function and the autocorrelation depend only on the distance between the two
points, r = |�r|. The structure function is

S(r) =<
(
v(�r′ + �r) − v(�r′)

)2

>. (2.2)

Similarly, the autocorrelation function is

C(r) =< v(�r′ + �r)v(�r′) >. (2.3)

The angular brackets denote ensemble averaging. Assuming ergodicity, in addition to
homogeneity and isotropy, ensemble averaging equals space averaging. As stated above,
we use averages over lines so that

S(l) =
1
L

∫ L

0

(v(x + l) − v(x))2 dx (2.4)
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Figure 1. The structure function in units of (km s−1)2 as a function of scale in pc. The thin
lines have slopes 2/3 and 1. The upper line has a slope of 2/3.
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Figure 2. The autocorrelation function in units of (km s−1)2 as a function of scale in pc.

where L is the length of the line. Similarly,

C(l) =
1
L

∫ L

0

v(x + l)v(x)dx (2.5)

The results of a typical computation are presented in figures 1-2. Figure 1 shows the
structure function S(l). For very small values of l, S(l) ∝ l2, for larger values of l it
varies as S(l) ∝ lm−1 and then it saturates.

The index m characterizes the inertial range of the turbulent velocity spectral function:
F (k) ∝ k−m. In Kolmogorov turbulence characterizing an incompressible fluid, m = 5/3.
In the case of turbulence in a compressible medium, m = 2. This was also the value
deduced by Goldman (2000) on the basis of the 21 cm intensity power spectrum. These
two power laws are presented in figure 1. The precision of the data is not enough to
decide between them, even though the m = 2 line seems to follow better the slope of the
computed structure function.

The autocorrelation function is shown in figure 2. It behaves as an autocorrelation
function of a turbulent velocity rather than uncorrelated velocity fluctuations.

Figure 3 presents the turbulence spectral function F (k) computed from the autocorre-
lation function. The curve is noisy but a power law range is clear. Also here the turbulence
spectral functions with m = 5/3 and m = 2 are plotted. The two slopes are compatible
with the computed spectral function, although m = 2 seems preferable.
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Figure 3. The turbulence spectral function in units of (km s−1)2pc as function of the
normalized wavenumber q = kL/(2π). The upper thin line has a slope −5/3 and the lower −2.

The wavenumber range shown corresponds to spatial scales between 1500 pc, which
is in this case the length of the line L, and 50 pc. Higher wavenumbers correspond to
spatial scales that are smaller than the average radius of the shells, and therefore the
computed turbulence spectrum is not valid for these scales.

3. Conclusions
The results of the present work strengthen the case for the turbulence interpretation

of the 21 cm power spectra of the SMC. The residual radial velocities of the super
shells exhibit statistical spatial correlations expected from turbulence. The turbulence
spectrum and structure function are consistent with a Kolmogorov spectrum, m = 5/3,
and with that of incompressible turbulence, m = 2. The latter seems preferable. It equals
the value deduced by Goldman (2000) from the HI intensity fluctuations.
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Discussion

Blitz: How can you say that your mechanism is anything more than consistent with the
observations, since your mechanism doesn’t explain the turbulence in the outer regions
of disks (beyond the stellar disks) or in spherical HI systems.
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Goldman: My talk referred to the particular case of the SMC. Particular in the sense
that a tidal interaction with the LMC seems to be the plausible way to generate large-
scale shear flows who are unstable and generate turbulence. In any case, the main point
was not identifying the energy source but showing that indeed the SMC is pervaded by
large-scale velocity turbulence.

Padoan: It is very difficult, from your velocity power spectrum plot, to evaluate if the
power spectrum is k−2 or k−5/3. The quality of that HI velocity power spectrum is simply
too poor to probe the turbulence.

Goldman: I agree. The index is ∼ (−5/3 − 2). But the important point is that radial
velocities of the supershells exhibit a turbulence spectrum consistent with that deduced
from the HI intensity power spectrum.
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