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In this work, we investigate the generation of the ambipolar electric field in a gravita-
tionally stratified, collisionless plasma atmosphere. In such environments, gravity tends
to separate charged species. To prevent separation an electric field, classically described
by the Pannekoek–Rosseland expression, is usually imposed externally. Here, we propose
a self-consistent method to recover this field based on a multi-mode Fourier expansion of
the electrostatic interaction. We show that, under suitable conditions, this approach nat-
urally leads to the ambipolar electric field and restores charge neutrality. The method is
tested in both isothermal and multi-temperature plasma configurations. This framework
provides a foundation for future developments that may include collisions, ionisation and
asymmetric boundary conditions to model more realistic stellar atmospheres.
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1. Introduction

In the solar corona, the outermost layer of the solar atmosphere, the temperature
rises from thousands to millions of degrees with increasing altitude, while the density
simultaneously drops by more than two orders of magnitude. Understanding how
the coronal plasma achieves this stationary configuration remains a fundamental and
unresolved issue, commonly known as the coronal heating problem (Parker 1972;
Ionson 1978; Heyvaerts & Priest 1983; Scudder 1992a, b; Dmitruk & Gomez 1997;
Gudiksen & Nordlund 2005; Rappazzo et al. 2008; Pontieu et al. 2011; Rappazzo
& Parker 2013; Wilmot-Smith 2015; Howson, De Moortel & Reid 2020; Hau et al.
2025).

The upper chromosphere and the base of the transition region are known to be
highly dynamic, characterised by intense, short-lived and small-scale brightenings
(Dere, Bartoe & Brueckner 1989; Teriaca et al. 2004; Peter et al. 2014; Tiwari et al.
2019; Berghmans et al. 2021).

Prompted by these observational evidences, recently a new kinetic model of the
solar atmosphere has been proposed (Barbieri et al. 2024a, b), demonstrating,
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2 L. Barbieri

through both numerical and analytical techniques, that suitable, rapid and random
temperature perturbations in the upper chromosphere can drive the overlying plasma
towards a stationary configuration exhibiting the observed inverted temperature and
density profiles (often referred to as temperature inversion).

In this model, the coronal plasma is represented as a one-dimensional, collision-
less, two-species system subject to constant downward gravity and an electric field
(the Pannekoek–Rosseland field) generated by the Sun to ensure charge neutrality
(Pannekoek 1922; Rosseland 1924). As pointed out in Barbieri et al. (2024a, b)
and Barbieri, Andrea & Simone (2025), the most significant weakness of this
approach lies in its omission of Coulomb collisions, despite the low Knudsen num-
ber (Kn ∼ 10−2−10−3 in the transition region and Kn ∼ 10−1 in the corona), which
indicates that collisions are non-negligible in both regions.

As shown by Landi & Pantellini (2001) via numerical simulations, Coulomb colli-
sions modify the electric field in such a way that the standard Pannekoek–Rosseland
field is no longer sufficient to maintain charge neutrality. Instead, a supplemen-
tary contribution from the plasma’s self-consistent electrostatic field is required. In
Barbieri et al. (2024a, b), electrostatic interactions were approximated using the
Hamiltonian mean-field (HMF) model (Antoni & Ruffo 1995; Chavanis, Vatteville
& Bouchet 2005; Elskens & Escande 2019), which truncates the Fourier expansion
of the electrostatic potential at the first mode.

Therefore, in order to introduce collisions into the model, it is first necessary to
understand whether the HMF-based modelling developed in this work is capable of
reproducing the ambipolar effect. For this reason, we do not include collisions in
the present study where we focus on the collisionless limit. Our aim is to determine
what form of the self-generated electric field is required to induce the ambipolar
effect that leads to the Pannekoek–Rosseland field, without imposing it externally as
done in previous works (Barbieri et al. 2024a, b; Barbieri et al. 2025). We show that
by retaining an increasing number of Fourier modes in the electrostatic potential, it
is possible to recover the ambipolar effect and thus the Pannekoek–Rosseland field
in a fully self-consistent manner. This framework provides the basis for including
ambipolar effects in plasma atmospheres and will support future extensions of the
model, such as the inclusion of collisions.

The structure of the paper is as follows. Section 2 revisits the inadequacy of the
Pannekoek–Rosseland field in ensuring charge neutrality in a collisional plasma out
of thermal equilibrium. Section 3 introduces the coronal loop model from Barbieri
et al. (2024a, b), extended to include multiple electric field modes. Section 4 shows
both theoretically and numerically how the ambipolar electric field can be generated
by this approach. Finally, § 5 summarises our findings and outlines potential future
directions.

2. Charge neutrality in a gravitationally stratified stellar atmosphere

We consider a plane-parallel atmosphere composed of a plasma of electrons
and protons stratified by the gravitational field. For each species, the hydrostatic
equilibrium condition is expressed as

dPα

dz
= nα Fα + Rα, Fα = sign(eα)eE − gmα, (2.1)

where α ∈ {e, p} denotes the species (electrons or protons), mα is the mass of a
particle of species α, e is the elementary charge, g is the gravitational acceleration,
z is the height, nα is the number density, Pα is the pressure, Fα is the total force
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FIGURE 1. Schematics of the loop model. The coronal plasma in the loop is treated as colli-
sionless and in thermal contact with a fully collisional chromosphere (modelled as a thermal
boundary).

per unit volume, E is the electric field and Rα is the friction force due to collisions.
Using the ideal gas law Pα = nαkB T , and assuming quasi-neutrality, ne(z) = n p(z) =
n(z) ∀z, and the equality of temperatures, Te(z) = Tp(z) = T (z) ∀z, we subtract the
equilibrium equations for each species to isolate the electric field:

E = EPR − 1
2ne

∑
α∈{e,p}

sign (eα) Rα + 1
2ne

∑
α∈{e,p}

sign (eα)
d (Tαn)

dz
, (2.2)

where EPR is the Pannekoek–Rosseland field defined as

EPR = −
(
m p − me

)
2e

g. (2.3)

Even if the electron and proton temperatures are equal, the system may not be in
thermal equilibrium, and thus Rα �= 0 due to collisional effects. Therefore, the total
electric field must include an additional ambipolar contribution to restore charge
neutrality. Taking the divergence of the electric field yields

dE

dz
= 1

2e

d
dz

[
1
n

∑
α∈{e,p}

sign (eα)

(
d(Tαn)

dz
− Rα

)]
, (2.4)

indicating that a self-consistent, spatially varying electric field must arise from the
plasma to sustain quasi-neutrality. This ambipolar electric field becomes essential
when collisional terms are included, as the classical Pannekoek–Rosseland field
alone is insufficient. Given that Barbieri et al. (2024a, b) utilise the HMF model to
approximate electrostatic interactions, a key question arises: can the HMF model,
which retains only the first Fourier mode, reproduce the ambipolar effect and main-
tain charge neutrality in the presence of gravity? If not, can the model be suitably
modified to include such effects by extending the Fourier mode expansion?

3. The two-component gravitationally bound plasma model

We consider geometrically confined plasma structures, specifically coronal loops,
which are prevalent throughout the solar atmosphere (e.g. Aschwanden 2005). Each
loop is modelled as a semicircular tube of length 2L and cross-sectional area S
(figure 1). The plasma inside the loop is treated as a one-dimensional, collisionless,
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4 L. Barbieri

two-species electrostatic system subject to solar gravity. The electrostatic interaction
is modelled via a multi-mode Fourier expansion of the potential, truncated at a
chosen mode Nn, while enforcing central symmetry at the loop apex. The equations
of motion for each particle j are given by

mα ẍ j,α = eE
(
x j,α

)+ gmα sin
(πx j,α

2L

)
, (3.1)

where x ∈ [−L , L] denotes the curvilinear coordinate along the loop. The self-
consistent electric field

1
is expressed as

E(x) = 8 sign(eα)e · nS N
Nn∑

n=1

Qn

n
sin
(πnx

L

)
, (3.2)

where 2N is the total number of particles of the species α, nS is the surface number
density and Qn are the charge imbalance parameters defined as

Qn =
∑

α∈{e,i}
sign(eα)qn,α, (3.3)

with the stratification parameters qn,α given by

qn,α = 1
N

N∑
j=1

cos
(πnx j,α

L

)
. (3.4)

Physically, qn,α ≈ −1 corresponds to particles concentrated near the base of the loop,
qn,α ≈ 0 to a uniform distribution and qn,α ≈ 1 to particles clustered near the loop
top. A non-zero Qn implies a charge imbalance at spatial scale L/n. The Fourier
components ρn of the charge density ρ(x) are related to Qn via the Poisson equation:

∂2φ

∂x2
= −4πeρ (x) → ρn = −en0 Qn, n0 = NnS

L
, (3.5)

indicating that Qn directly determines the spatial structure of the charge density at
the spatial scale L/n.

The loop is assumed to be in ideal thermal contact with a lower boundary repre-
senting the fully collisional chromosphere. However, as discussed in § 1, the upper
chromosphere and the base of the transition region are highly dynamic environ-
ments, characterised by intense, short-lived and small-scale brightenings (Dere et al.
1989; Teriaca et al. 2004; Peter et al. 2014; Tiwari et al. 2019; Berghmans et al.
2021).

We model these brightenings as temperature pulses as illustrated in figure 2. When
the boundary temperature is held constant, the loop plasma reaches thermal equi-
librium (isothermal loop). However, the dynamic behaviour of the chromosphere
introduces stochastic heating events, which are analysed in § 5.2.

1We note that the expression for the electrostatic field expanded in Fourier modes is general and applies
in both the presence and absence of collisions. However, given that collisions are not included in the present
model, we do not expect to recover (2.2) with all its terms. Furthermore, we point out that, unlike in the previous
section, we are now working in the curvilinear coordinates of the loop, which are related to the height z through
z = (2L/π) cos (πx/2L).
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FIGURE 2. Time evolution of the temperature at the thermal boundary. During intervals of
duration τ , the temperature is increased by an amount �T , while during the waiting times tw, it
is at the baseline value T0.

3.1. The system of units
We now proceed to express the equations of motion in dimensionless form. We

introduce characteristic units

v0 =
√

kB T0

me
, m0 = me, L0 = L

π
, (3.6)

and define the dimensionless variables

M = m p

me
, C = 8e2L2n0

πkB T0
, g̃ = gLm p

πkB T0
. (3.7)

The quantities C and g̃ quantify the strength of the self-electrostatic energy and
of the gravitational energy of the electrons in units of thermal energy. In these
units, denoting with θ the dimensionless spatial coordinate, the equations of motion
become

Mαθ̈ j,α = sign(eα)E
(
θ j,α

)+ F̃
(
θ j,α

)
, (3.8)

the expressions for the external forces and the electrostatic field are

F̃
(
θ j,α

)= g̃α sin
(

θ j,α

2

)
, E(θ) = C

Nn∑
n=1

Qn

n
sin (nθ) (3.9)

and

Qn =
∑

α∈{p,e}
sign(eα)qn,α, qn,α = 1

N

N∑
j=1

cos
(
nθ j,α

)
. (3.10)

In the aforementioned equations, Mα is equal to the mass ratio M = m p/me for
protons and 1 for electrons, while g̃α is equal to g̃ for protons and g̃/M for elec-
trons. Henceforth, all quantities are reported in dimensionless units unless specified
otherwise.
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6 L. Barbieri

3.2. Vlasov dynamics
In the mean-field limit, the dynamics of the phase-space distribution functions is

governed by a system of two Vlasov equations:

∂ fα
∂t

+ p

Mα

∂ fα
∂θ

+ Fα[ fα]∂ fα
∂p

= 0, Fα = −∂ Hα

∂θ
, (3.11)

where fα are the distribution functions for both species and Hα are the mean-field
Hamiltonians:

Hα = p2

2Mα

+ Vα, Vα (θ) = sign(eα)φ (θ) + 2g̃α cos
(

θ

2

)
. (3.12)

Here φ is given by

φ (θ) = C
+∞∑
n=1

Qn

n2

(
cos (nθ) + (−1)

n+1) , (3.13)

and Qn are given by

Qn[ fα] =
∑

α∈{e,p}
sign(eα)qn,α[ fα], qn,α[ fα] =

∫ π

−π

dθ

∫ ∞

−∞
dp cos (nθ) fα (θ, p) .

(3.14)

4. Reproducing the Pannekoek–Rosseland field and charge neutrality with the
multi-mode model

In this section, we demonstrate that the multi-mode electrostatic interaction model
is capable of reproducing both the Pannekoek–Rosseland potential and the charge
neutrality condition in the limit of a large number of Fourier modes. According to
Jeans’ theorem, all stationary solutions of the Vlasov equation must depend solely
on the mean-field Hamiltonians. Consequently, the distribution functions for each
species can be expressed as

fα (θ, p) = fα (Hα) . (4.1)

By combining (4.1) with (3.14) we obtain

Qn =
∑

α∈{e,p}
sign(eα)

∫ +∞

−∞
dp
∫ +π

−π

dθ cos (nθ) fα (Hα) . (4.2)

Using the kinetic definition of number density, (4.2) can be rewritten as

Qn =
∑

α∈{e,p}
sign(eα)

∫ +π

−π

dθ cos (nθ)nα (Vα) , (4.3)

where Vα is the total potential for each species. Since Vα depends on all Qn, this
results in a system of coupled nonlinear equations. In general, this system cannot
be solved analytically for the number densities nα, but an analytical solution can be
obtained under broad assumptions. First, we assume that the functional form of the
number density is identical for both species:

nα (Vα) = n (Vα) . (4.4)
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This assumption is satisfied by several well-known distribution functions, includ-
ing thermal distributions, kappa distributions (Scudder 1992a, b) and superstatistics
(Beck & Cohen 2003), all widely used in theoretical modelling and observations
of stellar atmospheres (Dudík et al. 2017; Lazar & Fichtner 2021; Barbieri et al.
2024a).

We now parametrise the Pannekoek–Rosseland potential along the loop’s curvi-
linear coordinate θ as

φPR (θ) =
∑

α∈{e,p}
sign (eα)

g̃α

2
cos

(
θ

2

)
, (4.5)

which can be expanded in a Fourier series as

φPR (θ) =
+∞∑
k=0

ck cos (kθ), ck =
∑

α∈{e,p}
sign (eα) g̃α

(−1)
k

(1 − 4k2)
. (4.6)

The Pannekoek–Rosseland potential can be reproduced by the electrostatic interac-
tions if the following condition holds:

C
Nn∑

n=1

Qn

n2

(
cos (nθ) + (−1)

n+1)=
+∞∑
k=0

ck cos (kθ) . (4.7)

This can be rewritten as

C

(
Nn∑

n=1

Qn

n2
cos (nθ) + Q0

)
=

+∞∑
k=0

ck cos
(

πkx

L

)
, Q0 = (−1)

n Qn

n2
. (4.8)

This condition is satisfied only if the number of Fourier modes Nn → +∞, and the
Qn coefficients satisfy

Qn = Cq
n2 (−1)

n

(1 − 4n2)
, Cq = 1

C

∑
α∈{e,p}

sign (eα) g̃α. (4.9)

This ensures that the electrostatic potential matches the Pannekoek–Rosseland
potential exactly. Furthermore, if (4.4) is satisfied, then the right-hand side of
(4.3) vanishes, implying Qn = 0 ∀n. However, (4.9) shows that Qn �= 0, unless Cq

is negligible.
For typical coronal plasma conditions (e.g. 2L ∼ 60 Mm, n0 ∼ 109 cm−3, T0 =

106 K), we find Cq ∼ 10−20, which justifies the approximation Qn ∼ 0, and hence the
quasi-neutrality condition is satisfied. The coefficients Qn are related to the Fourier
modes of the charge density ρ(x) through (3.5). Since |Qn| → Cq/4 for large n, the
Fourier series of ρ(x) diverges unless it is truncated at a finite mode n̂, satisfying

n̂Qn̂ ∼ 1 and n̂ 	 1, (4.10)

leading to
n̂ ∼ 4/Cq ∀n < n̂. (4.11)

Now, since Cq ∼ 10−20, for (4.11) we have that n̂ ∼ 4 × 1020. This implies that the
solution of the system of (4.9) is given by (4.3) up to n < n̂. Now, since Qn ∼ 0 for
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8 L. Barbieri

all n < n̂, and given that the charge density components ρn are proportional to Qn

via (3.5), it follows that ρn ∼ 0 for all n < n̂ as well.
In conclusion, we have shown that electrostatic interactions can reproduce the

Pannekoek–Rosseland potential and enforce quasi-neutrality down to a very small
spatial scale proportional to L/n̂, in the realistic limit where electrostatic forces
dominate over gravity, i.e. Cq 
 1. This behaviour appears to be general and not
limited to loop geometry, as further demonstrated in Appendix A for a plane-parallel
atmosphere. Now a natural question arises: where does this electric field come from?

To investigate where any residual charge imbalance occurs, we consider the case
Cq ∼ 400, implying n̂ = 100 according to (4.11). The electrostatic potential is then
approximated by

φ (θ) ∼=
n̂∑

k=0

ck cos (kθ), (4.12)

and the total charge density becomes

ρ (θ) ∼= −
n̂∑

n=1

Qn cos (nθ). (4.13)

Figure 3 illustrates that the self-consistent electrostatic potential (blue) closely
approximates the Pannekoek–Rosseland potential (grey) throughout the loop. The
middle panel shows that the discrepancies are more pronounced near the base of the
loop. These differences are associated with a localised charge imbalance, as depicted
in the right-hand panel. This analysis indicates that the Pannekoek–Rosseland poten-
tial primarily arises from a thin charge layer at the base of the loop, while the
upper regions remain approximately quasi-neutral. This outcome is anticipated, as
the gravitational force attains its maximum at the base, whereas the electrostatic field
vanishes at that point.

5. Validation of the multi-mode electrostatic model

In the previous section, we demonstrated that under the following assumptions:

(i) the number density satisfies nα(Vα) = n(Vα),

(ii) the parameter Cq 
 1, that is, electrostatic interactions are much stronger than
gravitational forces,

the multi-mode electrostatic model increasingly approximates charge neutrality and
the Pannekoek–Rosseland potential as the number of Fourier modes increases. We
now validate this conclusion for different types of distribution functions.

5.1. Thermal solution for multi-mode models
Among all the stationary solutions of the Vlasov equation, the thermal solution is

given by

fα (Hα) = 1
Zα

e−Hα/T and Zα =
∫ +∞

−∞
dp
∫ π

−π

dθe−Hα/T , (5.1)

where Zα is the partition function.
Using the standard kinetic definitions, the number density for each species

becomes

nα (θ) = n (Vα) = e−Vα(θ)/T∫ π

−π
dθe−Vα(θ)/T

. (5.2)
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FIGURE 3. Left: the self-consistent electrostatic potential φ (blue) and the Pannekoek–
Rosseland potential φPR (grey), plotted as functions of the curvilinear coordinate θ , both
normalised by the factor

∑
α∈{e,p} sign(eα)g̃α . The resulting rescaled potentials are denoted

as φ̃ and φ̃PR, respectively. The self-consistent potential is computed from (4.12), while
the Pannekoek–Rosseland potential is obtained from (4.5). Centre: the absolute difference
|φ̃ − φ̃PR| as a function of θ , highlighting the spatial deviation between the two potentials. Right:
the charge density ρ(θ) plotted as a function of θ , calculated using (4.13).

From this expression, it is evident that thermal distributions satisfy the density con-
dition in (4.4). Substituting (5.2) into (4.3) and performing some algebra yields

Qn =
∑

α∈{e,p}
sign(eα)

∫ 0
−π

dθ cos (nθ)e−Vα(θ)/T∫ 0
−π

dθe−Vα(θ)/T
. (5.3)

Solving this nonlinear system provides the values of Qn ∀n. To ensure the recovery
of charge neutrality and the Pannekoek–Rosseland potential, the condition Cq 
 1
must be satisfied.

Figure 4 presents the numerical results obtained with dimensionless parameters
satisfying Cq 
 1, specifically: g̃ = 32, M = m p/me, C = 104, T = 90. The left-hand
panels show the electron (red) and proton (blue) number density profiles computed
via (5.2), where the coefficients Qn are derived by solving (5.3) using Nn = 1 (top
row), Nn = 2 (middle row) and Nn = 9 (bottom row) Fourier modes. The grey curves
represent the density profiles computed using the Pannekoek–Rosseland potential
from (4.5). As the number of Fourier modes increases, the species densities converge
towards the Pannekoek–Rosseland profile, indicating improved charge neutrality.
The right-hand panels of figure 4 show the corresponding electrostatic potential
computed from (3.13) (blue), alongside the Pannekoek–Rosseland potential (grey).
The convergence of the self-consistent potential towards the Pannekoek–Rosseland
solution with increasing Nn confirms the analytical predictions of § 4.

5.1.1. Validation via numerical simulations
We now demonstrate that the dynamic model introduced in § 3 relaxes towards
the thermal equilibrium configuration described above, provided that the thermal

https://www.cambridge.org/core/terms. https://doi.org/10.1017/S0022377825100810
Downloaded from https://www.cambridge.org/core. IP address: 13.201.136.108, on 02 Oct 2025 at 02:28:12, subject to the Cambridge Core terms of use, available at

https://www.cambridge.org/core/terms
https://doi.org/10.1017/S0022377825100810
https://www.cambridge.org/core


10 L. Barbieri

FIGURE 4. Top row, left-hand panel: electron (red) and proton (blue) number densities as func-
tions of the curvilinear coordinate along the loop. The densities are computed using (5.2) with a
single Fourier mode (Nn = 1), as indicated in the subplot title. The grey curve shows the refer-
ence density profile corresponding to the Pannekoek–Rosseland potential. Top row, right-hand
panel: the Pannekoek–Rosseland potential (grey), calculated using (2.3), and the self-consistent
electrostatic potential (blue), computed using (3.13) with one Fourier mode. Middle and bottom
rows: same as the top row, but for Nn = 2 and Nn = 9, respectively.

boundary is held at a constant temperature T . We initialise the system with isother-
mal distributions for both electrons and protons, accounting for their respective
gravitational stratifications:

fα(θ, p) = e−(1/T )(p2/(2Mα)+2g̃α cos (θ/2))

√
2π MαT

∫ π

−π
dθe−(2g̃α/T ) cos (θ/2)

. (5.4)

This configuration is not dynamically stable, as it yields distinct stratifications for the
two species. As a result, an ambipolar electric field emerges and progressively acts
to equalise the species densities, enforcing charge neutrality. This effect can only be
reproduced if a sufficient number of Fourier modes is included in the electrostatic
model.

We integrate numerically (3.8)
2

using Nn = 9 modes and the same parameter val-
ues as in figure 4, for N = 217 particles. The top-left panel of figure 5 shows the

2The details of the numerical approach are explained in Barbieri et al. (2024b).
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FIGURE 5. Top left: time evolution of the kinetic energies Kα of protons (green curve) and elec-
trons (orange curve). Top right: number densities of electrons (blue) and protons (red). The grey
curves correspond to the theoretical density profile obtained from (5.2), where the electrostatic
potential φ is replaced by the Pannekoek potential given in (4.5). Bottom left: time evolution of
the total electrostatic energy Eel , evaluated numerically via (5.6). Bottom right: self-consistent
electrostatic potential φ, computed from simulations using (3.13). The grey curve represents the
Pannekoek potential given by (4.5).

time evolution of the kinetic energies of electrons (orange) and protons (green),
defined as

Kα = 1
N

N∑
j=1

p2
j,α

2Mα

. (5.5)

Both kinetic energies relax to an asymptotic value, consistent with thermal equi-
librium. In this state, the electron and proton densities coincide and match the
Pannekoek–Rosseland density profile (grey), shown in the top-right panel. The
bottom-left panel illustrates the time evolution of the total electrostatic energy:

Eel = C

2

Nn∑
n=1

Q2
n

n2
. (5.6)

This quantity also relaxes to an asymptotic value. The electrostatic potential corre-
sponding to this asymptotic state (blue), shown in the bottom-right panel, closely
matches the Pannekoek–Rosseland potential (grey), confirming the model’s ability
to self-consistently reproduce the equilibrium solution.

5.2. Multi-temperature solution for multi-mode models
The thermal solution presented above is valid under the assumption of a static

thermal boundary at fixed temperature T . However, as discussed in § 3 as well as
in § 1, our primary interest lies in the case where the thermal boundary exhibits
time-dependent temperature fluctuations. As shown in Barbieri et al. (2024b), if the
time scales of these fluctuations are shorter than the relaxation time of the loop at
each corresponding temperature, then the system relaxes towards a non-equilibrium
stationary state. In this regime, the distribution functions of the plasma particles are
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described by the following analytical expression:

fα (θ, p) =Nα

(
A
∫ +∞

1
dT

γ (T )

T
e−Hα/T + (1 − A) e−Hα

)
, A = τ

τ + 〈tw〉η

, (5.7)

where Nα is the normalisation constant ensuring that fα integrates to unity, γ (T )
is the probability distribution of the temperature increments, τ is the duration of
the heating events and 〈tw〉 is the average waiting time between events over the
probability distribution η(tw). Using the standard kinetic definitions, we compute
the number density and kinetic temperature for each species:

nα (θ) = n (Vα) = A
∫ +∞

1 dT γ (T )/
√

T e−Vα/T + (1 − A) e−Vα

A
∫ +∞

1 dT γ (T )/
√

T
∫ π

−π
dθe−Vα/T + (1 − A)

∫ π

−π
dθe−Vα

, (5.8)

Tα (θ) = T (Vα) = A
∫ +∞

1 dT γ (T )/
√

T e−Vα/T + (1 − A) e−Vα

A
∫ +∞

1 dT γ (T )/
√

T e−Vα/T + (1 − A) e−Vα

. (5.9)

These multi-temperature distributions also satisfy the condition given by (4.4),
required for the system to approach charge neutrality. By inserting (5.8) into the
system of (4.3), and after some manipulation, we obtain

Qn =
∑

α∈{e,p}
sign (eα)

× A
∫ +∞

1 dT (γ (T )/
√

T )
∫ 0

−π
dθ cos (nθ)e−Vα/T + (1 − A)

∫ 0
−π

dθ cos (nθ)e−Vα

A
∫ +∞

1 dT γ (T )/
√

T
∫ 0

−π
dθe−Vα/T + (1 − A)

∫ 0
−π

dθe−Vα

.

(5.10)

Solving this system yields the values of Qn for all modes. As with the thermal case, we
demonstrate this behaviour using dimensionless parameters that satisfy the condition
Cq 
 1. The results are shown in figure 6, where we assume a delta-distribution for
the temperature increments,

γ (T ) = δ (T − (1 + �T )) , (5.11)

corresponding to a boundary temperature that alternates between two discrete val-
ues. The chosen parameters are: A = 0.1, g̃ = 2, M = m p/me, C = 104, �T = 90.
In figure 6, the left-hand panels display the temperature and number density pro-
files of electrons (blue) and protons (red dashed), computed from (5.8) and (5.9),
respectively, using Nn = 1, 2, 9. The grey lines represent the profiles obtained using
the Pannekoek–Rosseland potential. As in the thermal case, increasing the number
of Fourier modes leads to convergence of the electron and proton profiles towards
the Pannekoek–Rosseland solutions, indicating that charge neutrality and the cor-
rect electrostatic potential structure are recovered. The right-hand panels show the
corresponding electrostatic potentials computed using (3.13) (blue) compared with
the Pannekoek–Rosseland potential (grey). Once again, convergence is observed as
the number of modes increases. In Appendix B we show a case in which γ (T ) is not
a simple delta-distribution proving the robustness of the present result.

5.2.1. Validation against numerical simulations
The dynamics governed by the equations of motion (3.1), coupled with the fluctu-
ating thermal boundary, has been numerically simulated following the methodology
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FIGURE 6. Top row, left-hand panel: electron (red) and proton (blue) number densities (globally
decreasing functions) and temperatures (globally increasing functions) as functions of the curvi-
linear coordinate along the loop. The densities and temperature are computed using (5.2) with a
single Fourier mode (Nn = 1), as indicated in the subplot title. The grey curve shows the refer-
ence temperature and density profiles corresponding to the Pannekoek–Rosseland potential. Top
row, right-hand panel: the Pannekoek–Rosseland potential (grey), calculated using (2.3), and
the self-consistent electrostatic potential (blue), computed using (3.13) with one Fourier mode.
Middle and bottom rows: same as the top row, but for Nn = 2 and Nn = 9, respectively.

described in Barbieri et al. (2024a, b), with the notable difference that the electric
field is computed using (3.2). In this section, we illustrate how the fluctuating ther-
mal boundary drives the overlying collisionless plasma towards a stationary state
characterised by a temperature inversion. To this end, the system is initialised in
a thermal equilibrium configuration, in which the distribution functions for both
species are given by

fα (θ, p) = e−p2/(2Mα)−2g̃ cos (θ/2)

√
2π Mα

∫ π

−π
dθe−2g̃ cos (θ/2)

∀α. (5.12)

This configuration is not stationary under the influence of the dynamically fluctu-
ating thermal boundary at the base. However, as discussed in § 3, if a sufficiently
large number of Fourier modes is retained in the modelling of the self-consistent
electrostatic interactions, we expect the system to recover both charge neutrality
and the Pannekoek–Rosseland potential in the stationary state. We report here the
results of a simulation conducted with Nn = 9 modes and using the same set of
numerical parameters employed for the production of figure 6. The total number
of particles is set to N = 217. In analogy with figure figure 5, the upper-left panel
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FIGURE 7. Same quantities and colour scheme as in figure 5, but in the multi-temperature case
regime described in § 5.2.

of figure 7 shows the time evolution of the total kinetic energy of each species α,
computed according to (5.5). In this case as well, the kinetic energies of both species
relax towards an asymptotic value. The upper-right panel displays the final stationary
profiles of temperature and density computed via the numerical simulation together
with their theoretical counterparts, which clearly exhibit a temperature inversion.
The theoretical profiles, shown in grey, are computed using (5.8) and (5.9), where
the electrostatic potential φ(θ) is replaced by the Pannekoek–Rosseland expression
given in (4.5). The lower-left panel illustrates the time evolution of the total electro-
static energy, evaluated using (5.6). As observed in the case discussed in § 5.1, this
quantity also relaxes to an asymptotic value. Finally, the lower-right panel confirms
that the self-consistent electrostatic potential generated by the plasma coincides with
the Pannekoek–Rosseland potential at equilibrium.

6. Summary and perspectives

The main plasma physics result of the present work is the identification of a
self-consistent mechanism to reproduce the ambipolar effect that gives rise to the
Pannekoek–Rosseland electric field and ensures charge neutrality in a gravitationally
stratified, collisionless plasma. This is achieved by extending the electrostatic inter-
action model from a single Fourier mode (as in the standard HMF approximation)
to multiple modes. Under very general assumptions on the form of the distribu-
tion functions, assumptions that are satisfied by thermal, kappa and superstatistical
distributions, we demonstrated that in the limit of many modes, the self-consistent
electrostatic potential converges to the classical Pannekoek–Rosseland potential. At
the same time, the system exhibits quasi-neutrality apart from a thin layer of charge
at the base of the atmosphere which originates the Pannekeok–Rosseland poten-
tial. These theoretical predictions were confirmed numerically. We have shown
that, under suitable conditions, the distribution functions of both species relax
towards a stationary configuration in which charge neutrality and the Pannekoek–
Rosseland potential are simultaneously recovered. This was observed both in the
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thermal equilibrium case (where the boundary temperature is fixed) and in the more
physically relevant multi-temperature case, where the thermal boundary undergoes
random energy fluctuations.

While the results of this work do not aim to provide a general theory of ambipolar
electric fields nor a complete description of coronal heating, they represent a foun-
dational step in that direction. Now that we have established how to incorporate
the ambipolar effect in a self-consistent way into the model originally introduced
in Barbieri et al. (2024a, b), we are in a position to extend it. In particular, we
can include additional ingredients such as collisions, ionisation processes and asym-
metric temperature fluctuations at the loop footpoints. These effects will allow us
to determine how the ambipolar electric field predicted by the multi-mode Fourier
approach is modified, and how the picture of coronal heating evolves in this more
complete framework.

As discussed in § 2, we expect collisions to modify the self-generated electric field
with respect to the classical Pannekoek–Rosseland expression. For example, we aim
to investigate the following questions: How many Fourier modes are required to
reproduce the modified ambipolar field in the collisional case? In which regions of
the atmosphere are the deviations from the Pannekoek–Rosseland field most sig-
nificant? How does this modified electric field act on the temperature inversion
produced by gravitational filtering in the collisionless limit? Finally, by including
collisions, we can study the interplay between the collisionless gravitational filter-
ing, which produces the temperature inversion effect, and the collisional thermal
conduction, which allows heat to flow from the corona into the chromosphere.

Another important extension of the present model concerns the role of partial
ionisation, especially in the lower part of the transition region, where the ioni-
sation process is known to occur. In this regime, deviations from the classical
Pannekoek–Rosseland field may become more significant, as the plasma is not yet
fully ionised. As altitude increases and ionisation progresses, the assumptions of
a fully ionised and collisionless plasma, underlying the present treatment, become
more accurate. Understanding how the ambipolar electric field evolves across this
ionisation gradient represents an important development of our model.

We note that in our model we have central symmetry with respect to the loop
apex. This will ensure a zero net flux in the system. By introducing asymmetric
temperature fluctuations at the two footpoints, a net flux across the loop appears.

However, the resulting asymmetry does not alter the physical mechanism respon-
sible for the temperature inversion. The inversion still arises because ‘hot’ particles,
generated by temperature increments, can climb higher in the gravitational potential
well, while ‘cold’ particles remain concentrated near the base and the temperature
profile along the loop is no longer symmetric. Although this adds complexity to
the model, it does not change the physical origin of the temperature inversion. It
represents an interesting extension that we plan to explore in a future work.

We note that generating different temperature increments at the two footpoints of
the loop produces a flow into the system, altering the ambipolar electric field, which
would no longer be the classical Pannekoek–Rosseland field. Another way to obtain
a different ambipolar field could be through the introduction of distinct temperature
fluctuations for the two species. This leads to different temperature profiles for
electrons and protons, and consequently, as evident from (2.2), an ambipolar electric
field that deviates from the classical Pannekoek–Rosseland expression.

Finally, as an additional possible follow-up, it would be interesting to include alpha
particles in the modelling, as they contribute significantly to the mass density.
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Appendix A. Plane-parallel plasma atmosphere

In this appendix, we adopt the CGS system of units. We consider a model of a
two-component, plane-parallel, collisionless plasma atmosphere. Particles are subject
both to the gravitational field of the central star and to self-consistent electrostatic
interactions. Under these assumptions, the distribution functions fα evolve according
to the Vlasov equations:

∂ fα
∂t

+ p

mα

∂ fα
∂z

+ Fα[ fα]∂ fα
∂p

= 0, Fα = −∂ Hα

∂z
, Hα = p2

2mα

+ Vα. (A1)

The total potential is defined as

Vα(z) = sign(eα)φ(z) + mαgz, (A2)

with φ(z) being the electrostatic potential, which satisfies the Poisson equation:

d2φ

dz2
= −4πeρ(z). (A3)

Using the Green’s function formalism, the electrostatic potential can be expressed
as

φ(z) = −2πe2n0

∑
α∈{e,p}

∫ L

0
dz̃nα(z)|z − z̃|, (A4)

where L is the extent of the atmosphere. Assuming that the distribution func-
tions depend only on the Hamiltonians (the Jeans theorem), and making the same
assumptions as in (4.4), we obtain

φ(z) = −2πe2n0

∑
α∈{e,p}

∫ L

0
dz̃n(Vα)|z − z̃|. (A5)

Introducing the dimensionless coordinate y = z/L , we rewrite the expression as

φ(z)

2πe2n0L2
=
∑

α∈{e,p}

∫ 1

0
dỹn(Vα)|y − ỹ|. (A6)
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We parametrise the Pannekoek–Rosseland field in this geometry:

φPR(z) =
∑

α∈{e,p}
sign(eα)mαgz. (A7)

Substituting φ(z) = φPR(z) into the integral equation above, we find that the right-
hand side of (A6) vanishes, while the left-hand side yields 2Cq y, which is not
identically zero. However, under typical plasma conditions where Cq 
 1, and for
y ∈ [0, 1], the deviation is negligible, confirming the validity of the approximation.

Appendix B. The case of a statistical distribution of the temperature increments

In this appendix, we consider the case where the temperature increments follow a
statistical distribution. In particular, as previously done in Barbieri et al. (2024a, b)
and Barbieri et al. (2025), we adopt an exponential distribution for the temperature
increments:

γ (T ) = 1
〈�T 〉e−(T −T0)/〈�T 〉, T > T0. (B1)

We solve (5.10) using the distribution γ (T ) defined above. Once the coefficients Qn

are obtained, we use the same statistical distribution to compute the temperature and
density profiles via (5.9) and (5.8), respectively. Figure 8 presents the results for the
following parameter values: g̃ = 2, M = m p/me, C = 104, 〈�T 〉 = 90. As observed
in the isothermal and multi-temperature cases discussed in §§ 5.1 and 5.2, respec-
tively, the electrostatic interaction, when modelled with a sufficiently large number
of Fourier modes, produces an electrostatic potential that closely approximates the

FIGURE 8. Same quantities as for figure 6 but computed via the statistical distribution of
temperature increments given by (B1).
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Pannekoek–Rosseland potential. This approach ensures quasi-neutrality by align-
ing the temperature and density profiles of electrons and protons across the entire
loop.
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