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Real Hypersurfaces in Complex Space
Forms with Reeb Flow Symmetric Structure
Jacobi Operator

Jong Taek Cho and U-Hang Ki

Abstract. Real hypersurfaces in a complex space form whose structure Jacobi operator is symmet-

ric along the Reeb flow are studied. Among them, homogeneous real hypersurfaces of type (A) in

a complex projective or hyperbolic space are characterized as those whose structure Jacobi operator

commutes with the shape operator.

1 Introduction

Let (M̃n(c), J, g̃) be an n-dimensional complex space form with Kähler structure

( J, g̃) of constant holomorphic sectional curvature c and let M be an orientable real

hypersurface in M̃n(c). Then M has an almost contact metric structure (η, φ, ξ, g)

induced from ( J, g̃) (see Section 1).

The second author [7] proved that there are no real hypersurfaces with parallel

Ricci tensor in a non-flat complex space form M̃n(c), (c 6= 0) when n ≥ 3. Recently,

U. K. Kim [10] proved that this is also true when n = 2. These results imply, in

particular, that there do not exist locally symmetric real hypersurfaces in a non-flat

complex space form.

The structure Jacobi operator Rξ = R( · , ξ)ξ has a fundamental role in almost

contact geometry. It is notable that Rξ is a self-adjoint operator. The present authors

start the study on real hypersurfaces in a complex space form by using the operator

Rξ [5, 6, 9]. Recently, Ortega, Pérez and Santos [15] proved that there are no real

hypersurfaces in the n-dimensional complex projective space PnC, n ≥ 3 with parallel

structure Jacobi operator ∇Rξ = 0. In a continuing work [16], Pérez, Santos, and

Suh considered a weaker condition, called D-parallelness, that is, ∇V Rξ = 0 for any

vector field V orthogonal to ξ. But, it was proved further that there exist no real

hypersurfaces in PnC, n ≥ 3 with the D-parallel structure Jacobi operator. We may

refer to a different literature [14] for the above two results.

This situation naturally leads to consider another weaker condition ξ-parallelness,

that is, ∇ξRξ = 0. This symmetry condition along the structure flow (or the Reeb

flow) ξ also means that Rξ is diagonalizable by a parallel orthonormal frame field

{Ei} along each flow ξ and its corresponding eigenvalues λi are constant along ξ,

that is, RξEi = λiEi with ∇ξEi = 0 and ξλi = 0 for i = 1, 2, . . . , 2n − 1 (see [2, 4]).
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Takagi [17,18] classified the homogeneous real hypersurfaces of PnC into six types.

On the other hand, Cecil and Ryan [3] extensively studied Hopf hypersurfaces (whose

Reeb vector field ξ is a principal curvature vector field), which are realized as tubes

over certain submanifolds in PnC. By making use of those results and the afore-

mentioned work of Takagi, Kimura [11] proved the local classification theorem for

Hopf hypersurfaces of PnC all of whose principal curvatures are constant. For the case

of the n-dimensional complex hyperbolic space HnC, Berndt [1] proved the classifi-

cation theorem for Hopf hypersurfaces all of whose principal curvatures are constant.

Among the several types of real hypersurfaces appearing in Takagi’s list or Berndt’s

list, a particular type of tubes over totally geodesic PkC or HkC (0 ≤ k ≤ n − 1)

adding a horosphere in HnC, which is called type (A), has a many nice geometric

properties. For example, Okumura [13] (resp. Montiel and Romero [12]) showed

that a real hypersurface in PnC (resp. HnC) is locally congruent to a real hypersurface

of type (A) if and only if the Reeb flow ξ is isometric, or equivalently the structure

operator φ commutes with the shape operator A (φA = Aφ).

The main purpose of this paper is to prove the following.

Theorem 1 Let M be a connected real hypersurface of M̃n(c), c 6= 0, whose shape

operator A commutes with Rξ , that is, RξA = ARξ . Then M satisfies ∇ξRξ = 0 if and

only if M is locally congruent to one of the following:

(i) in case that M̃n(c) = PnC with η(Aξ) 6= 0,

A1 a geodesic hypersphere of radius r, where 0 < r < π
2

and r 6= π
4

,

A2 a tube of radius r over a totally geodesic PkC, (1 ≤ k ≤ n − 2), where

0 < r < π
2

and r 6= π
4

;

(ii) in case that M̃n(c) = HnC,

A0 a horosphere,

A1 a geodesic hypersphere or a tube over a complex hyperbolic hyperplane Hn−1C,

A2 a tube over a totally geodesic HkC, (1 ≤ k ≤ n − 2).

For the case of PnC, we need the technical assumption η(Aξ) 6= 0 in order to

determine real hypersurfaces of type (A). Actually, there is a non-homogeneous tube

with Aξ = 0 (of radius π
4

) over a certain Kähler submanifold in PnC, when its focal

map has constant rank on M [3]. However, for Hopf hypersurfces in HnC, it is known

that the associated principal curvature of ξ never vanishes [1].

We note that the commutativity condition RξA = ARξ is a much weaker condition

than φA = Aφ. Indeed, every Hopf hypersurface always satisfies it (see Remark 1 in

Section 2).

2 Preliminaries

All manifolds in this paper are assumed to be connected and of class C∞ and the real

hypersurfaces are supposed to be oriented. First, we review several fundamental facts

on a real hypersurface of a complex space form. Let M be a real hypersurface of a

non-flat complex space form M̃n(c), c 6= 0, and N be a unit normal vector on M. We

denote by ∇̃ the Levi–Civita connection with respect to the Kähler metric g̃. Then
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the Gauss and Weingarten formulas are given respectively by

∇̃XY = ∇XY + g(AX,Y )N, ∇̃XN = −AX,

for any vector fields X and Y on M, where g denotes the Riemannian metric of M

induced from g̃. An eigenvector (resp. eigenvalue) of the shape operator A is called a

principal curvature vector (resp. principal curvature). For any vector field X tangent

to M, we put JX = φX + η(X)N , JN = −ξ. We call ξ the structure vector field (or the

Reeb vector field) and its flow also denoted by the same ξ. Then we may see that the

structure (η, φ, ξ, g) is an almost contact metric structure on M, that is, we have

φ2X = −X + η(X)ξ, η(ξ) = 1, g(φX, φY ) = g(X,Y ) − η(X)η(Y ).

From this, we get easily φξ = 0, η ◦ φ = 0, and η(X) = g(X, ξ). From the Kähler

condition ∇̃ J = 0, making use of the Gauss and Weingarten formulas, we have

(∇Xφ)Y = η(Y )AX − g(AX,Y )ξ,(2.1)

∇Xξ = φAX.(2.2)

Since the ambient space is of constant holomorphic sectional curvature c, we have

the following Gauss and Codazzi equations

R(X,Y )Z =
c

4

{
g(Y, Z)X − g(X, Z)Y

+ g(φY, Z)φX − g(φX, Z)φY − 2g(φX,Y )φZ
}

+ g(AY, Z)AX − g(AX, Z)AY,

(2.3)

(∇XA)Y − (∇Y A)X =
c

4
{η(X)φY − η(Y )φX − 2g(φX,Y )ξ}.(2.4)

The curvature equation (2.3) gives the structure Jacobi operator Rξ :

(2.5) Rξ(X) = R(X, ξ)ξ =
c

4
{X − η(X)ξ} + αAX − η(AX)Aξ.

From this, we have

(2.6) (RξA − ARξ)(X) = η(AX)A2ξ − η(A2X)Aξ +
c

4
{η(X)Aξ − η(AX)ξ}.

Remark 1. From the above formula, we easily see that every Hopf hypersurface satis-

fies the commutativity condition RξA = ARξ .

In the sequel, to write our formulas in conventional forms, we let α = η(Aξ),

β = η(A2ξ), and for a function f we denote by ∇ f the gradient vector field of f . If

we put U = ∇ξξ, then U is orthogonal to the structure vector ξ. From (2.2), we get

(2.7) φU = −Aξ + αξ,
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which leads to g(U ,U ) = β − α2. If we put

(2.8) Aξ = αξ + µW,

where W is a unit vector field orthogonal to ξ, then we get U = µφW , which says

that W is also orthogonal to U . Further we have

(2.9) µ2
= β − α2.

Thus we see that ξ is a principal curvature vector, that is, Aξ = αξ if and only if

β − α2
= 0, or equivalently ξ is a geodesic flow.

We set Ω = {p ∈ M : µ(p) 6= 0} and suppose that Ω is non-empty, that is,

ξ is not a principal curvature vector on M. Hereafter, unless otherwise stated, we

discuss our arguments on the open subset Ω of M. And then we basically use the

technical computations with the orthogonal triplet {ξ,U ,W} and their associated

scalar functions α, β and µ.

By using (2.2), it follows that

g(∇Xξ,U ) = µg(AW, X)(2.10)

µg(∇XW, ξ) = g(AU , X)(2.11)

for any vector field X on Ω.

Differentiating (2.7) covariantly along M and making use of (2.2), we find

(2.12) (∇XA)ξ = −φ∇XU + g(AU + ∇α, X)ξ − AφAX + αφAX,

which enables us to obtain

(2.13) (∇ξA)ξ = 2AU + ∇α,

where we have used (2.4). From (2.1) and (2.13), it is verified that

(2.14) ∇ξU = 3φAU + αAξ − βξ + φ∇α.

3 U is a Principal Curvature Vector Field on Ω

In this section, we prove that the condition ∇ξRξ = 0 implies that U is a principal

curvature vector field on Ω. Differentiating (2.5) covariantly with respect to ξ and

taking account of (2.13) we get

g((∇ξRξ)Y, Z) = −
c

4
{u(Y )η(Z) + u(Z)η(Y )} + (ξα)g(AY, Z)

+ αg((∇ξA)Y, Z) − η(AZ){3g(AU ,Y ) + Yα}

− η(AY ){3g(AU , Z) + Zα},

(3.1)

where u is a 1-form dual to U with respect to g, that is, u(X) = g(U , X).
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We assume that ∇ξRξ = 0. Then we have from (3.1)

(3.2) α(∇ξA)X + (ξα)AX =
c

4
{u(X)ξ + η(X)U} + η(AX)(3AU + ∇α)

+ {3g(AU , X) + Xα}Aξ.

If we put X = ξ in this and making use of (2.13), we find

(3.3) αAU +
c

4
U = 0,

which shows that α 6= 0 on Ω, that is, U is a principal curvature vector field on Ω.

If we differentiate (3.3) covariantly along Ω, and use (3.3) again, then we obtain

−
c

4
(Xα)U + α2(∇XA)U + α2A∇XU +

c

4
α∇XU = 0,

which, together with (2.4) and (2.7), implies that

(3.4)
c

4
{(Yα)u(X) − (Xα)u(Y )} +

c

4
α2µ(η(X)w(Y ) − η(Y )w(X))

+ α2{g(A∇XU ,Y ) − g(A∇Y U , X)} +
c

4
αdu(X,Y ) = 0,

where w is a dual 1-form of W with respect to g, that is w(X) = g(W, X). Here, du is

the exterior derivative of a 1-form u given by du(X,Y ) = Xu(Y )−Yu(X)−u([X,Y ]).

If we replace X by U , then it follows that

(3.5)
c

4
(µ2∇α − (Uα)U ) + α2A∇UU +

c

4
α∇UU = 0,

because U and W are mutually orthogonal. Combining (2.12) with (3.2) and using

(2.4), we obtain

α2φ∇XU = α2(Xα)ξ −
c

4
αu(X)ξ + α(ξα)AX +

c

4
α2φX

− η(AX)(α∇α −
3

4
cU ) − (α(Xα) −

3

4
cu(X))Aξ

−
c

4
{u(X)ξ + η(X)U} − α2AφAX + α3φAX.

Applying φ to this and using (2.10), we have

(3.6) α2∇XU + α2µg(AW, X)ξ − αη(AX)φ∇α

= −α(ξα)φAX +
c

4
α2(X − η(X)ξ) +

3

4
cµη(AX)W + α(Xα)U

−
3

4
cu(X)U + α3AX −

c

4
αµη(X)W − α3η(X)Aξ + α2φAφAX.
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Putting X = U in (3.6) and using (2.7), (2.8) and (3.3), we get

(3.7) α2∇UU = −
c

4
µ(ξα)W +

{
α(Uα) −

3

4
cµ2

}
U +

c

4
µαφAW,

which yields that

(3.8) α2A∇UU = −
c

4
µ(ξα)AW +

{
α(Uα) −

3

4
cµ2

}
AU +

c

4
µαAφAW.

4 ∇α Is Proportional to U on Ω

In what follows, we will continue our discussions on Ω in M which satisfies ∇ξRξ = 0

and at the same time RξA = ARξ .

Then from the condition RξA = ARξ and (2.6) we get

αA2ξ =

(
β −

c

4

)
Aξ +

c

4
αξ,

which together with α 6= 0 gives

(4.1) αA2ξ = ρAξ +
c

4
ξ,

where we have put

(4.2) αρ = β −
c

4
.

Using (2.8), (2.9), (4.1) and (4.2), we get

(4.3) AW = µξ + (ρ − α)W

because of µ 6= 0. Substituting (3.7) and (3.8) into (3.5) and making use of (2.7),

(3.3) and (4.1), we obtain

(4.4) αµ2∇α = α(Uα)U + αµ2(ξα)ξ + µ
{

α(ρ − α) +
c

4

}
(ξα)W,

where we have used the relation µW = −φU . This, together with (2.9) and (4.2),

imply that

(4.5) α(W α) = µ(ξα).

Thus, (4.4) turns out to be

(4.6) α∇α =
α(Uα)

µ2
U + (ξα)Aξ.

On the other hand, from (2.14) we have

(4.7) ξµ = W α,
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and hence with (4.5) it follows that α(ξµ) = µ(ξα). Since µ2
= β − α2, together

with the above equation we get further that

(4.8) α(ξβ) = 2β(ξα).

Differentiating (4.1) covariantly along Ω and making use of (2.2), we then have

(4.9) g((∇XA)Aξ,Y ) + g(A(∇XA)ξ,Y ) + g(A2φAX,Y ) − ρg(AφAX,Y )

= (Xρ)η(AY ) + ρg((∇XA)ξ,Y ) +
c

4
g(φAX,Y ),

which together with (2.4) and (2.13) give

(4.10) (∇ξA)ξ = ρAU −
c

4
U +

1

2
∇β.

If we put X = ξ in (4.9) and take account of (2.13) and the above equation, we obtain

(4.11)
1

2
∇β = −A∇α + ρ∇α + (ξρ)Aξ − 3A2U + 2ρAU +

c

2
U ,

which together with (2.8) and (4.2) imply that

(4.12) (ρ − 2α)(ξα) + α(ξρ) = 2µ(W α).

If we take an inner product (4.11) with W and make use of (4.2) and (4.3), then we

obtain

(4.13) α(W ρ) = (2α − ρ)(W α) + 2µ(ξρ − ξα).

From (4.13), together with (4.5) and (4.12) we get

(4.14) α3(W ρ) = µ(ρα + c)(ξα).

Since W β = (W α)ρ + α(W ρ), using (4.5) and (4.14) we get

(4.15) α2(W β) = µ(2ρα + c)(ξα).

From the relation µ2
= ρα + c

4
− α2, it is also seen that

2µ(W µ) = (ρ − 2α)(W α) + α(W ρ),

and then using (4.5) and (4.14) we obtain

(4.16) α2(W µ) =

(
ρα − α2 +

c

2

)
(ξα).
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We are now to prove that ξα = 0 on Ω. First, from (3.3) we get

(4.17) αφAU =
c

4
µW

and from (4.3) we get also

(4.18) α(φAφAW − AφAφW ) = −
c

4
µξ,

where we have used the relation φU = −µW .

On the other hand, from (3.6) we get

α2(∇Xu)(Y ) + α2µη(Y )g(AX,W ) − αη(AX)g(φ∇α,Y )

= α(ξα)g(AX, φY ) +
c

4
α2(g(X,Y ) − η(X)η(Y ))

+
3

4
cµw(Y )η(AX) + αu(Y )g(∇α, X)

−
3

4
cu(X)u(Y ) + α3g(AX,Y ) −

c

4
αµη(X)w(Y )

− α3η(Y )η(AX) + α2g(φAφAX,Y ).

From this, we have a Codazzi-type formula for u:

α
(

(∇Xu)(Y ) − (∇Y u)(X)
)

=
2

α
(ξα)(η(AX)u(Y ) − η(AY )u(X)) − (ξα)g((φA + Aφ)X,Y )

+ αg((φAφA − AφAφ)X,Y )

+
{

µ
(

ρα +
c

2

)
−

α

µ
(Uα)

}(
η(X)w(Y ) − η(Y )w(X)

)
,

(4.19)

where we have used (2.8) and (4.6). Putting X = ξ, and using (4.17), we have

(4.20) αdu(ξ, X) = (ξα)u(X) +
{

µ
(

ρα +
3

4
c
)
−

α

µ
(Uα)

}
w(X).

Putting X = W in (4.19) this time, and using (3.3) and (4.18), we obtain

(4.21) αdu(W, X) =

{ α

µ
(Uα) − µ

(
ρα +

3

4
c
)}

η(X)

+ (ξα)
{

2
µ

α
−

ρ − α

µ
+

c

4αµ

}
u(X).

Combining (4.10) with (2.13) and using (2.8), we then find

(4.22) µ(∇ξA)W = (ρ − 2α)AU −
c

4
U +

1

2
∇β − α∇α.
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If we replace X by W in (3.2) and take account of (4.3) and (4.22), we then have

α

µ

{
(ρ − 2α)AU −

c

4
U +

1

2
∇β − α∇α

}
+ (ξα)AW = (W α)Aξ + µ(3AU + ∇α).

This, together with (2.8), (3.3), (4.2) and (4.5), imply that

(4.23) α
( 1

2
α∇β − β∇α

)
+

c

4
(3β − 2α2 − ρα)U = µ(ξα)(µAξ − αAW ).

By using (2.8) (4.2) and (4.3), this is rewritten as

α2∇β − β∇α2 + c
(

µ2 +
c

8

)
U =

c

2
(ξα)(Aξ − αξ),

or for any vector field Y we get

α2(Yβ) − β(Yα2) + c
(

µ2 +
c

8

)
u(Y ) =

c

2
(ξα)(η(AY ) − αη(Y )).

Differentiating this with respect to a vector field X again, and taking the skew-sym-

metric part for X and Y , then we eventually have

8

c
α2

(
(Xα)(Yβ) − (Yα)(Xβ)

)
+ 4αµ

(
(Xµ)u(Y ) − (Yµ)u(X)

)

+
(

2µ2 +
c

4

)
α
(

(∇Xu)(Y ) − (∇Y u)(X)
)

= µα
(

X(ξα)w(Y ) − Y (ξα)w(X)
)

+ (ξα)
{ c

4
µα

(
η(X)w(Y ) − η(Y )w(X)

)

+ 2αg(φAX, AY ) + α
(

(Yα)η(X)

− (Xα)η(Y )
)
− α2

(
g(φAX,Y ) − g(φAY, X)

)}
.

(4.24)

If we put Y = W in (4.24), and make use of (4.5), (4.15), (4.16) and (4.21), then we

find

µα(X(ξα)) = µα(W (ξα))w(X)

+
[(

2µ2 +
c

4

){
µ
(

ρα +
3

4
c
)
−

α

µ
(Uα)

}
− (ξα)µ

(
(ξα) +

c

4
α
)]

η(X)

+
8

c
µ(ξα){(2ρα + c)(Xα) − α(Xβ)} + f1u(X)
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for some smooth function f1. Substituting this into (4.24), we then have

8

c
α2

(
(Xα)(Yβ) − (Yα)(Xβ)

)
+ 4αµ

(
(Xµ)u(Y ) − (Yµ)u(X)

)

+
(

2µ2 +
c

4

)
α((∇Xu)(Y ) − (∇Y u)(X))

=

[(
2µ2 +

c

4

)
{µ(ρα +

3

4
c) −

α

µ
(Uα)} − µ(ξα)2

](
η(X)w(Y ) − η(Y )w(X)

)

+
8

c
µ(ξα)

{
(2ρα + c)

(
(Xα)w(Y ) − (Yα)w(X)

)
− α

(
(Xβ)w(Y ) − (Yβ)w(X)

)}

+ (ξα)
{

α
(

(Yα)η(X) − (Xα)η(Y )
)

+ 2αg(φAX, AY )

− α2
(

g(φAX,Y ) − g(φAY, X)
)}

+ f1

(
u(X)w(Y ) − u(Y )w(X)

)
.

(4.25)

If we put X = ξ in (4.25), and use (3.3), (4.8) and (4.20), then we obtain

8

c
(ξα)(α2∇β − β∇α2 −

c

8
α∇α) + f2U

= −α(ξα)2ξ − µ(ξα)
{ 8

c
(2ρα + c)((W − ξ)(α)) − (ξα)

}
W,

for some smooth function f2.

Now we suppose that ξα 6= 0 on Ω, and then we restrict the arguments on such

a place. Taking the inner product with W in the above equation, and using (4.5)

and (4.15), we can then deduce that α =
4
c
(µ − α)

(
β + c

4
α
)

, where we have used

β = µ2 + α2. Differentiating this equation covariantly with respect to ξ, making use

of (4.7) and (4.8), then we get again α =
4
c
(µ − α)

(
3β + c

2
α
)

. Combining the last

two equations, we have (µ − α)
(

2β + c
4
α
)

= 0, and then it gives that µ = α or

2β = − c
4
α. But, both give that α = 0, a contradiction. Thus, we have proved the

following.

Lemma 1 ξα = W α = 0 on Ω.

By Lemma 1, (4.6) and (4.21) reduce respectively to

µ2∇α = (Uα)U ,(4.26)

αdu(W, X) =

{ α

µ
(Uα) − µ

(
ρα +

3

4
c
)}

η(X).(4.27)

In the next step, we prove the following.

Lemma 2 α∇α = (ρα + 3
4
)U on Ω.
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Proof If we replace Y = W in (3.4) and make use of (2.14), (4.3) and Lemma 1,

then we find

c

4
α2η(X) − αµ2g(AX,W )

+ α2{(ρ − α)g(∇XU ,W ) − g(A∇W U , X)} +
c

4
αdu(X,W ) = 0,

which combining with (4.27) shows that

α2g(A∇W U , X) =
c

4

{ α

µ
(Uα) + µ(α2 − ρα −

3

4
c)

}
η(X) − α2µ2g(AX,W )

+ α2(ρ − α)g(∇XU ,W ).

(4.28)

By the way, if we put X = W in (3.6) and take account of (2.8), (3.3), (4.3), (4.26)

and Lemma 1, then we have

(4.29) α2A∇W U = µα2(α − ρ)Aξ +
{ 3

4
cµ2 +

c

4
ρα + α3(ρ − α) − α(Uα)

}
AW.

In addition, putting X = ξ in (3.6) and taking an inner product with W , we then

obtain

(4.30) α2g(∇ξU ,W ) = α
(

α2 +
3

4
c
)

µ − α2 (Uα)

µ
.

If we put X = ξ in (4.28) and use (2.8), (4.3), (4.29), and (4.30), we then have

α(Uα) =

(
ρα +

3

4
c
)

µ2.

Thus, together with (4.26) we have proved Lemma 2.

5 Proof of Theorem 1

By making use of the results (Lemmas 1 and 2) obtained in the previous section, we

want to prove that the open subset Ω = {p ∈ M : µ(p) 6= 0} must be empty.

Otherwise, since ξα = 0(Lemma 1), the equation (4.23) becomes

(5.1) α
( 1

2
α∇β − β∇α

)
+

c

4
(3β − 2α2 − ρα)U = 0.

Taking into account that β = ρα + c
4
, by Lemma 2 it follows that

(5.2)
1

2
α∇β =

{
ρ2α +

c

2
(ρ + α)

}
U .
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By using the relation ∇β = ρ∇α + α∇ρ and Lemma 2 again, we also get

α2∇ρ =

(
ρ2α +

c

4
ρ + cα

)
U ,

from which we can see that ξρ = W ρ = 0.

Now we differentiate (4.3) covariantly along Ω. Then it follows that

(∇XA)W + A∇XW = (Xµ)ξ + µ∇Xξ + X(ρ − α)W + (ρ − α)∇XW.

By taking an inner product with W , and making use of (2.8) and (2.11), we obtain

(5.3) g((∇XA)W,W ) = −2g(AX,U ) + X(ρ − α).

This time we differentiate (4.1) covariantly and use (2.2) and and (2.8). Then we

find

A(∇XA)ξ + (α − ρ)(∇XA)ξ + µ(∇XA)W = (Xρ)Aξ +
c

4
φAX + ρAφAX − A2φAX.

Replacing X by αξ + µW in this equation and making use of (2.4), (2.8), (2.10),

(4.22), and (5.3), we then have

(5.4) 2ρA2U + 2
(

αρ − β − ρ2 −
c

4

)
AU + (αρ2 − βρ +

c

2
ρ −

3

4
cα)U

= g(Aξ,∇ρ)Aξ −
1

2
A∇β +

1

2
(ρ − 2α)∇β + β∇α − µ2∇ρ.

Since ξρ = W ρ = 0, we see that g(Aξ,∇ρ) = 0. Thus, (5.4) becomes

2ρA2U − (2ρ2 + c)AU +
c

4
(ρ − 3α)U

= −
1

2
A∇β +

1

2
(ρ − 2α)∇β + β∇α −

(
ρα − α2 +

c

4

)
∇ρ,

where we have used β = ρα + c
4
. Multiplying by α2 and using (3.3), (5.1) and (5.2),

direct computations lead us to (ρ + 3α)(β − α2)U = 0, which yields ρ + 3α = 0 on

Ω. Differentiating it and multiplying by α2, and using (5.1) and (5.2) once again, we

meet with α = 0 on Ω. This is impossible. Finally, we conclude that Ω = ∅, that is,

Aξ = αξ on M. We see in addition that α is constant [8]. Thus, from (3.2) we get

α(∇ξA) = 0. Using (2.2) and the Codazzi equation (2.4), we have

α(φA − Aφ) = 0.

Here, we note the case α = 0 corresponds to the case of the tube of radius π
4

in

PnC [3]. But, in the case of HnC, it is known that α never vanishes for Hopf hyper-

surfaces [1]. Due to Okumura’s work for PnC or Montiel and Romero’s work for HnC

mentioned in Introduction, we have completed the proof of our theorem.
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