EXTREMAL PROPERTIES OF HERMITIAN MATRICES
M. MARCUS anp J. L. McGREGOR

1. Introduction. In (1) Fan showed that if A is a Hermitian matrix
with eigenvalues \; < ... < ), then, for & < #,

k
Z >\n—j+ly
=1

Il

k
max Z (Axy, x5)
=1

k k
min Y (Ax; x) = DA,
=1 =1

where x4, ..., x; run over all sets of k& orthonormal (0.n.) vectors in unitary
n-space V.

It is the purpose of this paper to extend this result to the compound of a
non-negative Hermitian (n.n.h.) matrix and investigate some of the con-
sequences of this extension.

In the sequel tr(L) will denote the trace of the matrix L and the Euclidean
norm of L will be designated by ||L|| = (tr(L*L))* where L* is the conjugate
transpose of L. F(L) is the convex image of the unit sphere |[x|| = 1 in the
complex plane under the mapping x — (Lx, x).

For 1 <7 < n let V denote the rth compound space of V. A vector
z € VO will be designated by

Z2=xX1 A ... A %, x, €V,

where the indicated product is the usual Grassmann notation for the exterior
product (2). The inner product in V™ is defined by

(x1 /\ “ e /\ Xry yl /\ . e /\ yr) = det{(xir y:i)}t,j=1,...,r-

If A is a linear transformation on V to V then the induced compound of 4
on V® to V™ is denoted by C,(4) and is defined by

C.(A)xs A ... ANxr=Axi A ... N\ Ax,.

We list some of the essential properties of C.(4) that will subsequently be
used (6).

(i) C.(4B) = C,(4) C.(B).

(ii) If A4 is non-singular, normal, Hermitian, unitary, non-negative, then
C,(A) has the corresponding property.

Received July 25, 1955; in revised form April 14, 1956.
524

https://doi.org/10.4153/CJM-1956-059-0 Published online by Cambridge University Press


https://doi.org/10.4153/CJM-1956-059-0

EXTREMAL PROPERTIES OF MATRICES 525

(iii) The eigenvalues of C,(4) are all possible (’:) products of 7 of the
eigenvalues of 4.

To state subsequent results more compactly we introduce some notation.

The set of (f) distinct choices of integers satisfying 1 <41 <. <...<17,< k

will be denoted by Qi, and a typical sequence in Qy, will be denoted by w.
If x4, ..., x;is a choice of k vectors in V then a typical product
xi,/\ .../\x,-, E V(T)

will be denoted by x,. E,(ai,...,a;) will denote the rth elementary sym-
metric function of the numbers a4, . . ., a;:

T

E,(al, ey ak) = Z 1aij'

weQkr J=

2. Results on Hermitian matrices. The basic result is contained in

THEOREM 1. Let 1 <7 < k < n and let A be an n-square positive definite

Hermitian matrix with eigenvalues 0 < oy < s < ... < ay. Then
maxw;akr(c,(A) Xy %) = Er(atny « o vy pgy1),
min qu (Cr(4) %oy %0) = E (a1, ..., az)
where both max and min are taken over all sets of k o.n. vectors xy, .., x; in V.
Proof. Set

gle, ooy x6) = D2 (Cr(4) %o, %)

WEeQkr

First it is clear that a set of maximizing (minimizing) o.n. vectors exist.
This is easily seen using a standard continuity argument. If 2 = % then

g(xy, ..., x,) = tr C,(4) = E. (0, ..., ap)

and the result thus follows trivially whenever the number of vectors is equal
to the dimension of the space. Now for & < 7 let yy, ..., y; be a minimizing
set for g. The following argument is the same if v, ..., y; is a maximizing
set. Consider the linear subspace L of V spanned by yi,...,y;. Let P be
the orthogonal projection onto L. Consider the mapping PA on L to L.
Clearly if x and y belong to L then

Il

so that PA is positive definite Hermitian on L to L. Let uy, ..., u; be o.n.
eigenvectors of PA in L. Then
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g(yly cey yk) = Z (Cr(A) Yo, yw)

weQkr

2= det{(Ayi, yu)}o ot
2 det{(PAy., yu)}

2 (Cr(PA) 30, 30)
= Y (C.(PA) ty, u,)

= g(t1, ..., u).

At this point we prove a lemma reducing this situation to the case & = #.

Il

tr C, (P4)
2 (Cr(A) ta, 1)

Il
Il

LemMA 1. L is an tnvariant subspace of A.

Proof. If L is not invariant under 4 we lose no generality in assuming that
Au; ¢ L. Then there exists a unit vector v in the orthogonal complement of

L such that
p = (Auy,v) # 0.
We define
e
V1 + £l
u = u,, F=2,...,k
where ¢ is a real number. It is easy to check that #,, ..., % is an o.n. set.
Since g(uy, . . . , 4g) is a minimum for g it follows that
a ., ,
Eg(ul,...,uk)=0 fort = 0.

Using the multilinearity of the Grassmann product we compute that for
t=0

a U —tpv U —tpv
dt (CT(A) \/(1 + t2,p'2) /\ Uiy /\ LI /\ uin \/(1 + t2lp|2) /\ ui2/\ .. /\ ui,—)

= —p(CA)OA U A voo A thi s A thg Ao A U,)
—;')(C,(A)ul/\uiz/\.../\ui,,v/\un/\.../\u,,)

= - 2'/’12;_12 (Auijv uij)‘
Here we have used the fact that if s, > 2 and s # ¢ then

(Auy,, uy) = (PA uyy, uy) = 0,

since #y, ..., #; is an o.n. set of eigenvectors of P4 on L to L. Furthermore
it is clear that

H (Auii) uij) > Oy
=2
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and hence at ¢t = 0
a .
(—ﬁg(ul,...,ui) #0
and the proof of Lemma 1 is complete.

The proof of Theorem 1 is now easily completed. Since L is invariant under
A, let B be the restriction of 4 to L. Then B is a positive definite Hermitian
transformation on a k dimensional subspace onto itself and the eigenvalues

of B_,::are some k of the eigenvalues of 4, say a;, . .., a;. Thus
g o) = Eqk (C+(B) Yo ¥o)

tr C,(B) = Er(aiu .. :aik)

> E,(al, “ e ,Cik).

Thus
g(xly ceey xk) > Er(aly e v ey ak)

for any o.n. vectors xi, . .., x; and equality is attained by choosing a set of
o.n. eigenvectors of A corresponding to ay, . . . , a.

Remark. Theorem 1 is true for 4 simply n.n.h. and can be established
by continuity from the case A positive definite. Actually Fan’s Theorem for
the sum can be proved in exactly the same way using only the condition that
A is Hermitian. It is worth noting that Theorem 1 cannot be obtained directly
by applying Fan’s result to C,(4). The difficulty arises from the fact that
the lexicographic ordering of the eigenvalues of C,(4) does not necessarily
coincide with the ordering by magnitude. Throughout this section we will
assume A is n.n.h. unless otherwise stated. A result of A. Ostrowski (5) now
follows easily.

COROLLARY 1. For 1 <r<k<n
min E,((Axy, x1), . . ., (Axz, %)) = E. (o1, . . ., op).
where the min 1s taken over all sets of k o.n. vectors x1,...,xyin V.
Proof. It follows from the Hadamard determinant Theorem and Theorem

1 that
E (a1, ...,o) < glxn, ..., %)

=2 (Cr(4) %o %)

weQkr

< Z H (Axy,, x4,)
weQkr S=1

= E,((Axl, xl), ey (Axk, xk))

As before, the minimum is taken on.
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COROLLARY 2. Under the same hypotheses as Corollary 1,

k 1 k 4
max E,((4xy, x1), ..., (Axy, %)) = ()(;Zlan_m) .
g
Proof. By Fan’s result
k
I'l'la.XZ1 (Axi, xi) = El(an, .o 1an—k+l)-

Then by (3; Theorem 52)
E(Axn, 20), - ., (A 1)) < (l:)(Ex((Axl, x1), ..., (Ax;, xk)))r

k

<)z e

We must show that this value is actually taken on. This is accomplished by
use of the following elementary lemma.

LEmMMA 2. If T s a linear transformation on V to V then there exists an o.n.
set of vectorsv; € V,j=1,...,m, m < n such that

(Tovj,v;) = n1te(T), i=1,...,m.
Proof. We use an induction argument to exhibit a unitary matrix R such

that
(R*TR);; = n 1 tr(T), i=1,...,m.

For m = 1 it is clear since n~1 tr(T") € F(T). Suppose there exists a unitary

U such that
Tll T12
U*TU = < )
Tor To

with T'11, Tae, # and (» — 7) square matrices respectively and (711); = n™!
tr (7). Then tr(Ts) = (m — r)r 1 tr(T) and applying the case m = 1 to T2
we select a unitary (# — r)-square matrix .S such that

(S* T22S)11 = p1 tI‘(T).
Define the n-square unitary matrix ¥V by V = diag (I, S) and set R = U V.
This completes the induction.

Actually, for the purposes of this proof, we need only know Lemma 2 for
T Hermitian. In this case we can readily exhibit an o.n. set v; satisfying
Lemma 2; let %y, ..., u, be an o.n. set of eigenvectors of 7" and let § be a
primitive nth root of unity. Then set

n 0ij

v, = —5 U,
Returning to the proof of Corollary 2, we select ¥y, . . . , ¥,_r+1 corresponding
to the eigenvalues o, . . . , a,—+1 respectively. These span a subspace invariant

under A and by restricting A to this k-dimensional subspace and applying
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Lemma 2 to the restricted transformation we select k2 o.n. vectors xy, ..., x;
such that

1 k
(ij, x,) = zzlan_h\.l.
=

Clearly, for this choice of the x;

k 1 k T
E.(\Axy, x1), ..., (Axx, x2)) = ()(;Z an—j+1> ,
=1

and the proof is complete.

COROLLARY 3. For1 < 11 <1< ... <1< m,
1 k k
H a; < H Ay < <;Z Qn—j+1 ) -
=1
Proof. Let ¢; be the unit vector with 1 in the jth position and 0 elsewhere.
Then
(Aéi,-, e’i;‘) = Ai,-i,-
and the result follows from Corollaries 1 and 2. We remark that for & =

we have the Hadamard determinant inequality. We also note that the lower
inequality is contained in (5).

CoRrOLLARY 4. If A is an arbitrary matrix with row vectors A, ..., A,
then for 1 <11 < ... <4 <n

k k 1 by
[Ta; < III 1441 < ;Zlan—fﬂ
= =

j=1

where a; < ... < a, are the non-negative square roots of the eigenvalues of
A* A.

Proof. Apply Corollary 3 to A* A.

COROLLARY 5. Assume A satisfies the conditions of Theorem 1. Let 0 < w;

< ... < o be k non-negative numbers k < n. Then
k
mmH (Axj, x )" = [ a7
j=1
Proof.

k
[T Ay ) = T1 (duyy )™ H(Ax],xmw (A, )
k—1

w1 we—w1 WE—wk—1
aj l | ;i ...y

o Py B

\%

.
[
—

j=1

Wk—1 +1
a;

I
=~

.
I
-

and the latter value is clearly assumed.
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CoroLLARY 6. If A and B are arbitrary n-square complex matrices then
[lall-2 o\l
HABH max{”A” <H Ba,. ]+1> , HB“2<I‘Ilagn—;+l> }
-

where 0 < a; < a1 and 0 < B, < Bw1 (1 =1,...,n — 1) are the eigenvalues
of A* A and B* B respectively.

Proof. ||AB||? = tr{ABB*A*} = tr{(4*4)} (BB*) (4*4)}}.Letyy, ..., ya
be an o.n. set of eigenvectors of (4* 4)* corresponding respectively to ad,... ok,
Then by Corollary 5

n

[|4B]* = ZaxB By, ;)

j=1

> 1a1E( 1 @ Byn)

MH(HB““)WHZ

The argument is symmetric in A and B and the result follows.

THEOREM 2. Let A and B be n.n.h. with eigenvalues a1 < ... < a, and
B1 < ... < B, respectively. Let 0 < 8, < ... < 0, denote the etgenvalues of
A + B. Then forr < k < n,

E. (81, ...,0) > max{( )E H B;Es(aa, ..., ),

R

)5 T amou...00),
Ey(Bny - .-, Opirr) < min{( >
)

=0 j=1

;r < ><r - s;x 6""“) (r ;a’”—’“) '
2 (O Zen) (Z o)}

Proof. Let x1,...,x, be an o.n. set of eigenvectors of C = 4 + B corres-
ponding respectively to 6y, ...,60;,. Let a; = (Ax; x;) and b; = (Bxy, x4).
Then

E (61, ...,600) = Er(a1+ by, ... a0 + by)

- Y > Y TIle I

iu<.. <if==werr 3=0 p=(i1<...<is)Cw j=1 tew—p

Z ZT H,BJE(IIﬂ,...,ai,)

weQkr s=0 j=1

> E Zr: HﬁjEs(alr-'-var)

weQky s=0 j=1

= (f) Z I_I ﬁjE_g(aly LY )af)'
s=0 j=1

\Y%
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The result is symmetric in 4 and B and the first inequality follows. The
second inequality is proved analogously.

5.

6.
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